Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Emulsomes have gained attention because they are a novel lipoidal vesicular system that has an internal solid fat core surrounded by a phospholipid bilayer. Cancer is a complex and broad term that refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. In the context of cancer targeting, emulsomes have shown promising potential due to their ability to improve the solubility, stability, and bioavailability of anticancer drugs, leading to enhanced therapeutic efficacy and reduced systemic toxicity.

This article addresses emulsomal composition, preparation techniques, and different kinds of emulsomes loaded with drugs like fluvastatin and raloxifene hydrochloride to target cancer cells. The use of emulsomes in cancer targeting holds great promise for improving the precision, efficacy, and safety of cancer treatments.

A comprehensive search of relevant scientific literature was performed. This involved searching databases such as PubMed, Scopus, Web of Science, and others to identify relevant studies, articles, and reviews related to the topic.

Emulsomes loaded with specific drugs show promising results in cancer treatment. Examples include piceatannol-loaded emulsomes for colon cancer, raloxifene hydrochloride-loaded emulsomes for breast cancer, and fluvastatin-loaded emulsomes for prostate cancer.

Emulsomes represent a cutting-edge approach to cancer drug delivery, offering a versatile and effective solution to address challenges associated with traditional anticancer formulations. Ongoing research holds promise for the continued development of personalized cancer therapy.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855299918240529063242
2024-06-07
2025-09-23
Loading full text...

Full text loading...

References

  1. JeanL.A.K.R. KauffmanK.J. KaczmarekJ.C. LangerR. Cancer nanotherapeutics in clinical trials.Cancer Treat Res201516629332210.1007/978‑3‑319‑16555‑4_13 25895874
    [Google Scholar]
  2. ZhangY. LiM. GaoX. ChenY. LiuT. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities.J. Hematol. Oncol.201912113710.1186/s13045‑019‑0833‑3
    [Google Scholar]
  3. FerrariM. Cancer nanotechnology: Opportunities and challenges.Nat. Rev. Cancer20055316117110.1038/nrc1566 15738981
    [Google Scholar]
  4. AmselemS. YogevA. ZawoznikE. FriedmanD. Emulsomes, a novel drug delivery technology.Proceedings of the Controlled Release Society1994
    [Google Scholar]
  5. GillV. NandaA. Emulsomes: A lipid based drug delivery system.World Journal of Pharmaceutical Research SJIF Impact Factor202110
    [Google Scholar]
  6. KumarR. SethN. kumar HSL. Emulsomes: An emerging vesicular drug delivery system.J. Drug Deliv. Ther.20133613314210.22270/jddt.v3i6.665
    [Google Scholar]
  7. NairA.S. NairS.C. Emulsomes: A novel liposomal formulation for sustained drug delivery.Int. Res. J. Pharm. Appl. Sci.201335
    [Google Scholar]
  8. A KSPharmacosomes and Emulsomes: An Emerging Novel Vesicular Drug Delivery System.Global J Anesth Pain Med202034287297
    [Google Scholar]
  9. GhodeS.P.D. Applications Perspectives of Emulsomes Drug Delivery System.Int J Med Pharm Sci2020100118
    [Google Scholar]
  10. KumarB.H. AhmedS.F. D P. Review on Emulsomes as Carriers for Drug Delivery.Glob. J. Med. Res.2022495310.34257/GJMRBVOL22IS2PG49
    [Google Scholar]
  11. UcisikM.H. KüpcüS. DebreczenyM. SchusterB. SleytrU.B. S-layer coated emulsomes as potential nanocarriers.Small20139172895290410.1002/smll.201203116 23606662
    [Google Scholar]
  12. AmselemS. ZawoznikE. YogevA. FriedmanD. EmulsomesTM, A New Type of Lipid Assembly.In: Handbook Nonmed Appl Lip.1st EditionCRC Press199616
    [Google Scholar]
  13. UcisikM. SleytrU. SchusterB. Emulsomes meet S-layer proteins: An emerging targeted drug delivery system.Curr. Pharm. Biotechnol.201516439240510.2174/138920101604150218112656 25697368
    [Google Scholar]
  14. DoroudianM. MacLoughlinR. PoyntonF. Prina-MelloA. DonnellyS.C. Nanotechnology based therapeutics for lung disease.Thorax2019741096597610.1136/thoraxjnl‑2019‑213037 31285360
    [Google Scholar]
  15. ZhaoJ. WallaceM. MelanconM.P. Cancer theranostics with gold nanoshells.Nanomedicine20149132041205710.2217/nnm.14.136 25343352
    [Google Scholar]
  16. MaherS. CasettariL. IllumL. Transmucosal absorption enhancers in the drug delivery field.Pharmaceutics201911733910.3390/pharmaceutics11070339
    [Google Scholar]
  17. SinghS. KhuranaK. ChauhanS.B. SinghI. Emulsomes: New lipidic carriers for drug delivery with special mention to brain drug transport.Future J. Pharm. Sci.202397810.1186/s43094‑023‑00530‑z
    [Google Scholar]
  18. EninA.E.H.A. MostafaR.E. AhmedM.F. Assessment of Nasal-Brain-Targeting Efficiency of New Developed Mucoadhesive Emulsomes Encapsulating an Anti-Migraine Drug for Effective Treatment of One of the Major Psychiatric Disorders Symptoms.Pharmaceutics202214241010.3390/pharmaceutics14020410 35214142
    [Google Scholar]
  19. ErdőF. BorsL.A. FarkasD. BajzaÁ. GizurarsonS. Evaluation of intranasal delivery route of drug administration for brain targeting.Brain Res. Bull.201814315517010.1016/j.brainresbull.2018.10.009 30449731
    [Google Scholar]
  20. El-ZaafaranyG. SolimanM. MansourS. A tailored thermosensitive PLGA-PEG-PLGA/emulsomes composite for enhanced oxcarbazepine brain delivery via the nasal route.Pharmaceutics201810421710.3390/pharmaceutics10040217 30400577
    [Google Scholar]
  21. RazaK. KatareO.P. SetiaA. BhatiaA. SinghB. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes.J. Microencapsul.201330322523610.3109/02652048.2012.717115 23088318
    [Google Scholar]
  22. VyasS.P. SubhedarR. JainS. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver.J. Pharm. Pharmacol.201058332132610.1211/jpp.58.3.0005 16536898
    [Google Scholar]
  23. HejabiF. AbbaszadehM.S. TajiS. O’NeillA. FarjadianF. DoroudianM. Nanocarriers: A novel strategy for the delivery of CRISPR/Cas systems.Front Chem.20221095757210.3389/fchem.2022.957572 36092658
    [Google Scholar]
  24. MeirinhoS. RodriguesM. FerreiraC.L. Intranasal delivery of lipid-based nanosystems as a promising approach for brain targeting of the new-generation antiepileptic drug perampanel.Int. J. Pharm.202262212185310.1016/j.ijpharm.2022.121853 35623483
    [Google Scholar]
  25. SrinivasL. ManikantaV. JaswithaM. Protein and peptide drug delivery - A brief review.Res J Pharm Technol201912313691382
    [Google Scholar]
  26. MalviyaV. Preparation and evaluation of emulsomes as a drug delivery system for bifonazole.Indian J Pharm Edu Res2021551869410.5530/ijper.55.1.12
    [Google Scholar]
  27. HaqueS. MdS. FazilM. Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic and pharmacodynamic evaluation.Carbohydr. Polym.2012891727910.1016/j.carbpol.2012.02.051 24750606
    [Google Scholar]
  28. GuptaS. VyasS.P. Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting.J. Drug Target.200715320621710.1080/10611860701195395 17454358
    [Google Scholar]
  29. HosseinkazemiH. SamaniS. O’NeillA. Applications of Iron Oxide Nanoparticles against Breast Cancer.J. Nanomater.2022202211210.1155/2022/6493458
    [Google Scholar]
  30. ShahrivarR.Y. FakhrZ.A. AbbasgholinejadE. DoroudianM. Smart Lipid‐Based Nanoparticles in Lung Cancer Treatment: Current Status and Future Directions.Adv. Ther.2023612230027510.1002/adtp.202300275
    [Google Scholar]
  31. SinghI. SwamiR. JeengarM.K. KhanW. SistlaR. p-Aminophenyl-α-d-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain.Chem. Phys. Lipids20151881910.1016/j.chemphyslip.2015.03.003 25819559
    [Google Scholar]
  32. MillerA.D. Lipid-Based Nanoparticles in Cancer Diagnosis and Therapy.J. Drug Deliv.20132013165981
    [Google Scholar]
  33. DingJ. LiJ. MaoS. Development and evaluation of vinpocetine inclusion complex for brain targeting.Asian J. Pharm. Sci.201510211412010.1016/j.ajps.2014.08.008
    [Google Scholar]
  34. IslekZ. UcisikM.H. KeskinE. SucuB.O. AlvesG.A.G. TomásA.M. Antileishmanial Activity of BNIPDaoct- and BNIPDanon-loaded Emulsomes on Leishmania infantum Parasites.Front. Nanotechnol.202231116
    [Google Scholar]
  35. DoroudianM. O’ NeillA. LoughlinM.R. MelloP.A. VolkovY. DonnellyS.C. Nanotechnology in pulmonary medicine.Curr. Opin. Pharmacol.202156859210.1016/j.coph.2020.11.002
    [Google Scholar]
  36. JadhavS.M. MoreyP. KarpeM.M. KadamV. Novel vesicular system: An overview.J. Appl. Pharm. Sci.201221193202
    [Google Scholar]
  37. HariVBN DevendharanK NarayananN Approaches of novel drug delivery systems for Anti-HIV agents2013541624
    [Google Scholar]
  38. AjayP. Satement of retraction: Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis.J. Liposome Res.2012221627110.3109/08982104.2011.592495
    [Google Scholar]
  39. AnalA.K. SinghH. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery.Trends Food Sci. Technol.200718524025110.1016/j.tifs.2007.01.004
    [Google Scholar]
  40. GhasempourE. HesamiS. MovahedE. keshel SH, Doroudian M. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors.Stem Cell Res. Ther.202213152710.1186/s13287‑022‑03212‑4
    [Google Scholar]
  41. HosseiniA.M. AkhoondiF. DoroudianM. Nano based-oncolytic viruses for cancer therapy.Crit. Rev. Oncol. Hematol.202318510398010.1016/j.critrevonc.2023.103980
    [Google Scholar]
  42. DoroudianM. AzhdariM.H. GoodarziN. O’SullivanD. DonnellyS.C. Smart nanotherapeutics and lung cancer.Pharmaceutics20211311197210.3390/pharmaceutics13111972
    [Google Scholar]
  43. DoroudianM. ArmstrongM.E. DonnellyS.C. Nano-Based Therapies for Acute and Chronic Lung Diseases.In: Biotechnol Appl Inflamm Dis.SingaporeSpringer202327128610.1007/978‑981‑19‑8342‑9_12
    [Google Scholar]
  44. IllumL. Transport of drugs from the nasal cavity to the central nervous system.Eur. J. Pharm. Sci.200011111810.1016/S0928‑0987(00)00087‑7 10913748
    [Google Scholar]
  45. TinkleS. McNeilS.E. MühlebachS. Nanomedicines: addressing the scientific and regulatory gap.Ann. N. Y. Acad. Sci.201413131355610.1111/nyas.12403 24673240
    [Google Scholar]
  46. BhatiaP. ChughA. A multilevel governance framework for regulation of nanomedicine in India.Nanotechnol. Rev.20176437338210.1515/ntrev‑2016‑0083
    [Google Scholar]
  47. SoaresS. SousaJ. PaisA. VitorinoC. Nanomedicine: Principles, properties, and regulatory issues.Front Chem.2018636010.3389/fchem.2018.00360 30177965
    [Google Scholar]
  48. KenzaouiH.B. HolzwarthU. RoebbenG. BogniA. Bremer-HoffmannS. Mapping of the available standards against the regulatory needs for nanomedicines.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019111e153110.1002/wnan.1531 29923692
    [Google Scholar]
  49. GursoyN.R. BenitaS. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs.Biomed. Pharmacother.200458317318210.1016/j.biopha.2004.02.001 15082340
    [Google Scholar]
  50. PoutonC.W. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system.European J. Pharm. Sci.20062934
    [Google Scholar]
  51. ElnadyR.E. AminM.M. ZakariaM.Y. A review on lipid-based nanocarriers mimicking chylomicron and their potential in drug delivery and targeting infectious and cancerous diseases.AAPS Open2023911310.1186/s41120‑023‑00080‑x
    [Google Scholar]
  52. SerajuddinA.T.M. Solid dispersion of poorly water‐soluble drugs: Early promises, subsequent problems, and recent breakthroughs.J. Pharm. Sci.199988101058106610.1021/js980403l 10514356
    [Google Scholar]
  53. SerajuddinA.T.M. MufsonD. BernsteinD.F. SheenP-C. AugustineM.A. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions.J. Pharm. Sci.198877541441710.1002/jps.2600770512 3411464
    [Google Scholar]
  54. DubeyS. VyasS.P. Emulsomes for lipophilic anticancer drug delivery: Development, optimization and in vitro drug release kinetic study.Int J Appl Pharm202113211412110.22159/ijap.2021v13i2.40339
    [Google Scholar]
  55. AldawsariH.M. EldinB.S.M. AssiriN.Y. Surface-tailoring of emulsomes for boosting brain delivery of vinpocetine via intranasal route: In vitro optimization and in vivo pharmacokinetic assessment.Drug Deliv.20222912671268410.1080/10717544.2022.2110996 35975309
    [Google Scholar]
  56. EitaA.S. MakkyM.A.A. AnterA. KhalilI.A. Repurposing of atorvastatin emulsomes as a topical antifungal agent.Drug Deliv.20222913414343110.1080/10717544.2022.2149898 36428290
    [Google Scholar]
  57. MujoriyaR. BodlaR.B. DhamandeK. SinghD. PatleL. Niosomal drug delivery system: The magic bullet.J. Appl. Pharm. Sci.2011192023
    [Google Scholar]
  58. RuckmaniK. SankarV. Formulation and optimization of Zidovudine niosomes.AAPS PharmSciTech20101131119112710.1208/s12249‑010‑9480‑2 20635228
    [Google Scholar]
  59. VenkatesanN. VyasS.P. Polysaccharide coated liposomes for oral immunization — development and characterization.Int. J. Pharm.20002031-216917710.1016/S0378‑5173(00)00442‑7 10967439
    [Google Scholar]
  60. MadoriaN. PathodiyaM. TiwariA. Aceclofenac loaded vesicles: A comparative study between various vesicular systems.Res J Pharm Tech20125811301138
    [Google Scholar]
  61. NasrM. MansourS. MortadaN.D. ElshamyA.A. Vesicular aceclofenac systems: A comparative study between liposomes and niosomes.J. Microencapsul.200825749951210.1080/02652040802055411 18608811
    [Google Scholar]
  62. AzeemA. AnwerM.K. TalegaonkarS. Niosomes in sustained and targeted drug delivery: Some recent advances.J. Drug Target.200917967168910.3109/10611860903079454 19845484
    [Google Scholar]
  63. YilmazE.N. BayS. OzturkG. UcisikM.H. Neuroprotective effects of curcumin-loaded emulsomes in a laser axotomy-induced cns injury model.Int. J. Nanomedicine2020159211922910.2147/IJN.S272931 33244233
    [Google Scholar]
  64. MehannaM.M. MneimnehA.T. Formulation and applications of lipid-based nanovehicles: Spotlight on self-emulsifying systems.Adv. Pharm. Bull.20211115667
    [Google Scholar]
  65. El-ZaafaranyG.M. SolimanM.E. MansourS. AwadG.A.S. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies.Int. J. Pharm.20165031-212714010.1016/j.ijpharm.2016.02.038 26924357
    [Google Scholar]
  66. BriugliaM.L. RotellaC. McFarlaneA. LamprouD.A. Influence of cholesterol on liposome stability and on in vitro drug release.Drug Deliv. Transl. Res.20155323124210.1007/s13346‑015‑0220‑8 25787731
    [Google Scholar]
  67. BarryB.W. Novel mechanisms and devices to enable successful transdermal drug delivery.Eur. J. Pharm. Sci.200114210111410.1016/S0928‑0987(01)00167‑1 11500256
    [Google Scholar]
  68. SinghI. SwamiR. PoojaD. JeengarM.K. KhanW. SistlaR. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting.J. Drug Target.201624321222310.3109/1061186X.2015.1068320 26219519
    [Google Scholar]
  69. KirbyC. ClarkeJ. GregoriadisG. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro.Biochem. J.1980186259159810.1042/bj1860591 7378067
    [Google Scholar]
  70. HarasymT.O. CullisP.R. BallyM.B. Intratumor distribution of doxorubicin following i.v. administration of drug encapsulated in egg phosphatidylcholine/cholesterol liposomes.Cancer Chemother. Pharmacol.199740430931710.1007/s002800050662 9225948
    [Google Scholar]
  71. GovenderT. StolnikS. GarnettM.C. IllumL. DavisS.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug.J. Control. Release199957217118510.1016/S0168‑3659(98)00116‑3 9971898
    [Google Scholar]
  72. ZakariaM.Y. ZakiI. AlhomraniM. AlamriA.S. AbdulazizO. AbourehabM.A.S. Boosting the anti MERS-CoV activity and oral bioavailability of resveratrol via PEG-stabilized emulsomal nano-carrier: Factorial design, in-vitro and in-vivo assessments.Drug Deliv.20222913155316710.1080/10717544.2022.2126028 36168279
    [Google Scholar]
  73. WeerasuriyaA. MizisinA.P. The Blood-Nerve Barrier: Structure and Functional Significance.Methods Molecul Biol.2011686149173
    [Google Scholar]
  74. FangJ.Y. HongC.T. ChiuW.T. WangY.Y. Effect of liposomes and niosomes on skin permeation of enoxacin.Int. J. Pharm.20012191-2617210.1016/S0378‑5173(01)00627‑5 11337166
    [Google Scholar]
  75. DipaliS.R. KulkarniS.B. BetageriG.V. Comparative study of separation of non-encapsulated drug from unilamellar liposomes by various methods.J. Pharm. Pharmacol.201148111112111510.1111/j.2042‑7158.1996.tb03904.x 8961156
    [Google Scholar]
  76. SzokaF.Jr PapahadjopoulosD. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc. Natl. Acad. Sci.19787594194419810.1073/pnas.75.9.4194 279908
    [Google Scholar]
  77. OngS. ChitneniM. LeeK. MingL. YuenK. Evaluation of extrusion technique for nanosizing liposomes.Pharmaceutics2016843610.3390/pharmaceutics8040036 28009829
    [Google Scholar]
  78. BalasubramaniamA. KumarA.V. PillaiS.K. Formulation and in vivo evaluation of niosome-encapsulated daunorubicin hydrochloride.Drug Dev. Ind. Pharm.200228101181119310.1081/DDC‑120015351 12476864
    [Google Scholar]
  79. BatzriS. KornE.D. Single bilayer liposomes prepared without sonication.Biomembranes197329841015101910.1016/0005‑2736(73)90408‑2
    [Google Scholar]
  80. LapinskiM.M. ForeroC.A. GreinerA.J. OfoliR.Y. BlanchardG.J. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore.Langmuir20072323116771168310.1021/la7020963 17939695
    [Google Scholar]
  81. PaliwalR. PaliwalS.R. MishraN. MehtaA. VyasS.P. Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate.Int. J. Pharm.20093801-218118810.1016/j.ijpharm.2009.06.026 19576973
    [Google Scholar]
  82. VanCottT.C. KaminskiR.W. MascolaJ.R. HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160.J. Immunol.199816042000201210.4049/jimmunol.160.4.2000 9469464
    [Google Scholar]
  83. HopeM.J. BallyM.B. WebbG. CullisP.R. Production of large unilamellar vesicles by a rapid extrusion procedure.Biochim. Biophys. Acta198581215565
    [Google Scholar]
  84. ShakerS. GardouhA. GhorabM. Factors affecting liposomes particle size prepared by ethanol injection method.Res. Pharm. Sci.201712534635210.4103/1735‑5362.213979 28974972
    [Google Scholar]
  85. StanoP. BufaliS. PisanoC. Novel camptothecin analogue (gimatecan)-containing liposomes prepared by the ethanol injection method.J. Liposome Res.2004141-28710910.1081/LPR‑120039794 15461935
    [Google Scholar]
  86. CatalaA. Liposomes Advan Perspectives.IntechOpen201913
    [Google Scholar]
  87. DomazouA.S. LuisiL.P. Size distribution of spontaneously formed liposomes by the alcohol injection method.J. Liposome Res.200212320522010.1081/LPR‑120014758 12604027
    [Google Scholar]
  88. EnochH.G. StrittmatterP. Formation and properties of 1000-A-diameter, single-bilayer phospholipid vesicles.Proc. Natl. Acad. Sci.197976114514910.1073/pnas.76.1.145 34148
    [Google Scholar]
  89. SeyedM.A. JantanI. BukhariS.N.A. VijayaraghavanK. A Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights.J. Agric. Food Chem.201664472573710.1021/acs.jafc.5b05993 26758628
    [Google Scholar]
  90. FarrandL. ByunS. KimJ.Y. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission.J. Biol. Chem.201328833237402375010.1074/jbc.M113.487686 23833193
    [Google Scholar]
  91. AlhakamyN.A. EldinB.S.M. AhmedO.A.A. Piceatannol-loaded emulsomes exhibit enhanced cytostatic and apoptotic activities in colon cancer cells.Antioxidants20209541910.3390/antiox9050419 32414040
    [Google Scholar]
  92. ZhangH. JiaR. WangC. HuT. WangF. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines.Biochem. Biophys. Res. Commun.2014452377578110.1016/j.bbrc.2014.08.150 25218158
    [Google Scholar]
  93. AldawsariH.M. ElfakyM.A. FahmyU.A. AljaeidB.M. AlshareefO.A. El-SayK.M. Development of a fluvastatin-loaded self-nanoemulsifying system to maximize therapeutic efficacy in human colorectal carcinoma cells.J. Drug Deliv. Sci. Technol.20184671310.1016/j.jddst.2018.04.015
    [Google Scholar]
  94. IslamS. HassanF. MuM.M. Piceatannol prevents lipopolysaccharide (LPS)-induced nitric oxide (NO) production and nuclear factor (NF)-κB activation by inhibiting IκB kinase (IKK).Microbiol. Immunol.2004481072973610.1111/j.1348‑0421.2004.tb03598.x
    [Google Scholar]
  95. WangZ. LiY. Raloxifene/SBE-β-CD inclusion complexes formulated into nanoparticles with chitosan to overcome the absorption barrier for bioavailability enhancement.Pharmaceutics20181037610.3390/pharmaceutics10030076 29958389
    [Google Scholar]
  96. LevyN. TatomerD. HerberC.B. Differential regulation of native estrogen receptor-regulatory elements by estradiol, tamoxifen, and raloxifene.Mol. Endocrinol.200822228730310.1210/me.2007‑0340 17962382
    [Google Scholar]
  97. AldawsariH. AhmedO. AlhakamyN. NeamatallahT. FahmyU. EldinB.S. Lipidic nano-sized emulsomes potentiates the cytotoxic and apoptotic effects of raloxifene hydrochloride in mcf-7 human breast cancer cells: Factorial analysis and in vitro anti-tumor activity assessment.Pharmaceutics202113678310.3390/pharmaceutics13060783 34073780
    [Google Scholar]
  98. DoroudianM. ZanganehS. AbbasgholinejadE. DonnellyS.C. Nanomedicine in Lung Cancer Immunotherapy.Front. Bioeng. Biotechnol.202311114465310.3389/fbioe.2023.1144653
    [Google Scholar]
  99. RaviP.R. AdityaN. KathuriaH. MalekarS. VatsR. Lipid nanoparticles for oral delivery of raloxifene: Optimization, stability, in vivo evaluation and uptake mechanism.Eur. J. Pharm. Biopharm.201487111412410.1016/j.ejpb.2013.12.015 24378615
    [Google Scholar]
  100. AlhakamyN.A. EldinB.S.M. AldawsariH.M. AlfarsiA. NeamatallahT. OkbazghiS.Z. Fluvastatin-Loaded Emulsomes Exhibit Improved Cytotoxic and Apoptosis in Prostate Cancer Cells.AAPS PharmSciTech202122517710.1208/s12249‑021‑02021‑x
    [Google Scholar]
  101. ZhangW. WuJ. ZhouL. XieH.Y. ZhengS.S. Fluvastatin, a lipophilic statin, induces apoptosis in human hepatocellular carcinoma cells through mitochondria-operated pathway.Indian J. Exp. Biol.2010481211671174 21250597
    [Google Scholar]
  102. El-HelwA.R. FahmyU. Improvement of fluvastatin bioavailability by loading on nanostructured lipid carriers.Int. J. Nanomedicine2015105797580410.2147/IJN.S91556 26396513
    [Google Scholar]
  103. EldinB.S.M. AlhakamyN.A. FahmyU.A. Cytotoxic and Pro-Apoptotic Effects of a Sub-Toxic Concentration of Fluvastatin on OVCAR3 Ovarian Cancer Cells After its Optimized Formulation to Melittin Nano-Conjugates.Front. Pharmacol.20211164217110.3389/fphar.2020.642171 33633571
    [Google Scholar]
  104. SwamiR. SinghI. KulhariH. JeengarM.K. KhanW. SistlaR. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: An in vitro and in vivo evaluation.J. Nanopart. Res.201517626510.1007/s11051‑015‑3063‑9
    [Google Scholar]
  105. FahmyU.A. AldawsariH.M. EldinB.S.M. The encapsulation of febuxostat into emulsomes strongly enhances the cytotoxic potential of the drug on HCT 116 colon cancer cells.Pharmaceutics2020121095610.3390/pharmaceutics12100956 33050567
    [Google Scholar]
  106. VarshosazJ. RaghamiF. RostamiM. JahanianA. PEGylated trimethylchitosan emulsomes conjugated to octreotide for targeted delivery of sorafenib to hepatocellular carcinoma cells of HepG2.J. Liposome Res.201929438339810.1080/08982104.2019.1570250 30668221
    [Google Scholar]
  107. UcisikM.H. KüpcüS. BreitwieserA. GelbmannN. SchusterB. SleytrU.B. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting.Colloids Surf. B Biointerfaces201512813213910.1016/j.colsurfb.2015.01.055 25734967
    [Google Scholar]
  108. ManthravadiS. ShresthaA. MadhusudhanaS. Impact of statin use on cancer recurrence and mortality in breast cancer: A systematic review and meta‐analysis.Int. J. Cancer201613961281128810.1002/ijc.30185
    [Google Scholar]
  109. FarjadianF. GhasemiS. AkbarianM. GhahfarokhiH.M. MoghoofeiM. DoroudianM. Physically stimulus-responsive nanoparticles for therapy and diagnosis.Front Chem.20221095267510.3389/fchem.2022.952675 36186605
    [Google Scholar]
  110. KhasrawM. BellR. DangC. Epirubicin: Is it like doxorubicin in breast cancer? A clinical review.Breast201221214214910.1016/j.breast.2011.12.012 22260846
    [Google Scholar]
  111. LeeC.Y. TsaiT. PengP.C. ChenC.T. Fabrication of Doxorubicin-Loaded Lipid-Based Nanocarriers by Microfluidic Rapid Mixing.Biomedicines2022106125910.3390/biomedicines10061259 35740280
    [Google Scholar]
  112. PatilR.R. GuhagarkarS.A. DevarajanP.V. Engineered nanocarriers of doxorubicin: A current update.Crit. Rev. Ther. Drug Carrier Syst.200825116110.1615/CritRevTherDrugCarrierSyst.v25.i1.10 18540835
    [Google Scholar]
  113. RaduI.C. ZahariaC. HudițăA. In vitro interaction of doxorubicin-loaded silk sericin nanocarriers with mcf-7 breast cancer cells leads to dna damage.Polymers20211313204710.3390/polym13132047 34206674
    [Google Scholar]
  114. VialeM. GiglioV. MonticoneM. New doxorubicin nanocarriers based on cyclodextrins.Invest. New Drugs201735553954410.1007/s10637‑017‑0461‑0 28378257
    [Google Scholar]
  115. ButowskaK. WoziwodzkaA. BorowikA. PiosikJ. Polymeric nanocarriers: A transformation in doxorubicin therapies.Materials2021149213510.3390/ma14092135 33922291
    [Google Scholar]
  116. MahdiehA. MotasadizadehH. YeganehH. NyströmB. DinarvandR. Redox-responsive waterborne polyurethane nanocarriers for targeted doxorubicin delivery.Int. J. Pharm.202262812227510.1016/j.ijpharm.2022.122275 36265661
    [Google Scholar]
  117. MadaniF. EsnaashariS.S. MujokoroB. DorkooshF. KhosravaniM. AdabiM. Investigation of effective parameters on size of paclitaxel loaded PLGA nanoparticles.Adv. Pharm. Bull.201881778410.15171/apb.2018.010 29670842
    [Google Scholar]
  118. DubeyS. Systematic Development of Cyclic RGD Anchored Emulsomes for Tumor Specific Delivery of Paclitaxel.Int. J. Curr. Res. Rev.202113151929
    [Google Scholar]
  119. JangidA.K. PoojaD. JainP. GuptaN. RamesanS. KulhariH. Self-assembled and pH-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells.RSC Advances20211123139281393910.1039/D1RA01574E 35423920
    [Google Scholar]
  120. RocheA. VenturaM.V. TejedorR.M. OriolL. AbianO. PiñolM. Evaluation of PEG- b -polycarbonates self-assemblies containing azobenzene or coumarin moieties as nanocarriers using paclitaxel as a model hydrophobic drug.J. Microencapsul.202239327628710.1080/02652048.2022.2061621 35384769
    [Google Scholar]
  121. YingN. LiuS. ZhangM. Nano delivery system for paclitaxel: Recent advances in cancer theranostics.Colloids Surf. B Biointerfaces202322811341910.1016/j.colsurfb.2023.113419 37393700
    [Google Scholar]
  122. HattabD. BakhtiarA. Bioengineered sirna-based nanoplatforms targeting molecular signaling pathways for the treatment of triple negative breast cancer: Preclinical and clinical advancements.Pharmaceutics2020121092910.3390/pharmaceutics12100929 33003468
    [Google Scholar]
  123. XiaY. LinZ. LiY. Targeted delivery of siRNA using RGDfC-conjugated functionalized selenium nanoparticles for anticancer therapy.J. Mater. Chem. B Mater. Biol. Med.20175336941695210.1039/C7TB01315A 32264343
    [Google Scholar]
  124. YadavaP. GibbsM. CastroC. HughesJ.A. Effect of lyophilization and freeze-thawing on the stability of siRNA-liposome complexes.AAPS PharmSciTech20089233534110.1208/s12249‑007‑9000‑1 18431646
    [Google Scholar]
  125. PanT. ZhouQ. MiaoK. Suppressing Sart1 to modulate macrophage polarization by siRNA-loaded liposomes: A promising therapeutic strategy for pulmonary fibrosis.Theranostics20211131192120610.7150/thno.48152 33391530
    [Google Scholar]
  126. EversM.J.W. van de WakkerS.I. de GrootE.M. Functional siRNA Delivery by Extracellular Vesicle–Liposome Hybrid Nanoparticles.Adv. Healthc. Mater.2022115210120210.1002/adhm.202101202 34382360
    [Google Scholar]
  127. FangS. HouY. LingL. Dimeric camptothecin derived phospholipid assembled liposomes with high drug loading for cancer therapy.Colloids Surf. B Biointerfaces201816623524410.1016/j.colsurfb.2018.02.046 29604567
    [Google Scholar]
  128. SæternA.M. SkarM. BraatenÅ. BrandlM. Camptothecin-catalyzed phospholipid hydrolysis in liposomes.Int. J. Pharm.20052881738010.1016/j.ijpharm.2004.09.010 15607259
    [Google Scholar]
  129. SæternA.M. FlatenG.E. BrandlM. A method to determine the incorporation capacity of camptothecin in liposomes.AAPS PharmSciTech200453303710.1208/pt050340 15760073
    [Google Scholar]
  130. LinC.H. Al-SuwayehS.A. HungC.F. ChenC.C. FangJ.Y. Camptothecin-loaded liposomes with α-melanocyte-stimulating hormone enhance cytotoxicity toward and cellular uptake by melanomas: An application of nanomedicine on natural product.J. Tradit. Complement. Med.20133210210910.4103/2225‑4110.110423 24716164
    [Google Scholar]
  131. CortesiR. EspositoE. MaiettiA. MenegattiE. NastruzziC. Formulation study for the antitumor drug camptothecin: Liposomes, micellar solutions and a microemulsion.Int. J. Pharm.199715919510310.1016/S0378‑5173(97)00275‑5
    [Google Scholar]
  132. SarafS. JainA. TiwariA. VermaA. JainS.K. Engineered liposomes bearing camptothecin analogue for tumour targeting: in vitro and ex-vivo studies.J. Liposome Res.202131432634110.1080/08982104.2020.1801725 32718195
    [Google Scholar]
  133. HeW. DuY. ZhouW. YaoC. LiX. Redox-sensitive dimeric camptothecin phosphatidylcholines-based liposomes for improved anticancer efficacy.Nanomedicine201914233057307410.2217/nnm‑2019‑0261 31696756
    [Google Scholar]
  134. YadavS. GuptaS. Development and in vitro characterization of docetaxel-loaded ligand appended solid fat nanoemulsions for potential use in breast cancer therapy.Artif. Cells Nanomed. Biotechnol.20154329310210.3109/21691401.2013.845569 24195582
    [Google Scholar]
  135. MuthuM.S. KulkarniS.A. RajuA. FengS.S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots.Biomaterials201233123494350110.1016/j.biomaterials.2012.01.036 22306020
    [Google Scholar]
  136. ZhouH. YanJ. ChenW. Population Pharmacokinetics and Exposure–Safety Relationship of Paclitaxel Liposome in Patients With Non-small Cell Lung Cancer.Front. Oncol.202110173110.3389/fonc.2020.01731 33614470
    [Google Scholar]
  137. YiQ. LiuC. CuiY. Chemoradiotherapy with paclitaxel liposome plus cisplatin for locally advanced esophageal squamous cell carcinoma: A retrospective analysis.Cancer Med.20231266477648710.1002/cam4.5416 37012831
    [Google Scholar]
  138. ChaaS. BoufadiM.Y. KeddariS. Chemical composition of propolis extract and its effects on epirubicin-induced hepatotoxicity in rats.Rev. Bras. Farmacogn.201929329430010.1016/j.bjp.2019.01.005
    [Google Scholar]
  139. YasaswiP.S. ShettyK. YadavK.S. Temozolomide nano enabled medicine: Promises made by the nanocarriers in glioblastoma therapy.J. Control. Release202133654957110.1016/j.jconrel.2021.07.003 34229001
    [Google Scholar]
  140. RoblesU.M. IslasO.E. PerezR.E. ValverdeF.F. LimT. MoralesM.A.A. Targeted delivery of temozolomide by nanocarriers based on folic acid-hollow TiO2 -nanospheres for the treatment of glioblastoma.Biomaterials Advances2023151
    [Google Scholar]
  141. OrtizY.S.R. HillD.B. HoffmannP.R. Development of Optimized, Inhalable, Gemcitabine-Loaded Gelatin Nanocarriers for Lung Cancer.J. Aerosol Med. Pulm. Drug Deliv.201730529932110.1089/jamp.2015.1286 28277892
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855299918240529063242
Loading
/content/journals/cdth/10.2174/0115748855299918240529063242
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; drug delivery system; Emulsomes; lipids; novel; therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test