Current Drug Targets-CNS & Neurological Disorders - Volume 4, Issue 3, 2005

Volume 4, Issue 3, 2005
-
-
The Neuroinflammatory Response in Plaques and Amyloid Angiopathy in Alzheimer's Disease: Therapeutic Implications
Authors: Annemieke J.M. Rozemuller, Willem A van Gool and Piet EikelenboomThe amyloid plaques in Alzheimer's disease (AD) brains are co-localised with a broad variety of inflammation-related proteins (complement proteins, acute-phase proteins, pro-inflammatory cytokines) and clusters of activated microglia. The present data suggest that the Aβ depositions in the neuroparenchyma are closely associated with a locally-induced, non-immune-mediated chronic inflammatory response. Clinicopathological and neuroradiological data show that activation of microglia are a relatively early pathogenic event that precedes the process of severe neuropil destruction in patients. Recent gene findings (cDNA microarray) confirm the immunohistochemical findings of an early involvement of inflammatory and regenerative pathways in AD pathogenesis. Aβ deposition, inflammation and regenerative mechanisms are also early pathogenic events in transgenic mice models harbouring the pathological AD mutations, while “later” neurodegenerative characteristics are not seen in these models. Next to the plaques, Aβ amyloid deposition is frequently found in the walls of cerebral vessels (cerebral amyloid angiopathy). Most common is the type of amyloid deposition in the walls of meningeal and mediumsized cortical arteries, and more rarely, microcapillary amyloid angiopathy (dyshoric angiopathy). Immunohistochemical studies show that in AD patients, the majority of the amyloid deposits in the walls of the larger vessels is not associated with a chronic inflammatory response in contrast to micro-capillary amyloid angiopathy. In this contribution, we will give an overview of the similarities and differences between the involvement of inflammatory mechanisms in vascular and plaque amyloid in AD and transgenic models. The implications of the reviewed studies for an inflammation-based therapeutical approach in AD will be discussed.
-
-
-
Amyloid Associated Proteins in Alzheimer's and Prion Disease
Authors: R. Veerhuis, R. S. Boshuizen and A. FamilianClustering of activated microglia in Aβ deposits is related to accumulation of amyloid associated factors and precedes the neurodegenerative changes in AD. Microglia-derived pro-inflammatory cytokines are suggested to be the driving force in AD pathology. Inflammation-related proteins, including complement factors, acute-phase proteins, pro-inflammatory cytokines, that normally are locally produced at low levels, are increasingly synthesized in Alzheimer's disease (AD) brain. Similar to AD, in prion diseases (Creutzfeldt-Jakob disease, Gerstmann-Sträussler- Scheinker disease and experimentally scrapie infected mouse brain) amyloid associated factors and activated glial cells accumulate in amyloid deposits of conformational changed prion protein (PrPres). Biological properties of Aβ and prion (PrP) peptides, including their potential to activate microglia, relate to Aβ and PrP peptide fibrillogenic abilities that are influenced by certain amyloid associated factors. However, since small oligomers of amyloid forming peptides are more toxic to neurons than large fibrils, certain amyloid associated factors that enhance fibril formation, may sequester the potentially harmful Aβ and PrP peptides from the neuronal microenvironment. In this review the positive and negative actions of amyloid associated factors on amyloid peptide fibril formation and on the fibrillation state related activation of microglia will be discussed. Insight in these mechanisms will enable the design of specific therapies to prevent neurodegenerative diseases in which amyloid accumulation and glial activation are prominent early features.
-
-
-
Preventing Activation of Receptor for Advanced Glycation Endproducts in Alzheimer's Disease
Authors: L- F. Lue, S. D. Yan, D. M. Stern and D. G. WalkerReceptor for advanced glycation endproducts (RAGE), a member of the immunoglobulin superfamily, is a multi-ligand, cell surface receptor expressed by neurons, microglia, astrocytes, cerebral endothelial cells, pericytes, and smooth muscle cells. At least three major types of the RAGE isoforms (full length, C-truncated, and N-truncated) are present in human brains as a result of alternative splicing. Differential expression of each isoform may play a regulatory role in the physiological and pathophysiological functions of RAGE. Analysis of RAGE expression in non-demented and Alzheimer's disease (AD) brains indicated that increases in RAGE protein and percentage of RAGE-expressing microglia paralleled the severity of disease. Ligands for RAGE in AD include amyloid β peptide (Aβ), S100/calgranulins, advanced glycation endproductmodified proteins, and amphoterin. Collective evidence from in vitro and in vivo studies supports that RAGE plays multiple roles in the pathogenesis of AD. The major features of RAGE activation in contributing to AD result from its interaction with Aβ, from the positive feedback mechanisms driven by excess amounts of Aβ, and combined with sustained elevated RAGE expression. The adverse consequences of RAGE interaction with Aβ include perturbation of neuronal properties and functions, amplification of glial inflammatory responses, elevation of oxidative stress and amyloidosis, increased Aβ influx at the blood brain barrier and vascular dysfunction, and induction of autoantibodies. In this article, we will review recent advances of RAGE and RAGE activation based on findings from cell cultures, animal models, and human brains. The potential for targeting RAGE mechanisms as therapeutic strategies for AD will be discussed.
-
-
-
The Nrf2-ARE Signalling Pathway: Promising Drug Target to Combat Oxidative Stress in Neurodegenerative Disorders
Authors: Freek L. van Muiswinkel and H. B. KuiperijA large body of evidence indicates that oxidative stress is a salient pathological feature in many neurodegenerative diseases, including Amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. In addition to signs of systemic oxidative stress, at the biochemical and neuropathological level, neuronal degeneration in these disorders has been shown to coincide with several markers of oxidative damage to lipids, nucleic acids, and proteins in affected brain regions. Neuroinflammatory processes, often associated with the induction of free radical generating enzymes and the accumulation of reactive astrocytes and microglial cells, are considered as a major source of oxidative stress. Given the pathogenic impact of oxidative stress and neuroinflammation, therapeutic strategies aimed to blunt these processes are considered an effective way to confer neuroprotection. Recently, the nuclear transcription factor Nrf2, that binds to the antioxidant response element (ARE) in gene promoters, has been reported to constitute a key regulatory factor in the coordinate induction of a battery of endogenous cytoprotective genes, including those encoding for both antioxidant- and anti-inflammatory proteins. In the present review, besides discussing recent evidence underscoring the thesis that the Nrf2-ARE signalling pathway is an attractive therapeutic target for neurodegenerative diseases, we advocate the view that chemopreventive agents might be suitable candidates to serve as lead compounds for the development of a new class of neuroprotective drugs.
-
-
-
Protein Quality Control in Alzheimer's Disease: A Fatal Saviour
Authors: W. Scheper and E. M. HolAggregation of Aβ plays a key role in the pathogenesis of Alzheimer's disease. Although the highly structured Aβ aggregates (fibrils) have long been thought to be the toxic form of Aβ, recent evidence suggests that smaller, soluble intermediates in Ab aggregation are the real culprit. Because these oligomeric aggregates are already formed in the secretory pathway, this raises another issue: Is intra- or extracellular Aβ involved in the pathogenic cascade? Because aggregated proteins are very toxic, cells have developed quality control responses to deal with such proteins. A prime site for quality culum. Here, aberrant proteins are recognized and can be targeted for degradation to the cytosolic quality control system. In addition, there is accumulating evidence for quality control in other subcellular compartments in the cell. All quality control mechanisms are initially protective, but will become destructive after prolonged accumulation of aggregated proteins. This is enhanced by decreased efficiency of these systems during aging and therefore, these responses may play an important role in the pathogenesis of Alzheimer's disease. In this review, we will discuss the role of protein quality control in the neurotoxicity of Aβ.
-
-
-
The Expression of Cell Cycle Proteins in Neurons and its Relevance for Alzheimer's Disease
Authors: Uwe Ueberham and Thomas ArendtAlzheimer's disease is a chronic neurodegenerative disorder characterised by typical pathological hallmarks such as amyloid deposition, neurofibrillary tangles and disturbances in the expression of various cell cycle proteins. A current pathogenetic hypothesis suggests that neurons, forced by external and internal factors, leave the differentiated G0 phase and re-enter the cell cycle. This process results in neuronal dedifferentiation and apoptosis and might contribute to an increased phosphorylation of the tau protein. There are a number of reports, however, describing the expression of cell cycle proteins in rodent or human brain under normal non-disease conditions. This might indicate that cell cycle expression of proteins in neurons is of physiological rather than pathophysiological relevance. Therefore, it needs to be carefully analysed whether the expression of cell cycle regulators such as cyclin-dependent kinases, cyclins or cyclin-dependent kinase inhibitors in neurons is a pathological hallmark that allows to discriminate between normal and disease condition. Here we attempt to summarise recent evidence for a dysfunction of cell cycle regulators in Alzheimer´s disease, considering the potential functions of these molecules beyond cell cycle regulation.
-
-
-
The Role of COX-1 and COX-2 in Alzheimer's Disease Pathology and the Therapeutic Potentials of Non-Steroidal Anti-Inflammatory Drugs
Authors: Jeroen J.M. Hoozemans and M. K. O'BanionEpidemiological studies indicate that anti-inflammatory drugs, especially the non-steroidal antiinflammatory drugs (NSAIDs), decrease the risk of developing Alzheimer's disease (AD). Their beneficial effects may be due to interference of the chronic inflammatory reaction in AD. The best-characterised action of NSAIDs is the inhibition of cyclooxygenase (COX). So far, clinical trials designed to inhibit inflammation or cyclooxygenase activity have failed in the treatment of AD patients. In this review we will focus on the role, expression and regulation of COX-1 and COX-2 in neurodegeneration and AD pathogenesis. Understanding the pathological, physiological and neuroprotective role of cyclooxygenase will contribute to the development of a therapy for the treatment or prevention of AD.
-
Volumes & issues
Most Read This Month
