Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Atopic Dermatitis (AD) is a chronic, inflammatory, and widespread skin disease with heterogeneous manifestations having a significant influence on the lives of youngsters and adults. Atopic Dermatitis prevalence is higher in African-American children compared with European American children, and the interaction between various factors such as genetics, skin barrier dysfunction, and immune abnormalities mainly causes it. Despite various available treatment options for atopic dermatitis, they often fall short in addressing the root cause, prompting patients to seek more effective and enduring solutions. To combat these shortcomings, researchers are focusing on the development of targeted therapy. The development of targeted treatment options involves the utilization of a range of biological agents designed to pinpoint specific components and regulators of inflammatory pathways associated with allergic and inflammatory conditions. Phytochemicals, . alkaloids, phenols, carotenoids, and organo-sulphurs, have been utilized in traditional medicine for centuries, which contribute to increased efficacy while minimizing adverse events. The objective of this review is to give information about the epidemiology, pathophysiology, and evolving landscape of targeted therapy for atopic dermatitis, encompassing both biologics and phytochemicals.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855307501240607045747
2024-06-25
2025-10-23
Loading full text...

Full text loading...

References

  1. Kowalska-OlędzkaE. CzarneckaM. BaranA. Epidemiology of atopic dermatitis in Europe.J. Drug Assess.20198112612810.1080/21556660.2019.1619570 31232396
    [Google Scholar]
  2. SaekiH. Diagnosis and Japanese Guideline.Evolution of Atopic Dermatitis in the 21st Century.Springer, Singapore.201826528010.1007/978‑981‑10‑5541‑6_20
    [Google Scholar]
  3. Sicras-MainarA. Navarro-ArtiedaR. Armario-HitaJ.C. Severe atopic dermatitis in Spain: A real-life observational study.Ther. Clin. Risk Manag.2019151393140110.2147/TCRM.S226456 31819466
    [Google Scholar]
  4. OzkayaE. Adult-onset atopic dermatitis.J. Am. Acad. Dermatol.200552457958210.1016/j.jaad.2004.11.037 15793505
    [Google Scholar]
  5. SacotteR. SilverbergJ.I. Epidemiology of adult atopic dermatitis.Clin. Dermatol.201836559560510.1016/j.clindermatol.2018.05.007 30217272
    [Google Scholar]
  6. GargN. SilverbergJ.I. Epidemiology of childhood atopic dermatitis.Clin. Dermatol.201533328128810.1016/j.clindermatol.2014.12.004 25889128
    [Google Scholar]
  7. SilverbergJ.I. Comorbidities and the impact of atopic dermatitis.Ann. Allergy Asthma Immunol.2019123214415110.1016/j.anai.2019.04.020 31034875
    [Google Scholar]
  8. PallerA.S. Fölster-HolstR. ChenS.C. No evidence of increased cancer incidence in children using topical tacrolimus for atopic dermatitis.J. Am. Acad. Dermatol.202083237538110.1016/j.jaad.2020.03.075 32246968
    [Google Scholar]
  9. KaufmanB.P. Guttman-YasskyE. AlexisA.F. Atopic dermatitis in diverse racial and ethnic groups—Variations in epidemiology, genetics, clinical presentation and treatment.Exp. Dermatol.201827434035710.1111/exd.13514 29457272
    [Google Scholar]
  10. OdhiamboJ.A. WilliamsH.C. ClaytonT.O. RobertsonC.F. AsherM.I. GroupI.P.T.S. Global variations in prevalence of eczema symptoms in children from ISAAC phase three.J. Allergy Clin. Immunol.2009124612511258.e2310.1016/j.jaci.2009.10.009 20004783
    [Google Scholar]
  11. ShawT.E. CurrieG.P. KoudelkaC.W. SimpsonE.L. Eczema prevalence in the United States: Data from the 2003 national survey of children’s health.J. Invest. Dermatol.20111311677310.1038/jid.2010.251 20739951
    [Google Scholar]
  12. JanumpallyS.R. FeldmanS.R. GuptaA.K. FleischerA.B.Jr In the United States, blacks and Asian/Pacific Islanders are more likely than whites to seek medical care for atopic dermatitis.Arch. Dermatol.2002138563463710.1001/archderm.138.5.634 12020225
    [Google Scholar]
  13. DavisSA NarahariS FeldmanSR HuangW Pichardo-GeisingerRO McMichaelAJ Top dermatologic conditions in patients of color: An analysis of nationally representative data.J drugs dermatology JDD201211446673
    [Google Scholar]
  14. El-EssawiD. MusialJ.L. HammadA. LimH.W. A survey of skin disease and skin-related issues in Arab Americans.J. Am. Acad. Dermatol.200756693393810.1016/j.jaad.2007.01.031 17321004
    [Google Scholar]
  15. ShahS.K. BhanusaliD.G. SachdevA. GeriaA.N. AlexisA.F. A survey of skin conditions and concerns in South Asian Americans: A community-based study.J. Drugs Dermatol.2011105524528 21533300
    [Google Scholar]
  16. Guttman-YasskyE. NogralesK.E. KruegerJ.G. Contrasting pathogenesis of atopic dermatitis and psoriasis—Part I: Clinical and pathologic concepts.J. Allergy Clin. Immunol.201112751110111810.1016/j.jaci.2011.01.053 21388665
    [Google Scholar]
  17. KuoI.H. YoshidaT. De BenedettoA. BeckL.A. The cutaneous innate immune response in patients with atopic dermatitis.J. Allergy Clin. Immunol.2013131226627810.1016/j.jaci.2012.12.1563 23374259
    [Google Scholar]
  18. FlohrC. MannJ. New approaches to the prevention of childhood atopic dermatitis.Allergy2014691566110.1111/all.12343 24372089
    [Google Scholar]
  19. EliasP.M. SteinhoffM. “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis.J. Invest. Dermatol.200812851067107010.1038/jid.2008.88 18408746
    [Google Scholar]
  20. SullivanM. SilverbergN.B. Current and emerging concepts in atopic dermatitis pathogenesis.Clin. Dermatol.201735434935310.1016/j.clindermatol.2017.03.006 28709564
    [Google Scholar]
  21. Guttman-YasskyE. NogralesK.E. KruegerJ.G. Contrasting pathogenesis of atopic dermatitis and psoriasis—Part II: Immune cell subsets and therapeutic concepts.J. Allergy Clin. Immunol.201112761420143210.1016/j.jaci.2011.01.054 21419481
    [Google Scholar]
  22. ThyssenJ.P. KezicS. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis.J. Allergy Clin. Immunol.2014134479279910.1016/j.jaci.2014.06.014 25065719
    [Google Scholar]
  23. JungerstedJ.M. ScheerH. MempelM. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema.Allergy201065791191810.1111/j.1398‑9995.2010.02326.x 20132155
    [Google Scholar]
  24. PellerinL. HenryJ. HsuC.Y. Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin.J. Allergy Clin. Immunol.201313141094110210.1016/j.jaci.2012.12.1566 23403047
    [Google Scholar]
  25. PalmerC.N.A. IrvineA.D. Terron-KwiatkowskiA. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.Nat. Genet.200638444144610.1038/ng1767 16550169
    [Google Scholar]
  26. CandiE. KnightR.A. PanattaE. SmirnovA. MelinoG. Cornification of the skin: A non-apoptotic cell death mechanism.Encyclopedia of Life Sciences.Wiley2016110
    [Google Scholar]
  27. Van SmedenJ BouwstraJA Stratum corneum lipids: Their role for the skin barrier function in healthy subjects and atopic dermatitis patients.Ski barrier Funct20164982610.1159/000441540
    [Google Scholar]
  28. BinL. LeungD.Y.M. Genetic and epigenetic studies of atopic dermatitis.Allergy Asthma Clin. Immunol.20161215210.1186/s13223‑016‑0158‑5 27777593
    [Google Scholar]
  29. DubinC. Del DucaE. Guttman-YasskyE. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis.Expert Rev. Clin. Immunol.202117883585210.1080/1744666X.2021.1940962 34106037
    [Google Scholar]
  30. DansoM.O. van DrongelenV. MulderA. TNF-α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents.J. Invest. Dermatol.201413471941195010.1038/jid.2014.83 24518171
    [Google Scholar]
  31. MetwallyS.S. MosaadY.M. Abdel-SameeE.R. El-GayyarM.A. Abdel-AzizA.M. El-ChennawiF.A. IL-13 gene expression in patients with atopic dermatitis: relation to IgE level and to disease severity.Egypt. J. Immunol.2004112171177 16734130
    [Google Scholar]
  32. TazawaT. SugiuraH. SugiuraY. UeharaM. Relative importance of IL-4 and IL-13 in lesional skin of atopic dermatitis.Arch. Dermatol. Res.20042951145946410.1007/s00403‑004‑0455‑6 15014952
    [Google Scholar]
  33. CorryD.B. KheradmandF. Induction and regulation of the IgE response.Nature1999402S6760Suppl.182310.1038/35037014 10586891
    [Google Scholar]
  34. AltemimiA. LakhssassiN. BaharloueiA. WatsonD. LightfootD. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts.Plants2017644210.3390/plants6040042 28937585
    [Google Scholar]
  35. ZhuF. DuB. XuB. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review.Crit. Rev. Food Sci. Nutr.20185881260127010.1080/10408398.2016.1251390 28605204
    [Google Scholar]
  36. IslamM.A. AlamF. SolaymanM. KhalilM.I. KamalM.A. GanS.H. Dietary phytochemicals: Natural swords combating inflammation and oxidation-mediated degenerative diseases.Oxid. Med. Cell. Longev.20162016513743110.1155/2016/5137431
    [Google Scholar]
  37. CroftK.D. Dietary polyphenols: Antioxidants or not?Arch. Biochem. Biophys.201659512012410.1016/j.abb.2015.11.014 27095227
    [Google Scholar]
  38. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.9498 20716914
    [Google Scholar]
  39. BellikY. BoukraâL. AlzahraniH. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update.Molecules201218132235310.3390/molecules18010322 23271469
    [Google Scholar]
  40. ScalbertA. JohnsonI.T. SaltmarshM. Polyphenols: Antioxidants and beyond.Am. J. Clin. Nutr.2005811Suppl.215S217S10.1093/ajcn/81.1.215S 15640483
    [Google Scholar]
  41. Sreejayan, Rao MNA. Curcuminoids as potent inhibitors of lipid peroxidation.J. Pharm. Pharmacol.201146121013101610.1111/j.2042‑7158.1994.tb03258.x 7714712
    [Google Scholar]
  42. SharmaS. NauraA.S. Potential of phytochemicals as immune-regulatory compounds in atopic diseases: A review.Biochem. Pharmacol.202017311379010.1016/j.bcp.2019.113790 31911090
    [Google Scholar]
  43. HollmanP.C. de VriesJ.H. van LeeuwenS.D. MengelersM.J. KatanM.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers.Am. J. Clin. Nutr.19956261276128210.1093/ajcn/62.6.1276 7491892
    [Google Scholar]
  44. ShiY. WilliamsonG. Comparison of the urinary excretion of quercetin glycosides from red onion and aglycone from dietary supplements in healthy subjects: A randomized, single-blinded, cross-over study.Food Funct.2015651443144810.1039/C5FO00155B 25832541
    [Google Scholar]
  45. BumrungpertA. LilitchanS. TuntipopipatS. TirawanchaiN. KomindrS. Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: A randomized, double-blind, placebo-controlled clinical trial.Nutrients201810671310.3390/nu10060713 29865227
    [Google Scholar]
  46. GinH. RigalleauV. CaubetO. MasquelierJ. AubertinJ. Effects of red wine, tannic acid, or ethanol on glucose tolerance in non—insulin-dependent diabetic patients and on starch digestibility in vitro.Metabolism19994891179118310.1016/S0026‑0495(99)90135‑X 10484061
    [Google Scholar]
  47. JoeB. LokeshB.R. Role of capsaicin, curcumin and dietary n — 3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages.Biochim. Biophys. Acta Mol. Cell Res.19941224225526310.1016/0167‑4889(94)90198‑8 7981240
    [Google Scholar]
  48. ShehzadA. RehmanG. LeeY.S. Curcumin in inflammatory diseases.Biofactors2013391697710.1002/biof.1066 23281076
    [Google Scholar]
  49. KurupV.P. BarriosC.S. Immunomodulatory effects of curcumin in allergy.Mol. Nutr. Food Res.20085291031103910.1002/mnfr.200700293 18398870
    [Google Scholar]
  50. Gowhari ShabgahA. Hejri ZarifiS. Mazloumi KiapeyS.S. Curcumin and cancer; Are long non-coding RNAs missing link?Prog. Biophys. Mol. Biol.2021164637110.1016/j.pbiomolbio.2021.04.001 33894206
    [Google Scholar]
  51. SahebkarA. Dual effect of curcumin in preventing atherosclerosis: The potential role of pro-oxidant–antioxidant mechanisms.Nat. Prod. Res.201529649149210.1080/14786419.2014.956212 25190358
    [Google Scholar]
  52. ParsamaneshN. MoossaviM. BahramiA. ButlerA.E. SahebkarA. Therapeutic potential of curcumin in diabetic complications.Pharmacol. Res.201813618119310.1016/j.phrs.2018.09.012 30219581
    [Google Scholar]
  53. RawalR.C. ShahB.J. JayaraamanA.M. JaiswalV. Clinical evaluation of an Indian polyherbal topical formulation in the management of eczema.J. Altern. Complement. Med.200915666967210.1089/acm.2008.0508 19480603
    [Google Scholar]
  54. CalapaiG. MiroddiM. MinciulloP.L. CaputiA.P. GangemiS. SchmidtR.J. Contact dermatitis as an adverse reaction to some topically used E uropean herbal medicinal products – part 1: Achillea millefolium–Curcuma longa.Contact Dermat.201471111210.1111/cod.12222 24621152
    [Google Scholar]
  55. JurenkaJ.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research.Altern. Med. Rev.2009142141153 19594223
    [Google Scholar]
  56. SalehiB. MishraA. NigamM. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
  57. HarikumarK.B. AggarwalB.B. Resveratrol: A multitargeted agent for age-associated chronic diseases.Cell Cycle2008781020103510.4161/cc.7.8.5740 18414053
    [Google Scholar]
  58. KaruppagounderV. ArumugamS. ThandavarayanR.A. Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice.Int. Immunopharmacol.201423261762310.1016/j.intimp.2014.10.014 25466270
    [Google Scholar]
  59. JinH. HeR. OyoshiM. GehaR.S. Animal models of atopic dermatitis.J. Invest. Dermatol.20091291314010.1038/jid.2008.106 19078986
    [Google Scholar]
  60. MatsudaH. WatanabeN. GebaG.P. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice.Int. Immunol.19979346146610.1093/intimm/9.3.461 9088984
    [Google Scholar]
  61. KimJ.R. ChoiJ. KimJ. 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol-fortified ginseng extract attenuates the development of atopic dermatitis-like symptoms in NC/Nga mice.J. Ethnopharmacol.2014151136537110.1016/j.jep.2013.10.058 24269244
    [Google Scholar]
  62. AfzalM. Al-HadidiD. MenonM. PesekJ. DhamiM.S.I. Ginger: An ethnomedical, chemical and pharmacological review.Drug Metabol. Drug Interact.2001183-415919010.1515/DMDI.2001.18.3‑4.159 11791883
    [Google Scholar]
  63. KawamotoY. UenoY. NakahashiE. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation.J. Nutr. Biochem.20162711212210.1016/j.jnutbio.2015.08.025 26403321
    [Google Scholar]
  64. MasudaY. KikuzakiH. HisamotoM. NakataniN. Antioxidant properties of gingerol related compounds from ginger.Biofactors2004211-429329610.1002/biof.552210157 15630214
    [Google Scholar]
  65. Mohd YusofY.A. Gingerol and its role in chronic diseases.Adv. Exp. Med. Biol.201692917720710.1007/978‑3‑319‑41342‑6_8
    [Google Scholar]
  66. MashhadiN.S. GhiasvandR. AskariG. HaririM. DarvishiL. MofidM.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence.Int. J. Prev. Med.20134Suppl. 1S36S42 23717767
    [Google Scholar]
  67. ParkG. OhD.S. LeeM.G. LeeC.E. KimY. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway.Toxicol. Appl. Pharmacol.2016310515910.1016/j.taap.2016.08.019 27562088
    [Google Scholar]
  68. HeoM.Y. SohnS.J. AuW.W. Anti-genotoxicity of galangin as a cancer chemopreventive agent candidate.Mutat. Res. Rev. Mutat. Res.2001488213515010.1016/S1383‑5742(01)00054‑0 11344041
    [Google Scholar]
  69. Gómez-CaravacaA.M. Gómez-RomeroM. Arráez-RománD. Segura-CarreteroA. Fernández-GutiérrezA. Advances in the analysis of phenolic compounds in products derived from bees.J. Pharm. Biomed. Anal.20064141220123410.1016/j.jpba.2006.03.002 16621403
    [Google Scholar]
  70. ChoiJ.K. KimS.H. Inhibitory effect of galangin on atopic dermatitis-like skin lesions.Food Chem. Toxicol.20146813514110.1016/j.fct.2014.03.021 24675422
    [Google Scholar]
  71. KanekoH. NakanishiK. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: Clinical effects of medical ginseng, korean red ginseng: Specifically, its anti-stress action for prevention of disease.J. Pharmacol. Sci.200495215816210.1254/jphs.FMJ04001X5 15215639
    [Google Scholar]
  72. SawC.L.L. YangA.Y. ChengD.C. Pharmacodynamics of ginsenosides: Antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations.Chem. Res. Toxicol.20122581574158010.1021/tx2005025 22780686
    [Google Scholar]
  73. PanH.Y. QuY. ZhangJ.K. KangT.G. DouD.Q. Antioxidant activity of ginseng cultivated under mountainous forest with different growing years.J. Ginseng Res.201337335536010.5142/jgr.2013.37.355 24198662
    [Google Scholar]
  74. LeungK. WongA. Pharmacology of ginsenosides: A literature review.Chin. Med.2010512010.1186/1749‑8546‑5‑20 20537195
    [Google Scholar]
  75. LeeC.H. KimJ.H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases.J. Ginseng Res.201438316116610.1016/j.jgr.2014.03.001 25378989
    [Google Scholar]
  76. KwonH.J. LeeH. ChoiG.E. Ginsenoside F1 promotes cytotoxic activity of NK cells via insulin-like growth factor-1-dependent mechanism.Front. Immunol.20189278510.3389/fimmu.2018.02785 30546365
    [Google Scholar]
  77. JiaL. ZhaoY. Current evaluation of the millennium phytomedicine--ginseng (I): Etymology, pharmacognosy, phytochemistry, market and regulations.Curr. Med. Chem.200916192475248410.2174/092986709788682146 19601793
    [Google Scholar]
  78. KeeJ.Y. JeonY.D. KimD.S. Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro.J. Ginseng Res.201741213414310.1016/j.jgr.2016.02.003 28413317
    [Google Scholar]
  79. HouD.D. ZhangW. GaoY.L. Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis.Int. Immunopharmacol.20197410567610.1016/j.intimp.2019.105676 31181406
    [Google Scholar]
  80. KaruppagounderV. ArumugamS. ThandavarayanR.A. Modulation of HMGB 1 translocation and RAGE/NFκ B cascade by quercetin treatment mitigates atopic dermatitis in NC/Nga transgenic mice.Exp. Dermatol.201524641842310.1111/exd.12685 25739980
    [Google Scholar]
  81. KaruppagounderV. ArumugamS. ThandavarayanR.A. SreedharR. GiridharanV.V. WatanabeK. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis.Drug Discov. Today201621463263910.1016/j.drudis.2016.02.011 26905599
    [Google Scholar]
  82. LiaoY.R. LinJ.Y. Quercetin, but not its metabolite quercetin-3-glucuronide, exerts prophylactic immunostimulatory activity and therapeutic antiinflammatory effects on lipopolysaccharide-treated mouse peritoneal macrophages ex vivo.J. Agric. Food Chem.201462132872288010.1021/jf405630h 24620730
    [Google Scholar]
  83. JungM.K. HurD.Y. SongS.B. Tannic acid and quercetin display a therapeutic effect in atopic dermatitis via suppression of angiogenesis and TARC expression in Nc/Nga mice.J. Invest. Dermatol.201013051459146310.1038/jid.2009.401 20054339
    [Google Scholar]
  84. MeghwalM. GoswamiT.K. Piper nigrum and piperine: An update.Phytother. Res.20132781121113010.1002/ptr.4972 23625885
    [Google Scholar]
  85. ChoiD.W. JungS.Y. ShonD.H. ShinH.S. Piperine ameliorates trimellitic anhydride-induced atopic dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation.Molecules2020259218610.3390/molecules25092186 32392825
    [Google Scholar]
  86. AswarU. ShintreS. ChepurwarS. AswarM. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice.Pharm. Biol.20155391358136610.3109/13880209.2014.982299 25868617
    [Google Scholar]
  87. KimS.H. LeeY.C. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model.J. Pharm. Pharmacol.200961335335910.1211/jpp.61.03.0010 19222908
    [Google Scholar]
  88. LiuY.M. ShenJ.D. XuL.P. LiH.B. LiY.C. YiL.T. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress.Int. Immunopharmacol.20174512813410.1016/j.intimp.2017.02.007 28213267
    [Google Scholar]
  89. YinP. ZhangZ. LiJ. Ferulic acid inhibits bovine endometrial epithelial cells against LPS-induced inflammation via suppressing NK-κB and MAPK pathway.Res. Vet. Sci.201912616416910.1016/j.rvsc.2019.08.018 31499425
    [Google Scholar]
  90. DossH.M. DeyC. SudandiradossC. RasoolM.K. Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal-induced inflammation in rats.Life Sci.201614820121010.1016/j.lfs.2016.02.004 26851531
    [Google Scholar]
  91. ZhouZ. ShiT. HouJ. LiM. Ferulic acid alleviates atopic dermatitis-like symptoms in mice via its potent anti-inflammatory effect.Immunopharmacol. Immunotoxicol.202042215616410.1080/08923973.2020.1733012 32122212
    [Google Scholar]
  92. AhmadS.T. SultanaS. Tannic acid mitigates cisplatin-induced nephrotoxicity in mice.Hum. Exp. Toxicol.201231214515610.1177/0960327111414282 21724663
    [Google Scholar]
  93. KaruppagounderV. ArumugamS. ThandavarayanR.A. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression.Cytokine201576220621310.1016/j.cyto.2015.05.016 26049169
    [Google Scholar]
  94. DahtenA. MergemeierS. WormM. PPARγ expression profile and its cytokine driven regulation in atopic dermatitis.Allergy200762892693310.1111/j.1398‑9995.2007.01444.x 17620071
    [Google Scholar]
  95. TrompezinskiS. DenisA. SchmittD. ViacJ. Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNF?Arch. Dermatol. Res.2003295311211610.1007/s00403‑003‑0402‑y 12811578
    [Google Scholar]
  96. NohS.U. ChoE.A. KimH.O. ParkY.M. Epigallocatechin-3-gallate improves Dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor.Int. Immunopharmacol.2008891172118210.1016/j.intimp.2008.04.002 18602062
    [Google Scholar]
  97. ShimizuT. AbeR. OhkawaraA. MizueY. NishihiraJ. Macrophage migration inhibitory factor is an essential immunoregulatory cytokine in atopic dermatitis.Biochem. Biophys. Res. Commun.1997240117317810.1006/bbrc.1997.7633 9367905
    [Google Scholar]
  98. de JongY.P. Abadia-MolinaA.C. SatoskarA.R. Development of chronic colitis is dependent on the cytokine MIF.Nat. Immunol.20012111061106610.1038/ni720 11668338
    [Google Scholar]
  99. TakaseH. SugitaS. RheeD.J. The presence of macrophage migration inhibitory factor in human trabecular meshwork and its upregulatory effects on the T helper 1 cytokine.Invest. Ophthalmol. Vis. Sci.200243826912696 12147604
    [Google Scholar]
  100. SharmaS. SethiG.S. NauraA.S. Curcumin ameliorates ovalbumin-induced atopic dermatitis and blocks the progression of atopic march in mice.Inflammation202043135836910.1007/s10753‑019‑01126‑7 31720988
    [Google Scholar]
  101. KimH.S. KimD.H. KimB.K. Effects of topically applied Korean red ginseng and its genuine constituents on atopic dermatitis-like skin lesions in NC/Nga mice.Int. Immunopharmacol.201111228028510.1016/j.intimp.2010.11.022 21118672
    [Google Scholar]
  102. SimpsonE.L. BieberT. Guttman-YasskyE. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis.N. Engl. J. Med.2016375242335234810.1056/NEJMoa1610020 27690741
    [Google Scholar]
  103. ThomsonJ. WernhamA.G.H. WilliamsH.C. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): A critical appraisal.Br. J. Dermatol.2018178489790210.1111/bjd.16317 29315479
    [Google Scholar]
  104. ZimmermannM. RindD. ChapmanR. KumarV. KahnS. CarlsonJ. Economic evaluation of dupilumab for moderate-to-severe atopic dermatitis: A cost-utility analysis.J. Drugs Dermatol.2018177750756 30005097
    [Google Scholar]
  105. Guttman-YasskyE. BlauveltA. EichenfieldL.F. Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis: A phase 2b randomized clinical trial.JAMA Dermatol.2020156441142010.1001/jamadermatol.2020.0079 32101256
    [Google Scholar]
  106. SimpsonE.L. FlohrC. EichenfieldL.F. Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids: A randomized, placebo-controlled phase II trial (TREBLE).J. Am. Acad. Dermatol.2018785863871.e1110.1016/j.jaad.2018.01.017 29353026
    [Google Scholar]
  107. RatnarajahK. LeM. MuntyanuA. Inhibition of IL-13: A new pathway for atopic dermatitis.J. Cutan. Med. Surg.202125331532810.1177/1203475420982553 33350863
    [Google Scholar]
  108. SilverbergJ.I. HongH.C. CalimlimB.M. Comparative efficacy of targeted systemic therapies for moderate-to-severe atopic dermatitis without topical corticosteroids: An updated network meta-analysis.Dermatol. Ther.202313102247226410.1007/s13555‑023‑01000‑3 37658223
    [Google Scholar]
  109. GhamrawiR. BellK.A. BaloghE.A. StrowdL.C. FeldmanS.R. Current and emerging biologics for the treatment of pediatric atopic dermatitis.Expert Opin. Biol. Ther.202020121435144510.1080/14712598.2021.1840548 33078990
    [Google Scholar]
  110. BaghoomianW. NaC. SimpsonE.L. New and emerging biologics for atopic dermatitis.Am. J. Clin. Dermatol.202021445746510.1007/s40257‑020‑00515‑1 32323259
    [Google Scholar]
  111. WollenbergA. HowellM.D. Guttman-YasskyE. A Phase 2b dose-ranging efficacy and safety study of tralokinumab in adult patients with moderate to severe atopic dermatitis.SKIN J Cutan Med20182S29S910.25251/skin.2.supp.28
    [Google Scholar]
  112. WollenbergA. HowellM.D. Guttman-YasskyE. Treatment of atopic dermatitis with tralokinumab, an anti–IL-13 mAb.J. Allergy Clin. Immunol.2019143113514110.1016/j.jaci.2018.05.029 29906525
    [Google Scholar]
  113. PopovicB. BreedJ. ReesD.G. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13Rα1 and IL-13Rα2.J. Mol. Biol.2017429220821910.1016/j.jmb.2016.12.005 27956146
    [Google Scholar]
  114. SimpsonE. BlauveltA. Guttman-YasskyE. Efficacy and safety of tralokinumab monotherapy in adult patients with moderate-to-severe atopic dermatitis: Results from two 52-week, phase 3 trials (ECZTRA 1 and ECZTRA 2).SKIN J Cutan Med202046s96s610.25251/skin.4.supp.96
    [Google Scholar]
  115. BrightlingC.E. ChanezP. LeighR. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: A randomised, double-blind, placebo-controlled, phase 2b trial.Lancet Respir. Med.20153969270110.1016/S2213‑2600(15)00197‑6 26231288
    [Google Scholar]
  116. IzuharaK. ArimaK. OhtaS. SuzukiS. InamitsuM. YamamotoK. Periostin in allergic inflammation.Allergol. Int.201463214315110.2332/allergolint.13‑RAI‑0663
    [Google Scholar]
  117. BieberT. Interleukin‐13: Targeting an underestimated cytokine in atopic dermatitis.Allergy2020751546210.1111/all.13954 31230370
    [Google Scholar]
  118. PharmaL.E.O. Tralokinumab monotherapy for adolescent subjects with moderate to severe atopic dermatitis-ECZTRA 6 (ECZema TRAlokinumab Trial no. 6).2019Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03526861
    [Google Scholar]
  119. SilverbergJ.I. PinterA. PulkaG. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus.J. Allergy Clin. Immunol.2020145117318210.1016/j.jaci.2019.08.013 31449914
    [Google Scholar]
  120. MiakeS. TsujiG. TakemuraM. IL-4 augments IL-31/IL-31 receptor alpha interaction leading to enhanced Ccl 17 and Ccl 22 production in dendritic cells: Implications for atopic dermatitis.Int. J. Mol. Sci.20192016405310.3390/ijms20164053 31434203
    [Google Scholar]
  121. FeldM. GarciaR. BuddenkotteJ. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves.J. Allergy Clin. Immunol.20161382500508.e2410.1016/j.jaci.2016.02.020 27212086
    [Google Scholar]
  122. RuzickaT. HanifinJ.M. FurueM. Anti–interleukin-31 receptor A antibody for atopic dermatitis.N. Engl. J. Med.2017376982683510.1056/NEJMoa1606490 28249150
    [Google Scholar]
  123. KabashimaK. FurueM. HanifinJ.M. Nemolizumab in patients with moderate-to-severe atopic dermatitis: Randomized, phase II, long-term extension study.J. Allergy Clin. Immunol.2018142411211130.e710.1016/j.jaci.2018.03.018 29753033
    [Google Scholar]
  124. KabashimaK. MatsumuraT. KomazakiH. KawashimaM. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus.N. Engl. J. Med.2020383214115010.1056/NEJMoa1917006 32640132
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855307501240607045747
Loading
/content/journals/cdth/10.2174/0115748855307501240607045747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test