Skip to content
2000
image of Enhanced Osteoinductive Bone Repair Using Dual Growth Factors (VEGF and BMP-2) with Alendronate in Engineered Hydroxyapatite Scaffold

Abstract

Background

The dynamic mechanisms inherent in bone homeostasis yield invaluable insight for advancing scaffold biomaterials in bone regeneration. The increasing recognition of drug delivery systems and the release of bioactive substances significantly elevating their importance in bone tissue engineering. This approach not only supports bone tissue formation but also enhances the scaffold's ability to facilitate bone ingrowth. Bisphosphonates (BPs) play a crucial role in bone remodeling, subsequently affecting bone regeneration. Despite this, there is a scarcity of studies addressing the systematic delivery of BPs within bone defect models.

Objective

In this study, integration of bisphosphonates Pamidronate (Pam) and Alendronate (Aln) into a hydroxyapatite (HA) scaffold with MC3T3-E1 cells and growth factors (VEGF and BMP-2), is expected to yield a synergistic effect for intensifying osteoinduction and efficient bone regeneration.

Materials and Methods

Cell viability was measured using 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and morphological assessment was documented using the inverted microscope. Characterization of engineered HA scaffold was performed using Field emission scanning electron microscopy (FESEM), and its elemental analysis was done using energy-dispersive X-ray (EDX) analysis. The mineralization rate was assessed by analyzing alkaline phosphatase (ALP) expression.

Results

Data demonstrated that Aln offers better potency on osteoblast cells as compared to Pam. FESEM micrograph revealed that the engineered HA-VEGF+BMP-2/Aln scaffold facilitated osteoblast attachment and spreading, forming a concrete connection with HA scaffold. Engineered HA-VEGF+BMP-2/Aln also significantly increased ALP expression, indicating that the extracellular matrix is advancing into the mineralization phase.

Conclusion

To conclude, our investigation unveils the synergistic effects of combining dual growth factors (VEGF and BMP-2) with BPs, specifically Aln, resulting in enhanced cell adhesion on hydroxyapatite scaffolds. This emphasizes the substantial promise of employing such a strategy in promoting the regeneration of bone tissue.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855359539250407165838
2025-05-12
2025-09-22
Loading full text...

Full text loading...

References

  1. Varshney S. Dwivedi A. Pandey V. Efficacy of autologous stem cells for bone regeneration during endosseous dental implants insertion: A systematic review of human studies. J. Oral. Biol. Craniofac. Res. 2020 10 4 347 10.1016/j.jobcr.2020.06.007
    [Google Scholar]
  2. Amini A.R. Laurencin C.T. Nukavarapu S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012 40 5 363 408 10.1615/CritRevBiomedEng.v40.i5.10 23339648
    [Google Scholar]
  3. Grassie K. Khan Y. Bone tissue engineering. Musculoskeletal Tissue Engineering Elsevier 1 40
    [Google Scholar]
  4. Shariful Islam M. Abdulla-Al-Mamun M. Khan A. Todo M. Excellency of Hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. IntechOpen 2020 10.5772/intechopen.92900
    [Google Scholar]
  5. Tripathi G. Basu B. A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceram. Int. 2012 38 1 341 349 10.1016/j.ceramint.2011.07.012
    [Google Scholar]
  6. Mondal S. Pal U. 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. J. Drug Deliv. Technol. 2019 53 101131 10.1016/j.jddst.2019.101131
    [Google Scholar]
  7. Liu Z. Liang H. Shi T. Xie D. Chen R. Han X. Shen L. Wang C. Tian Z. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram. Int. 2019 45 8 11079 11086 10.1016/j.ceramint.2019.02.195
    [Google Scholar]
  8. Cui Y. Zhu T. Li D. Li Z. Leng Y. Ji X. Liu H. Wu D. Ding J. Bisphosphonate-functionalized scaffolds for enhanced bone regeneration. dv Healthc Mater. 2019 8 23 e1901073 10.1002/adhm.201901073
    [Google Scholar]
  9. Gao Y. Liu X. Gu Y. Song D. Ding M. Liao L. Wang J. Ni J. He G. The effect of bisphosphonates on fracture healing time and changes in bone mass density: A meta-analysis. Front Endocrinol (Lausanne). 2021 12 688269 10.3389/fendo.2021.688269
    [Google Scholar]
  10. Liang B. Burley G. Lin S. Shi Y.C. Osteoporosis pathogenesis and treatment: Existing and emerging avenues. Cell. Mol. Biol. Lett. 2022 27 1 72 10.1186/s11658‑022‑00371‑3 36058940
    [Google Scholar]
  11. Harvey N.C. Poole K.E. Ralston S.H. McCloskey E.V. Sangan C.B. Wiggins L. Jones C. Gittoes N. Compston J. Abrahamsen B. Gregson C. Turnbull C. Cooper C. Armstrong D. Reid D. Kariki E. Curtis E. Clark E. Duncan E. Towards a cure for osteoporosis: The UK Royal Osteoporosis Society (ROS) Osteoporosis Research Roadmap. Arch Osteoporos. 2022 17 1 12 10.1007/s11657‑021‑01049‑7
    [Google Scholar]
  12. Li Z. Wang H. Zhang K. Yang B. Xie X. Yang Z. Kong L. Shi P. Zhang Y. Ho Y.P. Zhang Z.Y. Li G. Bian L. Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration. Bioact. Mater. 2022 13 9 22 10.1016/j.bioactmat.2021.11.004 35224288
    [Google Scholar]
  13. Wang Y. Cui W. Zhao X. Wen S. Sun Y. Han J. Zhang H. Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale 2019 11 1 60 71 10.1039/C8NR07329E 30350839
    [Google Scholar]
  14. Fesseha H. Fesseha Y. Bone grafting, its principle and application: A review. Osteol. Rheumatol. Open J. 2020 3 1 7 14 10.17140/ORHOJ‑3‑113
    [Google Scholar]
  15. Tobeiha M. Moghadasian M.H. Amin N. Jafarnejad S. RANKL/RANK/OPG pathway: A mechanism involved in exercise-induced bone remodeling. Arch Osteoporos. 2020 17 1 12 10.1155/2020/6910312
    [Google Scholar]
  16. Halloran D. Durbano H.W. Nohe A. Developmental review bone morphogenetic protein-2 in development and bone homeostasis. J. Dev. Biol. 2020 8 3 19 10.3390/jdb8030019 32933207
    [Google Scholar]
  17. Tang W. Yang F. Li Y. de Crombrugghe B. Jiao H. Xiao G. Zhang C. Transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) by osteoblast-specific transcription factor Osterix (Osx) in osteoblasts. J. Biol. Chem. 2012 287 3 1671 1678 10.1074/jbc.M111.288472 22110141
    [Google Scholar]
  18. Chen X. Tan B. Bao Z. Wang S. Tang R. Wang Z. Chen G. Chen S. Lu W.W. Yang D. Peng S. Enhanced bone regeneration via spatiotemporal and controlled delivery of a genetically engineered BMP-2 in a composite Hydrogel. Biomaterials 2021 277 121117 10.1016/j.biomaterials.2021.121117 34517277
    [Google Scholar]
  19. Chen J. Zhou X. Sun W. Vascular derived ECM improves therapeutic index of BMP-2 and drives vascularized bone regeneration. Small 2022 18 36 e2107991 10.1002/smll.202107991.
    [Google Scholar]
  20. Chai S. Wan L. Wang J.L. Huang J.C. Huang H.X. Gushukang inhibits osteocyte apoptosis and enhances BMP-2/Smads signaling pathway in ovariectomized rats. Phytomedicine 2019 64 153063 10.1016/j.phymed.2019.153063 31419728
    [Google Scholar]
  21. Chien C.S. Liao Z.Y. Hong T.F. Kuo T.Y. Chang C.H. Yeh M.L. Lee T.M. ?Surface microstructure and bioactivity of hydroxyapatite and fluorapatite coatings deposited on Ti-6Al-4V substrates using Nd-YAG laser. J. Med. Biol. Eng. 2014 34 2 109 115 10.5405/jmbe.1379
    [Google Scholar]
  22. Baudequin T. Bedoui F. Dufresne M. Paullier P. Legallais C. Towards the development and characterization of an easy handling sheet-like biohybrid bone substitute. Tissue Eng. Part A 2015 21 11-12 1895 1905 10.1089/ten.tea.2014.0580 25761235
    [Google Scholar]
  23. Xu R. Zhang Z. Toftdal M.S. Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. J. Control Release 2019 301 129 10.1016/j.jconrel.2019.02.037
    [Google Scholar]
  24. Lyritis G.P. Georgoulas T. Zafeiris C.P. Bone anabolic versus bone anticatabolic treatment of postmenopausal osteoporosis. Ann. N. Y. Acad. Sci. 2010 1205 277 10.1111/j.1749‑6632.2010.05666.x
    [Google Scholar]
  25. Luchman NA Megat AWR Zainal Ariffin SH Nasruddin NS Lau SF Yazid F Comparison between hydroxyapatite and polycapro-lactone in inducing osteogenic differentiation and augmenting max-illary bone regeneration in rats PeerJ. 2022 10 :e13356 10.7717/peerj.13356
    [Google Scholar]
  26. Veiga A. Madureira S. Costa J.B. Castro F. Rocha F. Oliveira A.L. 2023 Tackling current production of HAp and HAp-driven biomaterials. Mater. Adv 4 5453 5478 10.1039/D3MA00363A
    [Google Scholar]
  27. Paltanea G. Manescu V. Antoniac I. Antoniac A. Nemoianu I.V. Robu A. Dura H. A review of biomimetic and biodegradable magnetic scaffolds for bone tissue engineering and oncology. Int. J. Mol. Sci. 2023 24 5 4312 10.3390/ijms24054312
    [Google Scholar]
  28. Fitzpatrick V. Martín-Moldes Z. Deck A. Torres-Sanchez R. Valat A. Cairns D. Li C. Kaplan D.L. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials 2021 276 120995 10.1016/j.biomaterials.2021.120995 34256231
    [Google Scholar]
  29. Lv J. Xiu P. Tan J. Jia Z. Cai H. Liu Z. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: Implantation of electron beam melting-fabricated porous Ti 6 Al 4 V scaffolds incorporating growth factor-doped fibrin glue. Biomed. Mater. 2015 10 3 035013 10.1088/1748‑6041/10/3/035013 26107105
    [Google Scholar]
  30. Subbiah R. Cheng A. Ruehle M.A. Hettiaratchi M.H. Bertassoni L.E. Guldberg R.E. Effects of controlled dual growth factor delivery on bone regeneration following composite bone-muscle injury bioRxiv 2020 10.1101/2020.03.25.008813
    [Google Scholar]
  31. Kim H.C. Song J.M. Kim C.J. Yoon S.Y. Kim I.R. Park B.S. Shin S.H. Combined effect of bisphosphonate and recombinant human bone morphogenetic protein 2 on bone healing of rat calvarial defects. Maxillofac. Plast. Reconstr. Surg. 2015 37 1 16 10.1186/s40902‑015‑0015‑3 26161381
    [Google Scholar]
  32. Basso F.G. Pansani T.N. Cardoso L.M. Hebling J. Real R.P.V. Costa C.A.S. Influence of bisphosphonates on the behavior of osteoblasts seeded onto titanium discs. Braz. Dent. J. 2020 31 3 304 309 10.1590/0103‑6440202003128 32667511
    [Google Scholar]
  33. Wang Y. Newman M.R. Benoit D.S.W. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review. Eur J. Pharm Biopharm. 2018 V127 223 236 10.1016/j.ejpb.2018.02.023
    [Google Scholar]
  34. Nitti P. Narayanan A. Pellegrino R. Villani S. Madaghiele M. Demitri C. Cell-tissue interaction: The biomimetic approach to design tissue engineered biomaterials. Bioengineering 2023 10 10 1122 10.3390/bioengineering10101122
    [Google Scholar]
  35. Ling L.E. Feng L. Liu H.C. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. J Biomed Mater Res A. 2015 103 5 1732 10.1002/jbm.a.35303.
    [Google Scholar]
  36. Cyster L. Grant D.M. Howdle S.M. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering Biomaterials 2005 26 7 697 702
    [Google Scholar]
  37. Kang S. Haider A. Gupta K.C. Kim H. Kang I. Chemical bonding of biomolecules to the surface of nano-hydroxyapatite to enhance its bioactivity. Coatings 2022 12 7 10.3390/coatings12070999
    [Google Scholar]
  38. Ren Q. Cai M. Zhang K. Ren W. Su Z. Yang T. Sun T. Wang J. Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone. Braz. J. Med. Biol. Res. 2018 51 2 e6520 10.1590/1414‑431x20176520 29211249
    [Google Scholar]
  39. Hedvičáková V. Žižková R. Buzgo M. Rampichová M. Filová E. Muruganandan S. The effect of alendronate on osteoclastogenesis in different combinations of M-CSF and RANKL growth factors. Biomolecules 2021 11 3 438 10.3390/biom11030438 33809737
    [Google Scholar]
  40. Komatsu K. Shimada A. Shibata T. Wada S. Ideno H. Nakashima K. Amizuka N. Noda M. Nifuji A. Alendronate promotes bone formation by inhibiting protein prenylation in osteoblasts in rat tooth replantation model. J. Endocrinol. 2013 219 2 145 158 10.1530/JOE‑13‑0040 24096963
    [Google Scholar]
  41. Zeng Y. Zhou M. Mou S. Yang J. Yuan Q. Guo L. Zhong A. Wang J. Sun J. Wang Z. Sustained delivery of alendronate by engineered collagen scaffold for the repair of osteoporotic bone defects and resistance to bone loss. J. Biomed. Mater. Res. A 2020 108 12 2460 2472 10.1002/jbm.a.36997 32419333
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855359539250407165838
Loading
/content/journals/cdth/10.2174/0115748855359539250407165838
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: bone ; VEGF ; osteoinduction ; bisphosphonate ; Hydroxyapatite (HA) ; BMP-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test