Skip to content
2000
image of Formulation and Characterization of Diazepam Thermosensitive Rectal Gel: Investigating the Role of Mucoadhesive Polymers

Abstract

Background

The study developed a rectal in-situ gel of diazepam using thermosensitive polymer poloxamer 407 (P407). The newer form of in-situ rectal diazepam gel holds great promise in terms of effectiveness and ease of use. This in-situ gel is a remarkable combination of two pharmaceutical forms: a solution and a gel.

Objective

The study aims to formulate a rectal in-situ gel of diazepam to improve rectal residence time for treating insomnia, convulsions, and status epilepticus. This innovative approach holds great potential for future application and the study of the effect of the addition of HPMC into the formulation.

Method

Ten formulations with varying concentrations of P407 (14%-19%) and HPMC (0.25%-1%) were prepared and assessed for gelation temperature and time, mucoadhesive force, in-vitro drug release, and FTIR compatibility.

Results

The optimized formula, F5 (18% P407), demonstrated a gelation temperature of 37±3.775°C, gelation time of 341 seconds, mucoadhesive force of 4021 dyne/cm2, 100% in-vitro drug release within 8 hours, and 65.23% permeation in 12 hours.

Conclusion

The study concluded that diazepam can be effectively formulated as a thermosensitive in-situ gel for rectal administration. However, the addition of HPMC negatively impacts the physicochemical properties of the gel.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855376051250408071026
2025-04-24
2025-09-11
Loading full text...

Full text loading...

References

  1. Kienitz R. Kay L. Beuchat I. Benzodiazepines in the management of seizures and status epilepticus: A review of routes of delivery, pharmacokinetics, efficacy, and tolerability. CNS Drugs 2022 36 9 951 975 10.1007/s40263‑022‑00940‑2 35971024
    [Google Scholar]
  2. Gidal B. Detyniecki K. Rescue therapies for seizure clusters: Pharmacology and target of treatments. Epilepsia 2022 63 S1 Suppl. 1 S34 S44 10.1111/epi.17341 35999174
    [Google Scholar]
  3. Ferreira J.G.J. Flores V.G. Marco M.R. Diazepam nanocapsules as an alternative for sleep induction: Development study and toxicity assessment. Food Chem. Toxicol. 2024 192 114962 10.1016/j.fct.2024.114962 39197520
    [Google Scholar]
  4. Hsu W.L. Chen C.W. Liang H.H. Chiang T.L. Lin H.W. Lin Y.H. Innovative analysis of diazepam, zolpidem and their main metabolites in human urine by micelle-to-solvent stacking in capillary electrophoresis. J. Pharm. Biomed. Anal. 2024 239 115898 10.1016/j.jpba.2023.115898 38064769
    [Google Scholar]
  5. Jannin V. Lemagnen G. Gueroult P. Larrouture D. Tuleu C. Rectal route in the 21st Century to treat children. Adv. Drug Deliv. Rev. 2014 73 34 49 10.1016/j.addr.2014.05.012 24871671
    [Google Scholar]
  6. Verrotti A. Milioni M. Zaccara G. Safety and efficacy of diazepam autoinjector for the management of epilepsy. Expert Rev. Neurother. 2015 15 2 127 133 10.1586/14737175.2015.1003043 25614951
    [Google Scholar]
  7. Kurniawansyah I.S. Rusdiana T. Sopyan I. Desy Arya I.F. Wahab H.A. Nurzanah D. Comparative study of in situ gel formulation based on the physico-chemical aspect: Systematic review. Gels 2023 9 8 645 10.3390/gels9080645 37623100
    [Google Scholar]
  8. Garg A. Agrawal R. Singh Chauhan C. Deshmukh R. In-situ gel: A smart carrier for drug delivery. Int. J. Pharm. 2024 652 123819 10.1016/j.ijpharm.2024.123819 38242256
    [Google Scholar]
  9. Liu Y. Chen X. Chen X. Preparation and in vivo and ex vivo studies of sirolimus nano-in-situ gel ophthalmic formulation. J. Nanobiotechnology 2024 22 1 417 10.1186/s12951‑024‑02668‑1 39014353
    [Google Scholar]
  10. Liao A.H. Shih C.P. Li M.W. Lin Y.C. Chuang H.C. Wang C.H. Development of thermosensitive poloxamer 407-based microbubble gel with ultrasound mediation for inner ear drug delivery. Drug Deliv. 2021 28 1 1256 1271 10.1080/10717544.2021.1938758 34142922
    [Google Scholar]
  11. Ruan X. Hu J. Lu L. Poloxamer 407/188 binary thermosensitive gel as a moxidectin delivery system: In vitro release and in vivo evaluation. Molecules 2022 27 10 3063 10.3390/molecules27103063 35630537
    [Google Scholar]
  12. Guarve K. Kriplani P. HPMC- A marvel polymer for pharmaceutical industry-patent review. Recent Adv. Drug Deliv. Formul. 2021 15 1 46 58 10.2174/1872211314666210604120619 34086557
    [Google Scholar]
  13. Ma L. Shi T. Zhang Z. Liu X. Wang H. Wettability of HPMC/PEG/CS thermosensitive porous hydrogels. Gels 2023 9 8 667 10.3390/gels9080667 37623122
    [Google Scholar]
  14. The British Pharmacopoeia. Strasbourg, France: The Council of Eu-rope 2022 1 8
  15. USP–NF Upcoming Planned Changes to Title and Format. In: USP 44- NF 39. Bethesda, US. U. S. Pharmacop. 2021 1 1 5
    [Google Scholar]
  16. Bai L. Lei F. Luo R. Development of a thermosensitive in-situ gel formulations of vancomycin hydrochloride: Design, preparation, in vitro and in vivo evaluation. J. Pharm. Sci. 2022 111 9 2552 2561 10.1016/j.xphs.2022.04.011 35461804
    [Google Scholar]
  17. Vincent M. Simon L. Brabet P. Formulation and evaluation of snedds loaded with original lipophenol for the oral route to prevent dry AMD and stragardt’s disease. Pharmaceutics 2022 14 5 1029 10.3390/pharmaceutics14051029 35631617
    [Google Scholar]
  18. Chen Y Liu Y Xie J Zheng Q Yue P Chen L Nose-to-brain delivery by nanosuspensions-based in situ gel for breviscapine. Int J Nanomedic 2020 15 10435 51 10.2147/IJN.S265659 33380794
    [Google Scholar]
  19. Dural E. Kaya B. Determination of diazepam in human plasma by developed and validated a high-performance liquid chromatographic ultraviolet method. İstan. J. Pharm. (Cairo) 2022 52 1 37 46 10.26650/IstanbulJPharm.2022.877867
    [Google Scholar]
  20. Mohananaidu K. Chatterjee B. Mohamed F. Mahmood S. Hamed Almurisi S. Thermoreversible carbamazepine in situ gel for intranasal delivery: Development and in vitro, ex vivo evaluation. AAPS PharmSciTech 2022 23 8 288 10.1208/s12249‑022‑02439‑x 36271212
    [Google Scholar]
  21. Long Y. Lei F. Hu J. Zheng Z. Gui S. He N. Design and evaluation of ophthalmic thermosensitive in situ gel of compound salvia. AAPS PharmSciTech 2024 25 7 191 10.1208/s12249‑024‑02913‑8 39164556
    [Google Scholar]
  22. Kurniawansyah I.S. Rusdiana T. Arya I.F.D. Ramoko H. Wahab H.A. Optimizing chemically stable chloramphenicol in-situ gel formulations using poloxamer 407 and HPMC through full-factorial design. Sci. Rep. 2024 14 1 25344 10.1038/s41598‑024‑74945‑w 39455653
    [Google Scholar]
  23. Gugleva V. Titeva S. Ermenlieva N. Development and evaluation of doxycycline niosomal thermoresponsive in situ gel for ophthalmic delivery. Int. J. Pharm. 2020 591 120010 10.1016/j.ijpharm.2020.120010 33132152
    [Google Scholar]
  24. A S, Ahmed MG, Gowda BH J. Preparation and evaluation of in-situ gels containing hydrocortisone for the treatment of aphthous ulcer. J. Oral Biol. Craniofac. Res. 2021 11 2 269 276 10.1016/j.jobcr.2021.02.001 33717865
    [Google Scholar]
  25. Raheema D.A. Kassab H.J. Preparation and in-vitro evaluation of secnidazole as periodontal in-situ gel for treatment of periodontal disease. Iraqi J. Pharm Sci. 2022 31 2 50 61 10.31351/vol31iss2pp50‑61
    [Google Scholar]
  26. Alwan O.M. Jaafar I.S. Development of synergistic antifungal in situ gel of miconazole nitrate loaded microemulsion as a novel approach to treat vaginal candidiasis. Sci. Rep. 2024 14 1 23168 10.1038/s41598‑024‑74021‑3 39369062
    [Google Scholar]
  27. Carone M. Spalinger M.R. Gaultney R.A. Temperature-triggered in situ forming lipid mesophase gel for local treatment of ulcerative colitis. Nat. Commun. 2023 14 1 3489 10.1038/s41467‑023‑39013‑3 37311749
    [Google Scholar]
  28. Gieroba B. Sroka-Bartnicka A. Kazimierczak P. Effect of gelation temperature on the molecular structure and physicochemical properties of the curdlan matrix: Spectroscopic and microscopic analyses. Int. J. Mol. Sci. 2020 21 17 6154 10.3390/ijms21176154 32858980
    [Google Scholar]
  29. Haghighatseir N. Mozafari N. Shadvand E. Ashrafi H. Daneshamouz S. Azadi A. Mixed-micelle in situ gel as a candidate for oral inflammatory ulcerative diseases. AAPS PharmSciTech 2024 25 6 144 10.1208/s12249‑024‑02862‑2 38918282
    [Google Scholar]
  30. Zhang F. Wang X. Guo N. Influence of different ph values on gels produced from tea polyphenols and low acyl gellan gum. Gels 2023 9 5 368 10.3390/gels9050368 37232960
    [Google Scholar]
  31. Zhu Y. Liu Y. Wang Y. Development of a temperature and ph dual-sensitive in-situ gel for treating allergic conjunctivitis. AAPS PharmSciTech 2024 25 7 223 10.1208/s12249‑024‑02931‑6 39322789
    [Google Scholar]
  32. Abbas I.K. Abddulhameed S.N. Preparation and characterization of bilastine solid self-nanoemulsion using liquisolid technique. Al-Rafidain J. Med. Sci. 2023 5 78 85 10.54133/ajms.v5i.160
    [Google Scholar]
  33. Enggi C.K. Isa H.T. Sulistiawati S. Development of thermosensitive and mucoadhesive gels of cabotegravir for enhanced permeation and retention profiles in vaginal tissue: A proof of concept study. Int. J. Pharm. 2021 609 121182 10.1016/j.ijpharm.2021.121182 34648879
    [Google Scholar]
  34. Jabir S.A. Rajab N.A. Preparation, in-vitro, ex-vivo, and pharmacokinetic study of lasmiditan as intranasal nanoemulsion-based in situ gel. Pharm. Nanotechnol. 2025 13 1 239 253 10.2174/0122117385285009231222072303 38173066
    [Google Scholar]
  35. Kuppala R.R. Prakash P.R. Devanna N. Empowering topical delivery: Box behnken design optimization of posaconazole microsponge hydrogel for improved management of fungal infections. Int. J. Pharm. Sci. Drug Res. 2024 16 3 465 475 10.25004/IJPSDR.2024.160320
    [Google Scholar]
  36. Abdul–Aziz B.I. Rajab N.A. Preparation and in-vitro evaluation of mucoadhesive clotrimazole vaginal hydrogel. Iraqi J. Pharm Sci. 2014 23 1 19 25
    [Google Scholar]
  37. Bassi da Silva J. Ferreira S. Reis A. Cook M. Bruschi M. Assessing mucoadhesion in polymer gels: The effect of method type and instrument variables. Polymers 2018 10 3 254 10.3390/polym10030254 30966289
    [Google Scholar]
  38. Alwan Z.S. Rajab N.A. Preparation and characterization of febuxostat nanosuspension as fast dissolving oral film. Al-Rafidain J. Med. Sci. 2024 6 2 873 10.54133/ajms.v6i2.873
    [Google Scholar]
  39. Shobeirean A. Attar H. Varshochian R. Rezvanfar M.A. Glatiramer acetate in situ forming gel, a new approach for multiple sclerosis treatment. Daru 2024 32 2 649 664 10.1007/s40199‑024‑00532‑z 39225953
    [Google Scholar]
  40. Ma L. Mao H. Xu J. Piao J. Piao M. Study on the nasal drug delivery system of nmd liposomes in situ thermosensitive gel. AAPS PharmSciTech 2023 24 8 234 10.1208/s12249‑023‑02679‑5 37973673
    [Google Scholar]
  41. Li T. Bao Q. Shen J. Lalla R.V. Burgess D.J. Mucoadhesive in situ forming gel for oral mucositis pain control. Int. J. Pharm. 2020 580 119238 10.1016/j.ijpharm.2020.119238 32194210
    [Google Scholar]
  42. Al-Mahmood S. Rajab Ayash N. Ufosomes as topical/transdermal drug delivery system: Structural components, preparation techniques and therapeutic application. Curr. Drug Deliv. 2024 21 10.2174/0115672018302045240510114907 38779736
    [Google Scholar]
  43. Alkufi K. Kassab J. Formulation and evaluation of sustained release sumatriptan mucoadhesive intranasal in-situ gel. Iraqi J. Pharm Sci. 2019 28 2 95 104 10.31351/vol28iss2pp95‑104
    [Google Scholar]
  44. Saifullah S. Kanwal T. Ullah S. Design and development of lipid modified chitosan containing muco-adhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem. Phys. Lipids 2021 235 105052 10.1016/j.chemphyslip.2021.105052 33482099
    [Google Scholar]
  45. Alabdly A.A. Kassab Hanan J. Formulation variables effect on gelation temperature of nefopam hydrochloride intranasal in situ ge. Iraqi J. Pharm Sci. 2023 31 32 44 10.31351/vol31issSuppl.pp32‑44
    [Google Scholar]
  46. Jakasaniya P. Patel J. Dudhat K. Mori D. Formulation and optimization of gastro-retentive in situ gel of antiepileptic agent by using a box–behnken factorial design. Proc Ind Natl Sci Acad 2024 5 343 10.1007/s43538‑024‑00343‑5
    [Google Scholar]
  47. The European Pharmacopoeia. 11th ed Strasbourg, France European Pharmacopoeia 2023 1 12
    [Google Scholar]
  48. Valenti S. Cazorla C. Romanini M. Tamarit J.L. Macovez R. Eutectic mixture formation and relaxation dynamics of coamorphous mixtures of two benzodiazepine drugs. Pharmaceutics 2023 15 1 196 10.3390/pharmaceutics15010196 36678825
    [Google Scholar]
  49. Hirun N. Kraisit P. Tantishaiyakul V. Thermosensitive polymer blend composed of poloxamer 407, poloxamer 188 and polycarbophil for the use as mucoadhesive in situ gel. Polymers 2022 14 9 1836 10.3390/polym14091836 35567002
    [Google Scholar]
  50. Bakhrushina E.O. Novozhilova E.V. Shumkova M.M. New biopharmaceutical characteristics of in situ systems based on poloxamer 407. Gels 2023 9 7 508 10.3390/gels9070508 37504387
    [Google Scholar]
  51. Almutairy B.K. Khafagy E.S. Abu Lila A.S. Development of carvedilol nanoformulation-loaded poloxamer-based in situ gel for the management of glaucoma. Gels 2023 9 12 952 10.3390/gels9120952 38131938
    [Google Scholar]
  52. Cook M.T. Haddow P. Kirton S.B. McAuley W.J. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv. Funct. Mater. 2021 31 8 2008123 10.1002/adfm.202008123
    [Google Scholar]
  53. Jiang Q. Zhang P. Li J. Elucidation of colloid performances of thermosensitive in situ forming ophthalmic gel formed by poloxamer 407 for loading drugs. J. Pharm. Sci. 2020 109 5 1703 1713 10.1016/j.xphs.2020.01.021 32014396
    [Google Scholar]
  54. da Silva J.B. Cook M.T. Bruschi M.L. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: Mechanical, rheological and sol-gel transition analysis. Carbohydr. Polym. 2020 240 116268 10.1016/j.carbpol.2020.116268 32475558
    [Google Scholar]
  55. Kim H. Song D. Ngo H.V. Modulation of the clinically accessible gelation time using glucono-d-lactone and pyridoxal 5′-phosphate for long-acting alginate in situ forming gel injectable. Carbohydr. Polym. 2021 272 118453 10.1016/j.carbpol.2021.118453 34420713
    [Google Scholar]
  56. Ziegler C.E. Graf M. Nagaoka M. Lehr H. Goepferich A.M. In situ forming iEDDA hydrogels with tunable gelation time release high-molecular weight proteins in a controlled manner over an extended time. Biomacromolecules 2021 22 8 3223 3236 10.1021/acs.biomac.1c00299 34270216
    [Google Scholar]
  57. Hua S. Physiological and pharmaceutical considerations for rectal drug formulations. Front. Pharmacol. 2019 10 1196 10.3389/fphar.2019.01196 31680970
    [Google Scholar]
  58. Venkatesh M.P. Kumar T.P. Pai D.R. Targeted drug delivery of methotrexate in situ gels for the treatment of rheumatoid arthritis. Saudi Pharm. J. 2020 28 12 1548 1557 10.1016/j.jsps.2020.10.003 33424248
    [Google Scholar]
  59. Hussein H.M.A. Ghareeb M.M. Unveiling the preparation and characterization of lercanidipine hydrochloride in an oral solid self-nanoemulsion for enhancing oral delivery. Cureus 2024 16 7 e64468 10.7759/cureus.64468 39139335
    [Google Scholar]
  60. Thammasut W. Rojviriya C. Chaiya P. Phaechamud T. Limsitthichaikoon S. Moxifloxacin HCl -loaded cellulose acetate butylate in situ forming gel for periodontitis treatment. AAPS PharmSciTech 2024 25 7 242 10.1208/s12249‑024‑02960‑1 39402367
    [Google Scholar]
  61. Hamzah M. Kassab H. Formulation and characterization of intranasal drug delivery of frovatriptan-loaded binary ethosomes gel for brain targeting. Nanotechnol. Sci. Appl. 2024 17 1 19 10.2147/NSA.S442951 38249545
    [Google Scholar]
  62. Fakhari A. Corcoran M. Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon 2017 3 8 e00390 10.1016/j.heliyon.2017.e00390 28920092
    [Google Scholar]
  63. Mansuri S. Kesharwani P. Jain K. Tekade R.K. Jain N.K. Mucoadhesion: A promising approach in drug delivery system. React. Funct. Polym. 2016 100 151 172 10.1016/j.reactfunctpolym.2016.01.011
    [Google Scholar]
  64. Liu Y. Wang X. Liu Y. Di X. Thermosensitive in situ gel based on solid dispersion for rectal delivery of ibuprofen. AAPS PharmSciTech 2018 19 1 338 347 10.1208/s12249‑017‑0839‑5 28733828
    [Google Scholar]
  65. Firoz F. Yousef T. Asser Y. Thaer R.M. Sammour R.M.F. Thermo-activated in situ rectal gel preparation for Ibuprofen using eutectic mixture. Eur. J. Pharm. Sci. 2024 200 106843 10.1016/j.ejps.2024.106843 38950638
    [Google Scholar]
  66. Roy S. Pal K. Anis A. Pramanik K. Prabhakar B. Polymers in mucoadhesive drug-delivery systems: A brief note. Des. Monomers Polym. 2009 12 6 483 495 10.1163/138577209X12478283327236
    [Google Scholar]
  67. El-Qarra L.H. Cosottini N. Tangsombun C. Smith D.K. Formulation and release of active pharmaceutical ingredients using a supramolecular self‐healing two‐component gel. Chemistry 2024 30 72 e202402530 10.1002/chem.202402530 39401090
    [Google Scholar]
  68. Shafiei F. Ghavami-Lahiji M. Jafarzadeh Kashi T.S. Najafi F. Drug release kinetics and biological properties of a novel local drug carrier system. Dent. Res. J. (Isfahan) 2021 18 1 94 10.4103/1735‑3327.330875 35003559
    [Google Scholar]
  69. Alshetaili A.S. Design, statistical optimization, and characterization of esculin-loaded transliposome nanogel for topical delivery: In-vitro, ex vivo study and dermatokinetic evaluation. J. King Saud Univ. Sci. 2024 36 5 103166 10.1016/j.jksus.2024.103166
    [Google Scholar]
  70. Waqas M.K. Sadia H. Khan M.I. Development and characterization of niosomal gel of fusidic acid: In-vitro and ex-vivo approaches. Des. Monomers Polym. 2022 25 1 165 174 10.1080/15685551.2022.2086411 35711622
    [Google Scholar]
  71. Adnan M. Afzal O. S A Altamimi A, Alamri MA, Haider T, Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment. Int. J. Pharm. 2023 631 122506 10.1016/j.ijpharm.2022.122506 36535455
    [Google Scholar]
  72. Newa M. Bhandari K.H. Oh D.H. Enhanced dissolution of ibuprofen using solid dispersion with poloxamer 407. Arch. Pharm. Res. 2008 31 11 1497 1507 10.1007/s12272‑001‑2136‑8 19023548
    [Google Scholar]
  73. Hassan M.L. Abou-Elesoud W.S. Safwat E.M. Hassan E.A. Fadel S.M. Labeeb A.M. Effect of cellulose nanocrystals on rheology, liquid crystal, and delivery behavior of metronidazole poloxamer-based in-situ dental medication. Cellulose 2022 29 18 9511 9529 10.1007/s10570‑022‑04864‑4
    [Google Scholar]
  74. Ranade V. Dalal Y. Palampalle H.Y. Singh K. Formulation, development, and comparative study of azelastine-loaded temperature sensitive in situ gelling micelles for allergic conjunctivitis. J. Pharm. Innov. 2023 18 4 1966 1980 10.1007/s12247‑023‑09760‑3
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855376051250408071026
Loading
/content/journals/cdth/10.2174/0115748855376051250408071026
Loading

Data & Media loading...

Supplements

Supplementary Data 1: Calibration Curve Supplementary Data 2: Drug Content

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test