Current Drug Targets - Volume 24, Issue 4, 2023
Volume 24, Issue 4, 2023
-
-
Therapeutic Potential of Herbal Medicine against Non-alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder associated with obesity, diabetes mellitus, dyslipidemia, and cardiovascular disease. A “multiple hit” model has been a widely accepted explanation for the disease's complicated pathogenesis. Despite advances in our knowledge of the processes underlying NAFLD, no conventional pharmaceutical therapy exists. The only currently approved option is to make lifestyle modifications, such as dietary and physical activity changes. The use of medicinal plants in the treatment of NAFLD has recently gained interest. Thus, we review the current knowledge about these agents based on clinical and preclinical studies. Moreover, the association between NAFLD and colorectal cancer (CRC), one of the most common and lethal malignancies, has recently emerged as a new study area. We overview the shared dysregulated pathways and the potential therapeutic effect of herbal medicines for CRC prevention in patients with NAFLD.
-
-
-
Recent Avenues in Treatment of Liver Diseases: Role of Nanotechnology
Authors: Madhusmita Bhuyan, Malkiet Kaur, Udesh Kaushal, Manju Nagpal, Manjinder Singh and Geeta AggarwalBackground: Worldwide, millions of people are affected by liver disorders and issues, and the successful treatment of patients seems challenging even after many treatment strategies. Presently, doctors are left with treatments like liver transplantation and resection. Researchers found it challenging to target the liver due to various drawbacks such as opsonization, mechanical entrapment, and RES uptake. Methods: Literature (from the past ten years) on different research data on the treatment of liver diseases and study reports on the development of various nanocarriers targeting the liver have been collected using multiple search engines such as ScienceDirect, j-gate, google scholar, PubMed, scihub, etc. and data have been compiled accordingly. Results: The basics of liver anatomy and various liver cells and pathophysiology of liver diseases, and liver targeting have been mentioned better to understand the further treatment of various liver disorders. Various Liver diseases such as hepatitis B, liver fibrosis, hepatocellular carcinoma, acute liver failure, and liver cirrhosis have been detailed in multiple research studies related to their treatment. Various strategies for active and passive liver targeting have also been overviewed. Several advanced reported nanocarriers (liposomes, polymeric micelles, nanoparticles, micro and nanoemulsions, and phytosomes) are mentioned and their potential in treating liver disorders has been summarized by compiling research reports related to these nanocarriers. Conclusion: The fabrication of nanomedicine incorporating nanocarriers and biomaterials for treating liver diseases is a big challenge. Understanding various aspects of liver anatomy and liver cells is the prime requirement while designing successful liver-targeted nano/microcarriers. Also, the choice of advanced or modified polymeric material in liver targeting is very crucial for their specific liver cell targeting, for their biocompatibility and biodegradability point of view.
-
-
-
Protective Roles and Mechanism of Action of Plant Flavonoids against Hepatic Impairment: Recent Developments
Background: The liver is one of the crucial organs in humans and is responsible for the regulation of diverse processes, including metabolism, secretion, and detoxification. Ingestion of alcohol and drugs, environmental pollutants, and irradiation are among the risk factors accountable for oxidative stress in the liver. Plant flavonoids have the potential to protect the liver from damage caused by a variety of chemicals. Objective: The present study aims to summarize up-to-date information on the protective roles of plant flavonoids against liver damage. Methodology: The literature information on the hepatoprotective plant flavonoids was assessed through various databases, which were searched from their respective inception until March 2022. Results: More than 70 flavonoids with hepatoprotective activity against a variety of models of liver toxicity have been reported across the literature. Among these are flavones (19), flavonols (30), flavanones (9), isoflavonoids (5), and biflavonoids (2). Several hepatoprotective mechanisms of action were reported in various classes of flavonoids, including flavones and flavonols (upregulation of the pro-survival ERK1/2 pathway; downregulation of apoptotic proteins, including Bax, Bcl-2, Bax, BH3, caspase-3, 8, 9, etc.), flavanones (downregulation of NF-ΚB, TNF-α, IL-1 β, IL-6, iNOS, etc.), isoflavonoids (downregulation of lipogenesis genes, such as SREBP-1c, LXRα, RXRα, PPARγ and ACC2, with concomitant upregulation of genes involved in β-oxidation, including AMPK and PPARα; inhibition of CYPs, such as CYP1A1, CYP1A2, CYP2B1, CYP2D6, CYP2E1 and CYP3A1/2). Conclusion: The present work demonstrated the effectiveness of plant flavonoids against hepatic damage. However, more studies need to be performed regarding the cytotoxicity, pharmacokinetics, and mechanisms of action of these very important cytoprotective flavonoids.
-
-
-
Toxic, Genotoxic and Teratogenic Effects of Ibuprofen and its Derivatives
Authors: Dilan lışıcı, Serkan Yılmaz and Bayram GoktasBackground: Nonsteroidal anti-inflammatory drugs (NSAIDs) are extensively used pharmaceuticals and tons of kilos are produced annually. Ibuprofen is one of the core medicines of non-steroidal anti-inflammatory drug and is primarily used for reduced pain, fever and tissue inflammation. It is also available for the treatment of osteoarthritis, rheumatoid arthritis, tendonitis, etc. It is still one of the most prescribed non-steroidal anti-inflammatory drugs in contemporary times. Although ibuprofen is a drug that has been used for years, it is also known to have various serious toxic effects. Objective: In this review, we aimed to clarify toxic and genotoxic effects of Ibuprofen by analyzing major journal indexes. Methods:The search was concentrated on the Web of Science, PubMed, Science Direct, Scopus, EBSCO Host, and Google Scholar databases, including the keyword combinations "genotoxicity", "toxicity", "teratogenicity", "side effects", "Ibuprofen". Results: In the search procedure, a total number of 11738 studies about the topic were reviewed. Consequently, 42 studies were classified as appropriate according to the inclusion criteria and were therefore included in the review. The results presented and discussed in this review indicate that Ibuprofen might represent a toxic, genotoxic and teratogenic risk for non-target, freshwater invertebrates, vertebrates and toxic for human especially in overdose or misuse situation. Conclusion: Ibuprofen generally was found to be toxic, mutagenic, teratogenic and genotoxic agent in various organisms. In human cases mostly overdose or misuse was found to be toxic. However acute toxicity was also reported in some human clinical studies. More detailed genotoxicity, teratogenicity and especially carcinogenic potential should be investigated to reach full decision of its safety.
-
-
-
Dose-dependent Effects of PRC2 and HDAC Inhibitors on Cardiomyocyte Hypertrophy Induced by Phenylephrine
Authors: Zhenyi Zhao, Jian Lv, Ningning Guo, Qiuxiao Guo, Sai Zeng, Yu Fang, Weixin Chen and Zhihua WangIntroduction: Postnatal cardiomyocytes respond to stress signals by hypertrophic growth and fetal gene reprogramming, which involves epigenetic remodeling mediated by histone methyltransferase polycomb repressive complex 2 (PRC2) and histone deacetylases (HDACs). However, it remains unclear to what extent these histone modifiers contribute to the development of cardiomyocyte hypertrophy. Methods: Neonatal rat ventricular myocytes (NRVMs) were stimulated by phenylephrine (PE; 50μM) to induce hypertrophy in the presence or absence of the PRC2 inhibitor GSK126 or the HDACs inhibitor Trichostatin A (TSA). Histone methylation and acetylation were measured by Western blot. Cell size was determined by wheat germ agglutinin (WGA) staining. Cardiac hypertrophy markers were quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: PE treatment induced the expression of cardiac hypertrophy markers, including natriuretic peptide A (Nppa), natriuretic peptide B (Nppb), and myosin heavy chain 7 (Myh7), in a time-dependent manner in NRVMs. Histone modifications, including H3K27me3, H3K9ac, and H3K27ac, were dynamically altered after PE treatment. Treatment with TSA and GSK126 dose-dependently repressed histone acetylation and methylation, respectively. While TSA reversed the PE-induced cell size enlargement in a wide range of concentrations, cardiomyocyte hypertrophy was only inhibited by GSK126 at a higher dose (1μM). Consistently, TSA dose-dependently suppressed the induction of Nppa, Nppb, and Myh7/Myh6 ratio, while these indexes were only inhibited by GSK126 at 1μM. However, TSA, but not GSK126, caused pro-hypertrophic expression of pathological genes at the basal level. Conclusion: Our data demonstrate diversified effects of TSA and GSK126 on PE-induced cardiomyocyte hypertrophy, and shed light on epigenetic reprogramming in the pathogenesis of cardiac hypertrophy.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
