Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Recent research has introduced numerous nano-drug delivery technologies into the biomedical field, with carbon dots (CDs) standing out as a significant breakthrough in nanomaterials. Known as “emerging light” due to their unique structural features and adaptability, CDs are a particular type of carbon-based nanoparticle. These characteristics make CDs highly versatile and attractive for a wide range of applications, including biosensing, bioimaging, and drug delivery. The remarkable properties of CDs have made them central to nanotechnology and medical research. Their effective electron transferability and photo-blinking effects enhance their efficiency in imaging and sensing applications, ensuring safety for use in biological systems. CDs also exhibit a high photoluminescent quantum yield, making them highly efficient light emitters. Their exceptional resistance to photobleaching and photo-decomposition extends their usefulness in long-term applications. Additionally, CDs possess strong electrocatalytic activity, excellent water solubility, and long-term chemical stability, making them both effective and durable. Their low toxicity and cost-effectiveness further enhance their suitability for widespread use. CDs' high surface area-to-volume ratio increases their utility in various applications. Recent advancements have highlighted the potential of CDs as nanocarriers for biological applications, such as gene, vaccine, and antiviral drug delivery. The easy modification of their physico-chemical properties to suit specific applications underscores their versatility. This review article provides a comprehensive summary of the latest developments in carbon dots, covering their characteristics, synthesis techniques, properties, classification, and applications.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855346566241213115951
2024-12-24
2025-09-23
Loading full text...

Full text loading...

References

  1. KauravH. VermaD. BansalA. KapoorD.N. ShethS. Progress in drug delivery and diagnostic applications of carbon dots: A systematic review.Front Chem.202311122784310.3389/fchem.2023.122784337521012
    [Google Scholar]
  2. SagbasS. SahinerN. Carbon dots: Preparation, properties, and application.Amsterdam, The NetherlandsElsevier Ltd.2018
    [Google Scholar]
  3. BakirhanN.K. OzkanS.A. Quantum Dots as a New Generation Nanomaterials and Their Electrochemical Applications in Pharmaceutical Industry.Amsterdam, The NetherlandsElsevier Inc.201810.1016/B978‑0‑12‑813351‑4.00029‑8
    [Google Scholar]
  4. ZhangZ. LeiY. YangX. ShiN. GengL. WangS. ZhangJ. ShiS. High drug-loading system of hollow carbon dots–doxorubicin: Preparation, in vitro release and pH-targeted research.J. Mater. Chem. B Mater. Biol. Med.20197132130213710.1039/C9TB00032A32073571
    [Google Scholar]
  5. SunS. ZhangL. JiangK. WuA. LinH. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents.Chem. Mater.201628238659866810.1021/acs.chemmater.6b03695
    [Google Scholar]
  6. GongP. SunL. WangF. LiuX. YanZ. WangM. ZhangL. TianZ. LiuZ. YouJ. Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery.Chem. Eng. J.2019356994100210.1016/j.cej.2018.09.100
    [Google Scholar]
  7. ChahalS. MacairanJ.R. YousefiN. TufenkjiN. NaccacheR. Green synthesis of carbon dots and their applications.RSC Advances20211141253542536310.1039/D1RA04718C35478913
    [Google Scholar]
  8. JiangX. QinD. MoG. FengJ. YuC. MoW. DengB. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma.J. Pharm. Biomed. Anal.201916451451910.1016/j.jpba.2018.11.02530453158
    [Google Scholar]
  9. ChahalS. YousefiN. TufenkjiN. Green synthesis of high quantum yield carbon dots from phenylalanine and citric acid: Role of stoichiometry and nitrogen doping.ACS Sustain. Chem.& Eng.20208145566557510.1021/acssuschemeng.9b07463
    [Google Scholar]
  10. GucluA.D. PotaszP. KorkusinskiM. HawrylakP. Graphene Quantum Dots.Berlin/Heidelberg, GermanySpringer201410.1007/978‑3‑662‑44611‑9
    [Google Scholar]
  11. HawrylakP. PeetersF. EnsslinK. Carbononics – integrating electronics, photonics and spintronics with graphene quantum dots.Phys. Status Solidi Rapid Res. Lett.2016101111210.1002/pssr.201670707
    [Google Scholar]
  12. HaiX. FengJ. ChenX. WangJ. Tuning the optical properties of graphene quantum dots for biosensing and bioimaging.J. Mater. Chem. B Mater. Biol. Med.20186203219323410.1039/C8TB00428E32254380
    [Google Scholar]
  13. LiH. YeS. GuoJ. WangH. YanW. SongJ. Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells.J. Nano Res.2019123075308410.1007/s12274‑019‑2554‑x31927315
    [Google Scholar]
  14. YangS.T. WangX. WangH. LuF. LuoP.G. CaoL. MezianiM.J. LiuJ.H. LiuY. ChenM. HuangY. SunY.P. Carbon dots as nontoxic and high-performance fluorescence imaging agents.J. Phys. Chem. C200911342181101811410.1021/jp9085969
    [Google Scholar]
  15. SunY.P. ZhouB. LinY. WangW. FernandoK.A.S. PathakP. MezianiM.J. HarruffB.A. WangX. WangH. LuoP.G. YangH. KoseM.E. ChenB. VecaL.M. XieS.Y. Quantum-sized carbon dots for bright and colorful photoluminescence.J. Am. Chem. Soc.2006128247756775710.1021/ja062677d16771487
    [Google Scholar]
  16. CayuelaA. SorianoM.L. ValcárcelM. Photoluminescent carbon dot sensor for carboxylated multiwalled carbon nanotube detection in river water.Sens. Actuators B Chem.201520759660110.1016/j.snb.2014.10.102
    [Google Scholar]
  17. XiaC. ZhuS. FengT. YangM. YangB. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots.Adv. Sci. (Weinh.)2019623190131610.1002/advs.20190131631832313
    [Google Scholar]
  18. NamdariP. NegahdariB. EatemadiA. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review.Biomed. Pharmacother.20178720922210.1016/j.biopha.2016.12.10828061404
    [Google Scholar]
  19. TangL. JiR. CaoX. LinJ. JiangH. LiX. TengK.S. LukC.M. ZengS. HaoJ. LauS.P. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots.ACS Nano2012665102511010.1021/nn300760g22559247
    [Google Scholar]
  20. ZhangW. YuS.F. FeiL. JinL. PanS. LinP. Large-area color controllable remote carbon white-light light-emitting diodes.Carbon20158534435010.1016/j.carbon.2014.12.107
    [Google Scholar]
  21. MartindaleB.C.M. HuttonG.A.M. CaputoC.A. PrantlS. GodinR. DurrantJ.R. ReisnerE. Enhancing light absorption and charge transfer efficiency in carbon dots through graphitization and core nitrogen doping.Angew. Chem. Int. Ed.201756236459646310.1002/anie.20170094928464489
    [Google Scholar]
  22. YuT. WangH. GuoC. ZhaiY. YangJ. YuanJ. A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties.R. Soc. Open Sci.20185718024510.1098/rsos.18024530109080
    [Google Scholar]
  23. TianP. TangL. TengK.S. LauS.P. RenW. WangY. LinZ. LiuJ. ZhaoJ. XuJ. XuW. Graphene quantum dots from chemistry to applications.Mater. Today Chem.20181022125810.1016/j.mtchem.2018.09.007
    [Google Scholar]
  24. RaeyaniD. ShojaeiS. Ahmadi-KandjaniS. BazrafkanV. Optical graphene quantum dots gas sensors: Theoretical study.Superlattices Microstruct.201811432133010.1016/j.spmi.2017.12.050
    [Google Scholar]
  25. ArroyaveJ.M. AmbrusiR.E. RobeinY. PronsatoM.E. BrizuelaG. Di NezioM.S. CenturiónM.E. Carbon dots structural characterization by solution-state NMR and UV–visible spectroscopy and DFT modeling.Appl. Surf. Sci.202156415019510.1016/j.apsusc.2021.150195
    [Google Scholar]
  26. WangY. HuA. Carbon quantum dots: Synthesis, properties and applications.J. Mater. Chem. C Mater. Opt. Electron. Devices20142346921693910.1039/C4TC00988F
    [Google Scholar]
  27. PortoL.S. SilvaD.N. de OliveiraA.E.F. PereiraA.C. BorgesK.B. Carbon nanomaterials: Synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest.Rev. Anal. Chem.202038311610.1515/revac‑2019‑0017
    [Google Scholar]
  28. HassanvandZ. JalaliF. NazariM. ParnianchiF. SantoroC. Carbon nanodots in electrochemical sensors and biosensors: A review.ChemElectroChem202181153510.1002/celc.202001229
    [Google Scholar]
  29. SunJ. YuJ. JiangZ. ZhaoZ. XiaY. Fluorescent carbonized polymer dots prepared from sodium alginate based on the CEE effect.ACS Omega2020542275142752110.1021/acsomega.0c0399533134714
    [Google Scholar]
  30. GümrükçüoğluA. BaşoğluA. KolayliS. Di̇nçS. KaraM. OcakM. OcakÜ. Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples.Turk. J. Chem.20204419911110.3906/kim‑1903‑2833488146
    [Google Scholar]
  31. TianL. LiZ. WangP. ZhaiX. WangX. LiT. Carbon quantum dots for advanced electrocatalysis.J. Energy Chem.20215527929410.1016/j.jechem.2020.06.057
    [Google Scholar]
  32. MiaoS. LiangK. ZhuJ. YangB. ZhaoD. KongB. Hetero-atom-doped carbon dots: Doping strategies, properties and applications.Nano Today20203310087910.1016/j.nantod.2020.100879
    [Google Scholar]
  33. RoyP. ChenP.C. PeriasamyA.P. ChenY.N. ChangH.T. Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications.Mater. Today201518844745810.1016/j.mattod.2015.04.005
    [Google Scholar]
  34. MartindaleB.C.M. HuttonG.A.M. CaputoC.A. ReisnerE. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst.J. Am. Chem. Soc.2015137186018602510.1021/jacs.5b0165025864839
    [Google Scholar]
  35. ZuoP. LuX. SunZ. GuoY. HeH. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots.Mikrochim. Acta2016183251954210.1007/s00604‑015‑1705‑3
    [Google Scholar]
  36. SinghI. AroraR. DhimanH. PahwaR. Carbon quantum dots: Synthesis, characterization and biomedical applications.Turk. J. Pharm. Sci.201815221923010.4274/tjps.6349732454664
    [Google Scholar]
  37. FangS. LinY. HuY.H. Recent advances in green, safe, and fast production of graphene oxide via electrochemical approaches.ACS Sustain. Chem.& Eng.2019715126711268110.1021/acssuschemeng.9b02794
    [Google Scholar]
  38. WangB. LuS. The light of carbon dots: From mechanism to applications.Matter20225111014910.1016/j.matt.2021.10.016
    [Google Scholar]
  39. CuiF. YeY. PingJ. SunX. Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications.Biosens. Bioelectron.202015611208510.1016/j.bios.2020.11208532275580
    [Google Scholar]
  40. RossS. WuR.S. WeiS.C. RossG.M. ChangH.T. The analytical and biomedical applications of carbon dots and their future theranostic potential: A review.Yao Wu Shi Pin Fen Xi202028467869610.38212/2224‑6614.115435696139
    [Google Scholar]
  41. TeleanuD.M. NegutI. GrumezescuV. GrumezescuA.M. TeleanuR.I. Nanomaterials for drug delivery to the central nervous system.Nanomaterials20199337110.3390/nano903037130841578
    [Google Scholar]
  42. KoutsogiannisP. ThomouE. StamatisH. GournisD. RudolfP. Advances in fluorescent carbon dots for biomedical applications.Adv. Phys. X202051175859210.1080/23746149.2020.1758592
    [Google Scholar]
  43. ZhaoQ. LinY. HanN. LiX. GengH. WangX. CuiY. WangS. Mesoporous carbon nanomaterials in drug delivery and biomedical application.Drug Deliv.20172429410710.1080/10717544.2017.139930029124979
    [Google Scholar]
  44. YunusU. ZulfiqarM.A. AjmalM. BhattiM.H. ChaudhryG.S. MuhammadT.S.T. SungY.Y. Targeted drug delivery systems: Synthesis and in vitro bioactivity and apoptosis studies of gemcitabine-carbon dot conjugates.Biomed. Mater.202015606500410.1088/1748‑605X/ab95e132442994
    [Google Scholar]
  45. HettiarachchiS.D. GrahamR.M. MintzK.J. ZhouY. VanniS. PengZ. LeblancR.M. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors.Nanoscale201911136192620510.1039/C8NR08970A30874284
    [Google Scholar]
  46. VeselovV.V. NosyrevA.E. JicsinszkyL. AlyautdinR.N. CravottoG. Targeted delivery methods for anticancer drugs.Cancers 202214362210.3390/cancers1403062235158888
    [Google Scholar]
  47. MokhtariR.B. HomayouniT.S. BaluchN. MorgatskayaE. KumarS. DasB. YegerH. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.1672328410237
    [Google Scholar]
  48. SuW. GuoR. YuanF. LiY. LiX. ZhangY. ZhouS. FanL. Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells.J. Phys. Chem. Lett.20201141357136310.1021/acs.jpclett.9b0389132017568
    [Google Scholar]
  49. KongT. HaoL. WeiY. CaiX. ZhuB. Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy.Cell Prolif.2018515e1248810.1111/cpr.1248830039515
    [Google Scholar]
  50. NocitoG. CalabreseG. ForteS. PetraliaS. PuglisiC. CampoloM. EspositoE. ConociS. Carbon dots as promising tools for cancer diagnosis and therapy.Cancers 2021139199110.3390/cancers1309199133919096
    [Google Scholar]
  51. SebastianA.M. PeterD. Artificial intelligence in cancer research: Trends, challenges and future directions.Life 20221212199110.3390/life1212199136556356
    [Google Scholar]
  52. HussainS. MubeenI. UllahN. ShahS.S.U.D. KhanB.A. ZahoorM. UllahR. KhanF.A. SultanM.A. Modern diagnostic imaging technique applications and risk factors in the medical field: A review.BioMed Res. Int.2022202211910.1155/2022/516497035707373
    [Google Scholar]
  53. WooY. ChaurasiyaS. O’LearyM. HanE. FongY. Fluorescent imaging for cancer therapy and cancer gene therapy.Mol. Ther. Oncolytics20212323123810.1016/j.omto.2021.06.00734729398
    [Google Scholar]
  54. BoumaB.E. de BoerJ.F. HuangD. JangI.K. YonetsuT. LeggettC.L. LeitgebR. SampsonD.D. SuterM. VakocB.J. VilligerM. WojtkowskiM. Optical coherence tomography.Nat. Rev. Methods Primers2022217910.1038/s43586‑022‑00162‑236751306
    [Google Scholar]
  55. HerranzR. OtoJ. PlanaE. Fernández-PardoÁ. CanaF. Martínez-SarmientoM. Vera-DonosoC.D. EspañaF. MedinaP. Circulating cell-free DNA in liquid biopsies as potential biomarker for bladder cancer: A systematic review.Cancers 2021136144810.3390/cancers1306144833810039
    [Google Scholar]
  56. JiZ. ArvapalliD.M. ZhangW. YinZ. WeiJ. Nitrogen and sulfur co-doped carbon nanodots in living EA.hy926 and A549 cells: Oxidative stress effect and mitochondria targeting.J. Mater. Sci.202055146093610410.1007/s10853‑020‑04419‑7
    [Google Scholar]
  57. DiasC. VasimalaiN. P SárriaM. PinheiroI. Vilas-BoasV. PeixotoJ. EspiñaB. Biocompatibility and bioimaging potential of fruit-based carbon dots.Nanomaterials 20199219910.3390/nano902019930717497
    [Google Scholar]
  58. WangY. AnilkumarP. CaoL. LiuJ.H. LuoP.G. TackettK.N.II SahuS. WangP. WangX. SunY.P. Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging.Exp. Biol. Med.2011236111231123810.1258/ebm.2011.01113222036734
    [Google Scholar]
  59. WangW. LiY. ChengL. CaoZ. LiuW. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling.J. Mater. Chem. B Mater. Biol. Med.201421464810.1039/C3TB21370F32261297
    [Google Scholar]
  60. ZhuoY. MiaoH. ZhongD. ZhuS. YangX. One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging.Mater. Lett.201513919720010.1016/j.matlet.2014.10.048
    [Google Scholar]
  61. OstadhosseinF. PanD. Functional carbon nanodots for multiscale imaging and therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201793e143610.1002/wnan.143627791335
    [Google Scholar]
  62. ZhaiX. ZhangP. LiuC. BaiT. LiW. DaiL. LiuW. Highly luminescent carbon nanodots by microwave-assisted pyrolysis.Chem. Commun.201248647955795710.1039/c2cc33869f22763501
    [Google Scholar]
  63. TaoH. YangK. MaZ. WanJ. ZhangY. KangZ. LiuZ. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite.Small20128228129010.1002/smll.20110170622095931
    [Google Scholar]
  64. YuF. LiS. ChenW. WuT. PengC. A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%.Energy Environ. Mater.201925510.1002/eem2.12030
    [Google Scholar]
  65. CarreseB. SanitàG. LambertiA. Nanoparticles design for theranostic approach in cancer disease.Cancers 20221419465410.3390/cancers1419465436230578
    [Google Scholar]
  66. KumarS. MalviyaR. Dietary fibers and their derivatives for drug delivery applications: Advances and prospective.J. Drug Deliv. Sci. Technol.20238910508410.1016/j.jddst.2023.105084
    [Google Scholar]
  67. LiuC. ZhangF. HuJ. GaoW. ZhangM. A mini review on pH-sensitive photoluminescence in carbon nanodots.Front Chem.2021860502810.3389/fchem.2020.60502833553104
    [Google Scholar]
  68. LiX. LiuJ. QiuN. Cyclodextrin-based polymeric drug delivery systems for cancer therapy.Polymers 2023156140010.3390/polym1506140036987181
    [Google Scholar]
  69. DingH. DuF. LiuP. ChenZ. ShenJ. DNA-carbon dots function as fluorescent vehicles for drug delivery.ACS Appl. Mater. Interfaces20157126889689710.1021/acsami.5b0062825742297
    [Google Scholar]
  70. DingH. ZhangF. ZhaoC. LvY. MaG. WeiW. TianZ. Beyond a carrier: Graphene quantum dots as a probe for programmatically monitoring anti-cancer drug delivery, release, and response.ACS Appl. Mater. Interfaces2017933273962740110.1021/acsami.7b0882428782357
    [Google Scholar]
  71. LiS. SuW. WuH. YuanT. YuanC. LiuJ. DengG. GaoX. ChenZ. BaoY. YuanF. ZhouS. TanH. LiY. LiX. FanL. ZhuJ. ChenA.T. LiuF. ZhouY. LiM. ZhaiX. ZhouJ. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids.Nat. Biomed. Eng.20204770471610.1038/s41551‑020‑0540‑y32231314
    [Google Scholar]
  72. GaoP. LiuS. SuY. ZhengM. XieZ. Fluorine-doped carbon dots with intrinsic nucleus-targeting ability for drug and dye delivery.Bioconjug. Chem.202031364665510.1021/acs.bioconjchem.9b0080131884783
    [Google Scholar]
  73. SungS.Y. SuY.L. ChengW. HuP.F. ChiangC.S. ChenW.T. HuS.H. Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges.Nano Lett.2019191698110.1021/acs.nanolett.8b0324930521346
    [Google Scholar]
  74. PandeyV.K. TripathiA. TaufeeqA. DarA.H. SamrotA.V. RustagiS. MalikS. BhattacharyaT. KovacsB. ShaikhA.M. Significance and applications of carbon dots in anti cancerous nanodrug conjugate development: A review.Appl. Surf. Sci. Adv.20241910055010.1016/j.apsadv.2023.100550
    [Google Scholar]
  75. SeragE. HelalM. El NemrA. Curcumin loaded onto folic acid carbon dots as a potent drug delivery system for antibacterial and anticancer applications.Sci. Rep.20243551953210.1007/s00203‑023‑03591‑0
    [Google Scholar]
  76. YuH. TangK. CaiZ. LinX. HuangY. YuT. ZhangQ. WangQ. WuL. YangL. ShanH. LuoH. Carbon dots-based nanozyme for drug-resistant lung cancer therapy by encapsulated doxorubicin/siRNA cocktail.Int. J. Nanomedicine20231893394810.2147/IJN.S39098436852185
    [Google Scholar]
  77. Ben-ZichriS. RajendranS. BhuniaS.K. JelinekR. Resveratrol carbon dots disrupt mitochondrial function in cancer cells.Bioconjug. Chem.20223391663167110.1021/acs.bioconjchem.2c0028236065131
    [Google Scholar]
  78. TironC.E. LutaG. ButuraM. Zugun-EloaeF. StanC.S. CoroabaA. UrsuE.L. StanciuG.D. TironA. NHF-derived carbon dots: Prevalidation approach in breast cancer treatment.Sci. Rep.20201011266210.1038/s41598‑020‑69670‑z32728167
    [Google Scholar]
  79. LiuH. LiZ. SunY. GengX. HuY. MengH. GeJ. QuL. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability.Sci. Rep.201881108610.1038/s41598‑018‑19373‑329348413
    [Google Scholar]
  80. Chellachamy AnbalaganA. KorramJ. DobleM. SawantS.N. Bio-functionalized carbon dots for signaling immuno-reaction of carcinoembryonic antigen in an electrochemical biosensor for cancer biomarker detection.Discov. Nano20241913710.1186/s11671‑024‑03980‑338421453
    [Google Scholar]
  81. MengQ. WangQ. ZhangQ. WangJ. LiY. ZhuS. LiuR. ZhuH. Carbon dot-modified controllable drug delivery system for sonodynamic/chemotherapy of tumors.Mater. Chem. Front.2024851362137210.1039/D3QM01135F
    [Google Scholar]
  82. ZengQ. ShaoD. HeX. RenZ. JiW. ShanC. QuS. LiJ. ChenL. LiQ. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo.J. Mater. Chem. B Mater. Biol. Med.20164305119512610.1039/C6TB01259K32263509
    [Google Scholar]
  83. Medina-BerríosN. Pantoja-RomeroW. Lavín FloresA. Díaz VélezS.C. Martínez GuadalupeA.C. Torres MuleroM.T. KisslingerK. Martínez-FerrerM. MorellG. WeinerB.R. Synthesis and characterization of carbon-based quantum dots and doped derivatives for improved andrographolide’s hydrophilicity in drug delivery platforms.ACS Omega2024911acsomega.3c0625210.1021/acsomega.3c0625238524434
    [Google Scholar]
  84. ZhengM. RuanS. LiuS. SunT. QuD. ZhaoH. XieZ. GaoH. JingX. SunZ. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells.ACS Nano2015911114551146110.1021/acsnano.5b0557526458137
    [Google Scholar]
  85. MeenaR. SinghR. MarappanG. KushwahaG. GuptaN. MeenaR. GuptaJ.P. AgarwalR.R. FahmiN. KushwahaO.S. Fluorescent carbon dots driven from ayurvedic medicinal plants for cancer cell imaging and phototherapy.Heliyon201959e0248310.1016/j.heliyon.2019.e0248331687577
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855346566241213115951
Loading
/content/journals/cdth/10.2174/0115748855346566241213115951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test