Current Drug Targets - Volume 26, Issue 4, 2025
Volume 26, Issue 4, 2025
-
-
Trends of Artificial Intelligence (AI) Use in Drug Targets, Discovery and Development: Current Status and Future Perspectives
Authors: Manmayee Mohapatra, Chittaranjan Sahu and Snehamayee MohapatraThe applications of artificial intelligence (AI) in pharmaceutical sectors have advanced drug discovery and development methods. AI has been applied in virtual drug design, molecule synthesis, advanced research, various screening methods, and decision-making processes. In the fourth industrial revolution, when medical discoveries are happening swiftly, AI technology is essential to reduce the costs, effort, and time in the pharmaceutical industry. Further, it will aid “genome-based medicine” and “drug discovery.” AI may prepare proactive databases according to diseases, disorders, and appropriate usage of drugs which will facilitate the required data for the process of drug development. The application of AI has improved clinical trials on patient selection in a population, stratification, and sample assessment such as biomarkers, effectiveness measures, dosage selection, and trial length. Various studies suggest AI could be perform better compared to conventional techniques in drug discovery. The present review focused on the positive impact of AI in drug discovery and development processes in the pharmaceutical industry and beneficial usage in health sectors as well.
-
-
-
Unraveling Neurological Drug Delivery: Polymeric Nanocarriers for Enhanced Blood-Brain Barrier Penetration
Treating neurological illnesses is challenging because the blood-brain barrier hinders therapeutic medications from reaching the brain. Recent advances in polymeric nanocarriers (PNCs), which improve medication permeability across the blood-brain barrier, may influence therapy strategies for neurological diseases. PNCs have several ways to deliver medications to the nervous system. This review article provides a summary of the parts and manufacturing methods involved in making PNCs. Additionally, it highlights the elements that result in PNCs having enhanced blood-brain barrier penetration. A combination of passive and active targeting strategies is used by PNCs intended to overcome the blood-brain barrier. Among these are micellar structures, nanogels, nanoparticles, cubosomes, and dendrimers. These nanocarriers, which are functionalized with certain ligands that target BBB transporters, enable the direct delivery of drugs to the brain. Mainly, the BBB prevents medications from entering the brain. Understanding the BBB's physiological and anatomical characteristics is necessary to get over this obstacle. Preclinical and clinical research demonstrates the safety and effectiveness of these PNCs, and their potential use in the treatment of neurological illnesses, including brain tumors, Parkinson's disease, and Alzheimer's disease, is discussed. Concerns that PNCs may have about their biocompatibility and possible toxicity are also covered in this review article. This study examines the revolutionary potential of PNCs in CNS drug delivery, potential roadblocks, ongoing research, and future opportunities for PNC design progress. PNCs open the door to more focused and efficient treatment for neurological illnesses by comprehending the subtleties of BBB penetration.
-
-
-
LncRNA HAGLROS: A Vital Oncogenic Propellant in Various Human Cancers
Authors: Jingjie Yang, Haodong He, Lihan Chen, Yuzhang Wei, Yulong Liu, Xiaolan Li and Chengfu YuanHAGLR Opposite Strand lncRNA (HAGLROS) is a long non-coding RNA (lncRNA) located on the long arm of human chromosome 2 at locus 2q31.1. Emerging evidence highlights HAGLROS as a pivotal player in human cancers, characterized by its significant upregulation across multiple malignancies where it functions as an oncogenic driver. Its aberrant expression is closely linked to the initiation and progression of 13 distinct cancer types, notably correlating with adverse clinical outcomes and reduced overall survival rates in 9 of these cancer types. Mechanistically, HAGLROS is under the regulatory influence of the transcription factor STAT3, exerts competitive binding to 9 miRNAs, activates 5 signaling pathways pivotal for cancer cell proliferation and metastasis, as well as intricately modulates gene expression profiles. Given its multifaceted roles, HAGLROS emerges as a promising candidate for cancer diagnostics and prognostics. Moreover, its potential as a therapeutic target holds considerable promise for novel treatment strategies in oncology. This review synthesizes current research on HAGLROS, covering its expression patterns, biological roles, and clinical significance in cancer. By shedding light on these aspects, this review aims to contribute new perspectives that advance our understanding of cancer biology, enhance diagnostic accuracy, refine prognostic assessments, and pave the way for targeted therapeutic interventions.
-
-
-
Emerging Role of NAT10 as ac4C Writer in Inflammatory Diseases: Mechanisms and Therapeutic Applications
Authors: Wencheng Zhang, Weiping Lu, Min Wang, Di Yao, Jun Ma, Xiaoyan Hu and Mengyuan TaoThe incidence of inflammatory diseases, including infections, autoimmune disorders, and tumors, is consistently increasing year by year, posing a significant and growing threat to human health on a global scale. Recent research has indicated that RNA acetylation modification, a specific type of post-transcriptional modification, may play a critical role in the pathogenesis of these diseases. Among the various mechanisms of RNA modification, N-acetyltransferase 10 (NAT10) has been identified as the sole cytidine acetyltransferase in eukaryotes. NAT10 is responsible for acetylating mRNA cytosine, which leads to the formation of N4-acetylcytidine (ac4C), a modification that subsequently influences mRNA stability and translation efficiency. Despite these insights, the specific roles and underlying mechanisms by which RNA acetylation contributes to the onset and progression of inflammatory diseases remain largely unclear. This review aimed to elucidate the alterations in NAT10 expression, the modifications it induces in target genes, and its overall contribution to the pathogenesis of various inflammatory conditions. It has been observed that NAT10 expression tends to increase in most inflammatory conditions, thereby affecting the expression and function of target genes through the formation of ac4C. Furthermore, inhibitors targeting NAT10 present promising therapeutic avenues for treating inflammatory diseases by selectively blocking NAT10 activity, thereby preventing the modification of target genes and suppressing immune cell activation and inflammatory responses. This potential for therapeutic intervention underscores the critical importance of further research on NAT10's role in inflammatory disease pathogenesis, as understanding these mechanisms could lead to significant advancements in treatment strategies, potentially transforming the therapeutic landscape for these conditions.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
