Current Drug Targets - Volume 6, Issue 4, 2005
Volume 6, Issue 4, 2005
-
-
Structural and Functional Studies of Galectin-1: A Novel Axonal Regeneration-Promoting Activity for Oxidized Galectin-1
Authors: Toshihiko Kadoya and Hidenori HorieRecently, we discovered oxidized galectin-1 as a factor that regulates initial axonal growth in the peripheral nerve after axotomy. Galectin-1 is a member of the galectins, a family of animal lectins ranging from Caenorhabditis elegans to humans, which is defined by their affinity for β-galactosides and by significant sequence similarity in the carbohydrate-binding site. Galectin-1 is a homodimer with a subunit molecular mass of 14.5 kDa, which contains six cysteine residues per subunit. The cysteine residues should be in a free state in order to maintain a molecular structure that is capable of showing lectin activity. However, our structural analysis revealed that the axonal regeneration-promoting factor exists as an oxidized form of galectin-1, containing three intramolecular disulfide bonds. The oxidized galectin-1 exhibited marked peripheral nerve regeneration-promoting activity, although it showed no lectin activity. It was also revealed that oxidized galectin-1 exists as a monomer in a physiological solution. Galectin-1 seems to have a variety of biological functions. These functions could vary according to the time at which a biological function is taking place, as well as the site in which a biological function is taking place. In addition, these functions could vary according to the structure of galectin-1 by which a particular biological function is taking place. Disulfide bond formation alters the structure of galectin-1, so as to confer the novel ability to promote axonal regeneration. Oxidized galectin-1 likely acts as an autocrine or paracrine factor to promote axonal regeneration, functioning more like a cytokine than as a lectin.
-
-
-
Oxidized Galectin-1 is an Essential Factor for Peripheral Nerve Regeneration
Authors: Hidenori Horie, Toshihiko Kadoya, Kazunori Sango and Mitsuhiro HasegawaAlthough many factors have been implicated in the regenerative response of peripheral axons to nerve injury, the signals that prompt neurons to extend processes in peripheral nerves after axotomy are not well-understood. As shown in the first chapter, oxidized recombinant human galectin-1 (rhGAL-1/Ox), which lacks lectin activity, promotes initial axonal growth in an in vitro peripheral nerve regeneration model at low concentrations (pg/ml). At a similarly low concentration, rhGAL-1/Ox has also been shown to be effective in enhancing axonal regeneration using in vivo experiments. Moreover, the application of functional anti-rhGAL-1 antibody strongly inhibited axonal regeneration in vivo as well as in vitro. Since galectin-1 (GAL-1) is expressed in the regenerating sciatic nerves as well as in both sensory and motoneurons, these results indicate that GAL-1, which is secreted into the extracellular space, is subsequently oxidized and then may regulate initial repair after axotomy. This possibility was confirmed by Western blot analysis, which revealed that both reduced and oxidized forms of GAL-1 are present in culture media of DRG neurons and immortalized adult mouse Schwann cells (IMS32). Externalized GAL-1/Ox has been found to stimulate macrophages to secrete an axonal regeneration-promoting factor. From these results, we propose that axonal regeneration occurs in axotomized peripheral nerves as a result of cytosolic reduced GAL-1 being released from Schwann cells and injured axons, which then becomes oxidized in the extracellular space. GAL-1/Ox in the extracellular space stimulates macrophages to secrete a factor that promotes axonal growth and Schwann cell migration, thus enhancing peripheral nerve regeneration and functional recovery. These results suggest that rhGAL-1/Ox may be a novel factor for functional restoration of injured peripheral nerves.
-
-
-
Galectin-1 is a Novel Factor that Regulates Myotube Growth in Regenerating Skeletal Muscles
Authors: Katsuya Kami and Emiko SenbaAdult skeletal muscles have a vigorous regenerative capacity in response to chemical, mechanical or physical injuries. Muscle satellite cells play a critical role in skeletal muscle regeneration. Activated satellite cells (myoblasts) proliferate and then differentiate. Differentiated myoblasts fuse with each other to form multinucleated myotubes, and the growth of myotubes is induced by both fusion with additional myoblasts and reinnervation of motor neurons. Cellular and molecular events underlying the regenerative processes are regulated by critical factors, which are produced by satellite cells, myoblasts, myotubes, extracellular matrix and inflammatory cells. Galectin-1 is abundantly synthesized in adult skeletal muscles, but its roles in muscle regeneration have not been fully elucidated. We reviewed previous studies on the function of galectin-1 regarding myogenesis in vivo and in vitro, and discussed the roles of this lectin in regenerating skeletal muscles based on our observations. In intact adult muscles, galectin-1 was associated with basement membranes of myofibers. After muscle injury, galectin-1 immunoreactivity was increased within the cytoplasm of activated satellite cells. Thereafter, differentiated myoblasts lost galectin-1 immunoreactivity, but galectin-1 expression associated with basement membranes was detected in myotubes. Administration of anti-galectin-1 antibody, which perturbs the function of galectin-1, decreased the size of myotubes. Furthermore, muscle injury induced abundant expression of galectin-1 in damaged intramuscular nerve axons. We conclude that galectin-1 is a novel factor that promotes both myoblast fusion and axonal growth following muscle injury, and consequently, regulates myotube growth in regenerating skeletal muscles.
-
-
-
Galectin-1 as a Potential Therapeutic Agent for Amyotrophic Lateral Sclerosis
Authors: T. Kato, C.- H. Ren, M. Wada and T. KawanamiAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects almost selectively motor neurons in the central nervous system. Most ALS patients die within five years of onset. One of the neuropathological features of ALS is an “axonal spheroid,” a large swelling of a motor axon within the anterior horn of the spinal cord; this abnormal structure seems to be related to the pathogenesis of motor neuron degeneration in ALS. In 2001, using biochemical and immunohistochemical methods, we found an accumulation of galectin-1 in ALS spheroids. By immunoelectron microscopy, the galectin-1 accumulated in the spheroids was observed to be closely associated with neurofilaments. Furthermore, we observed a marked depletion of galectin-1 in the skin of ALS patients; another abnormality frequently observed in ALS. These findings, therefore, suggest that galectin-1 may be involved in the pathogenesis of ALS. It is known that an oxidized form of galectin-1 promotes axonal regeneration; however, it is not known whether oxidized galectin-1 has a beneficial or an adverse effect on the pathophysiology of ALS. To examine this issue, we administered oxidized galectin-1 to transgenic mice with H46R mutant SOD1, an ALS model mouse. The results showed that the administration of oxidized galectin-1 improved the motor activity, delayed the onset of symptoms, and prolonged the survival of the galectin-1-treated mice. Furthermore, the number of remaining motor neurons in the spinal cord was more preserved in the galectin-1-treated mice than in the non-treated mice. We conclude that galectin-1 could be a candidate agent for the treatment of ALS.
-
-
-
Expression and Functions of Galectin-1 in Sensory and Motoneurons
Authors: A. D. Gaudet, J. D. Steeves, W. Tetzlaff and M. S. RamerGalectin-1 (Gal1) was the first identified member of the galectin family of β-galactosidase-binding proteins. Gal1 has important roles in processes fundamental to growth and survival of an organism, including cell adhesion, cell proliferation and apoptosis, and is expressed in many tissues, including the nervous system. In the 1980s, research focused on the developmental regulation of Gal1 expression during neurogenesis. Gal1 was found to be expressed mainly in peripherally-projecting neurons beginning early in neurogenesis, and its expression is maintained at high levels in subpopulations of these neurons in the adult rodent. Although the expression pattern of Gal1 implied that it may be involved in axonal guidance or targeting of subsets of sensory and motoneurons, possible roles of Gal1 in the nervous system had not been confirmed until recently. Gal1 has since been shown to be required for the proper guidance of subsets of primary olfactory axons (to targets in the olfactory bulb) and of primary somatosensory axons (to targets in the superficial dorsal horn). In addition, Gal1 has been implicated in the regenerative response of axons following peripheral nerve injury. Gal1 has been shown to promote axonal regeneration through the activation of macrophages. Also, Gal1 may act within the injured neuron to enhance regrowth: the injury-induced regulation of Gal1 in numerous types of peripherally- and centrally-projecting neurons correlates positively with the regenerative potential of their axons. In this review, we discuss the expression pattern of Gal1 in sensory and motoneurons, and the potential roles of Gal1 in development, axonal regeneration and neuropathic pain.
-
-
-
Glycans and Glycan-Binding Proteins in Brain: Galectin-1-Induced Expression of Neurotrophic Factors in Astrocytes
By Tamao EndoAstrocytes are a major cell type in the central nervous system (CNS). They are considered to act in cooperation with neurons and other glial cells and to participate in the development and maintenance of functions of the CNS. Immature astrocytes possess a polygonal shape and have no processes, and continue to proliferate, while mature astrocytes have a stellate cell morphology, increased glial fibrillary acidic protein expression, and proliferate slowly. Stellate astrocytes, which immediately appear at the site of brain lesions by ischemia or other brain injuries, are thought to produce several neurotrophic factors to protect neurons from delayed post-lesion death. Previously we reported that galectin-1, a member of the family of β-galactoside-binding proteins, induced astrocyte differentiation, and the differentiated astrocytes greatly enhanced their production of brain-derived neurotrophic factor (BDNF). BDNF is known to promote neuronal survival, guide axonal pathfinding, and participate in activity-dependent synaptic plasticity during development. The effect of galectin-1 is astrocyte-specific and does not have any effect on neurons. Prevention of neuronal loss during CNS injuries is important to maintain brain function. Induction of neuroprotective factors in astrocytes by an endogenous mammalian lectin may be a new mechanism for preventing neuronal loss after brain injury, and may be useful for the treatment of neurodegenerative disorders.
-
-
-
Regulation of the Neuronal Fate by ΔFosB and its Downstream Target, Galectin-1
In mammals, the regulation of the cell fate to either proliferate, differentiate, arrest cell growth, or initiate programmed cell death is the most fundamental mechanism for maintaining normal cell function and tissue homeostasis. Under multiple signaling pathways, Jun and Fos family proteins are known to play important roles as components of an AP-1 (activator protein-1) complex, to regulate the transcription of various genes involved in cell proliferation, differentiation and programmed cell death. ΔFosB, one of the AP-1 subunits encoded by alternatively spliced fosB mRNA, triggers one round of proliferation in quiescent rat embryo cell lines, followed by a different cell fate such as morphological alteration or delayed cell death. As one of the downstream targets of the ΔFosB in rat3Y1 cell line, we identified rat galectin-1 and its novel variant, galectin-1β, and demonstrated that the expression of galectin-1 is required for the proliferative activation of quiescent rat1A cells by ΔFosB, thus indicating that galectin-1 is one of functional targets of ΔFosB. The expression of ΔFosB is highly inducible in the adult brain in response to various insults such as ischemic reperfusion injury, seizure induced by electric stimulation or cocaine administration. On the other hand, galectin- 1 has also been shown to be involved in the regeneration of damaged axons in the peripheral nerve, as well as in neurite outgrowth or synaptic connectivity in the olfactory system during development. We herein propose that ΔFosB together with galectin-1, may therefore mediate neuroprotection and neurogenesis in response to brain damage.
-
-
-
Blockade of Diabetic Vascular Injury by Controlling of AGE-RAGE System
Vascular complications result in disabilities and short life expectancy in diabetic patients. During prolonged hyperglycemic exposure, non-enzymatically glycated protein derivatives termed advanced glycation endproducts (AGE) are formed at an accelerated rate and accumulated in blood and in tissues. Studies performed in vitro and in vivo revealed AGE and their receptor RAGE as the major accounts for vascular cell derangement characteristic of diabetes. The AGERAGE system would thus be considered as a candidate molecular target for overcoming diabetic vascular complications. Potential preventive and therapeutic approaches toward it include inhibition of AGE formation, breakage of preformed AGE-proteins crosslinks, blockade of AGE-RAGE interactions with RAGE competitors or antagonists and RAGEspecific signaling inhibition.
-
-
-
The Role of AGEs and AGE Inhibitors in Diabetic Cardiovascular Disease
Authors: M. C. Thomas, J. W. Baynes, S. R. Thorpe and M. E. CooperProlonged hyperglycemia, dyslipidemia and oxidative stress in diabetes result in the production and accumulation of AGEs. It is now clear that AGEs contribute to the development and progression of cardiovascular disease in diabetes, as well as other complications. AGEs are thought to act through receptor-independent and dependent mechanisms to promote vascular damage, fibrosis and inflammation associated with accelerated atherogenesis. As a result, novel therapeutic agents to reduce the accumulation of AGEs in diabetes have gained interest as potential cardioprotective approaches. A variety of agents have been developed which are examined in detail in this review. These include aminoguanidine, ALT-946, pyridoxamine, benfotiamine, OPB-9195, alagebrium chloride, N-phenacylthiazolium bromide and LR-90. In addition, it has been demonstrated that a number of established therapies have the ability to reduce the accumulation of AGEs in diabetes including ACE inhibitors, angiotensin receptor antagonists, metformin, peroxisome proliferators receptor agonists, metal chelators and some antioxidants. The fact that many of these inhibitors of AGEs are effective in experimental models, despite their disparate mechanisms of action, supports the keystone role of AGEs in diabetic vascular damage. Nonetheless, the clinical utility of AGE inhibition remains to be firmly established. Optimal metabolic and blood pressure control, that is achieved early and sustained indefinitely, remains the best recourse for inhibition of AGEs until more specific interventions become a clinical reality.
-
-
-
Aldose Reductase in Diabetic Microvascular Complications
Authors: S. S.M. Chung and S. K. ChungMost long-term diabetic patients develop microvascular diseases such as retinopathy, nephropathy and neuropathy. Although tight control of blood glucose greatly reduces the incidence of these complications, a significant fraction of diabetic patients with good glycemic control still develop these diseases. Therefore, it is imperative to understand the underlying mechanisms of these diseases such that effective treatment or preventive methods can be developed to augment euglycemic control. In animal studies, there is strong evidence that aldose reductase, the first and rate-limiting enzyme of the polyol pathway that converts glucose to fructose, plays a key role in the pathogenesis of microvascular complications. However, clinical trials of the aldose reductase inhibitors were disappointing and several pharmaceutical companies had abandoned the development of this line of drugs. In this review, the potential pathogenic mechanisms of the polyol pathway are presented, the evidence for the involvement of the polyol pathway in diabetic complications summarized, and the reasons for the unimpressive results of the clinical trials of the aldose inhibitors discussed. It appears that renewed efforts to develop aldose reductase inhibitors for the treatment and prevention of diabetic complications are warranted.
-
-
-
Molecular Targets of Diabetic Cardiovascular Complications
Authors: Fatima K. Ahmad, Zhiheng He and George L. KingBoth the macro- and microvascular complications adversely affect the life quality of patients with diabetes and have been the leading cause of mortality and morbidity in this population. With the advancement of technologies in biomedical research, we have gained a great deal of understanding of the mechanisms underlying these complications. While euglycemic control still remains the best strategy, it is often difficult to maintain at a level that can completely prevent the vascular complications. Therefore, it is necessary to use the processes leading to vascular dysfunction as a framework for designing novel molecular therapeutic targets. Several of the mechanisms by which diabetes induces vascular complications include increased flux through the polyol pathway, increased oxidative stress, activation of protein kinase C (PKC), vascular inflammation, and abnormal expression and actions of cytokines in the vasculature. Many of the therapies that target these pathways have proven successful in experimental models of diabetic complications. However, clinical studies using these treatments have mainly yielded inconclusive results. The pathogenesis of diabetic vascular complications and results from animal studies and key clinical studies are reviewed here.
-
-
-
NAD(P)H Oxidase Activation: A Potential Target Mechanism for Diabetic Vascular Complications, Progressive β-Cell Dysfunction and Metabolic Syndrome
Authors: Toyoshi Inoguchi and Hajime NawataBoth protein kinase C (PKC) activation and increased oxidative stress have been paid attention to as important causative factors for diabetic vascular complications. In this article, we show a PKC-dependent increase in oxidative stress in vascular tissues of diabetes and insulin resistant state. High glucose level and free fatty acids stimulate de novo diacylglycerol (DAG)-PKC pathway and subsequently stimulate reactive oxygen species (ROS) production through a PKC-dependent activation of NAD(P)H oxidase. Increasing evidence has also shown that NAD(P)H oxidase components are upregulated in micro- and macro- vascular tissues of animal models and patients of diabetes and obesity. It is also noted that increased intrinsic angiotensin II production may amplify such a PKC-dependent activation of NAD(P)H oxidase in diabetic vascular tissues. These mechanisms may play an important role in the diabetic vascular complications and the accelerated atherosclerosis associated with diabetes and obesity. In addition, recent reports have shown that NAD(P)H oxidases exist in pancreatic β-cells and adipocytes, and this oxidase-generated ROS production may play an important role in both the progressive β-cell dysfunction and the dysregulated adipocytokine production and subsequent obesity-induced metabolic syndrome. These results suggest that an NAD(P)H oxidase activation may be a useful therapeutic target for preventing diabetic vascular complications, progressive β-cell dysfunction and metabolic syndrome.
-
-
-
Molecular Targets of Diabetic Vascular Complications and Potential New Drugs
Authors: Roberto D. Ros, Roberta Assaloni and Antonio CerielloIn diabetes, oxidative stress plays a key role in the pathogenesis of vascular complications, and an early step of such damage is considered to be the development of an endothelial dysfunction. Hyperglycemia directly promotes an endothelial dysfunction inducing process of overproduction of superoxide and consequently peroxynitrite, that damages DNA and activates the nuclear enzyme poly(ADP-ribose) polymerase. This process, depleting NAD+, slowing glycolsis, ATP formation and electron transport, results in acute endothelial dysfunction in diabetic blood vessels and contributes to the development of diabetic complications. These new findings may explain why classical antioxidants, like vitamin E, that work scavenging already formed toxic oxidation products, have failed to show beneficial effects on diabetic complications, and suggest new and attractive “causal” antioxidant therapy. New, low molecular mass compounds that act as SOD or catalase mimetics or L-propionylcarnitine and lipoic acid, that work as intracellular superoxide scavengers, improving mitochondrial function and reducing DNA damage, may be good candidates for such strategy, and preliminary studies support this hypothesis. This “causal” therapy would also be associated with other promising tools such as LY 333531, PJ34 and FP15, which block protein kinase ß isoform, poly(ADP-ribose) polymerase and peroxynitrite, respectively. It is now evident that, statins, ACE inhibitors, AT-1 blockers, calcium channel blockers and thiazolidinediones have a strong intracellular antioxidant activity, and it has been suggested that many of their beneficial ancillary effects are due to this property. This preventive activity against oxidative stress generation can justify a large utilization and association of this compounds for preventing complications in diabetic patients where antioxidant defences have been shown to be defective.
-
-
-
Vascular Endothelial Growth Factor and Diabetic Retinopathy: Role of Oxidative Stress
Retinal neovascularization and macular edema are central features of diabetic retinopathy, a major cause of blindness in working age adults. The currently established treatment for diabetic retinopathy targets the vascular pathology by laser photocoagulation. This approach is associated with significant adverse effects due the destruction of neural tissue and is not always effective. Characterization of the molecular and cellular processes involved in vascular growth and hyperpermeability has led to the recognition that the angiogenic growth factor and vascular permeability factor VEGF (vascular endothelial growth factor) play a pivotal role in the retinal microvascular complications of diabetes. Thus, VEGF represents an important target for therapeutic intervention in diabetic retinopathy. Agents that directly inhibit the actions of VEGF and its receptors show considerable promise, but have not proven to be completely effective in blocking pathological angiogenesis. Therefore, a better understanding of the molecular events that control VEGF expression and mediate its downstream actions is important to define more precise therapeutic targets for intervention in diabetic retinopathy. This review highlights the current understanding of the process by which VEGF gene expression is regulated and how VEGF's biological effects are altered during diabetes. In particular, cellular and molecular alterations seen in diabetic models are considered in the context of high glucose-mediated oxidative stress effects on VEGF expression and action. Potential therapeutic strategies for preventing VEGF overexpression or blocking its pathological actions in the diabetic retina are considered.
-
-
-
Adipokines: Therapeutic Targets for Metabolic Syndrome
Authors: Kunihisa Kobayashi and Toyoshi InoguchiFor a long time it has been known that obesity (adiposity) is linked to insulin resistance. Recently, many investigators have reported that adipocytes secrete a variety of bioactive molecules, termed adipokines (adipocytokines), including TNFα, IL-6, leptin, adiponectin, resistin and so on. These adipokines play pivotal roles in energy homeostasis by affecting insulin sensitivity, glucose and lipid metabolisms, food intake, the coagulation system and inflammation. This review provides a summary of these adipose tissue-secreting biomolecules and discusses their feasibilities as drug targets for the treatment of metabolic syndrome.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
