Current Drug Targets - Volume 23, Issue 17, 2022
Volume 23, Issue 17, 2022
-
-
Cell Entry and Unusual Replication of SARS-CoV-2
Authors: Nathan McCann and Francis J. CastellinoBackground: SARS-CoV-2 is the causative virus for the CoVID-19 pandemic that has frequently mutated to continue to infect and resist available vaccines. Emerging new variants of the virus have complicated notions of immunity conferred by vaccines versus immunity that results from infection. While we continue to progress from epidemic to endemic as a result of this collective immunity, the pandemic remains a morbid and mortal problem. Objective: The SARS-CoV-2 virus has a very complex manner of replication. The spike protein, one of the four structural proteins of the encapsulated virus, is central to the ability of the virus to penetrate cells to replicate. The objective of this review is to summarize these complex features of viral replication. Methods: A review of the recent literature was performed on the biology of SARS-CoV-2 infection from published work from PubMed and works reported to preprint servers, e.g., bioRxiv and medRxiv. Results and Conclusion: The complex molecular and cellular biology involved in SARS-CoV-2 replication and the origination of >30 proteins from a single open reading frame (ORF) have been summarized, as well as the structural biology of spike protein, a critical factor in the cellular entry of the virus, which is a necessary feature for it to replicate and cause disease.
-
-
-
The Role of Host-Cellular Responses in COVID-19 Endothelial Dysfunction
Authors: Thomas E. Moran, Daniel E. Hammers and Shaun W. LeeSARS-CoV2, Severe acute respiratory syndrome coronavirus 2, is a novel member of the human coronavirus family that has recently emerged worldwide to cause COVID-19 disease. COVID-19 disease has been declared a worldwide pandemic with over 270 million total cases, and >5 million deaths as of this writing. Although co-morbidities and preexisting conditions have played a significant role in the severity of COVID-19, the hallmark feature of severe disease associated with SARS-CoV2 is respiratory failure. Recent findings have demonstrated a key role for endothelial dysfunction caused by SARS-CoV2 in these clinical outcomes, characterized by endothelial inflammation, the persistence of a pro-coagulative state, and major recruitment of leukocytes and other immune cells to localized areas of endothelial dysfunction. Though it is generally recognized that endothelial impairment is a major contributor to COVID-19 disease, studies to examine the initial cellular events involved in triggering endothelial dysfunction are needed. In this article, we review the general strategy of pathogens to exploit endothelial cells and the endothelium to cause disease. We discuss the role of the endothelium in COVID-19 disease and highlight very recent findings that identify key signaling and cellular events that are associated with the initiation of SARS-CoV2 infection. These studies may reveal specific molecular pathways that can serve as potential means of therapeutic development against COVID-19 disease.
-
-
-
COVID-19 and Thrombosis: Clinical Aspects
Authors: Tetsumei Urano, Atsushi Yasumoto, Kenji Yokoyama, Hisanori Horiuchi, Eriko Morishita and Yuko SuzukiIn coronavirus disease 2019 (COVID-19), thrombus formation is related to the pathogenesis of acute respiratory distress syndrome (ARDS) and the progression of clinical symptoms. Severe damage to vascular endothelial cells and the associated cytokine storm after SARS-CoV-2 infection cause thrombogenesis and contribute to the development of more severe and unique thromboses compared to other infectious diseases. Thromboses occur more often in critically ill patients. In addition to pulmonary thromboembolism (PE) and deep vein thrombosis, acute myocardial infarction, peripheral arterial thrombosis, and aortic thrombosis have also been reported. In PE, thrombi develop in both pulmonary arteries and alveolar capillaries. These, together with intraalveolar fibrin deposition, interfere with effective gaseous exchange in the lungs and exacerbate the clinical symptoms of ARDS in patients with COVID-19. Pharmacological thromboprophylaxis is recommended for all hospitalized patients to prevent both thrombosis and aggravation of ARDS, and other organ failures. Although the pediatric population is mostly asymptomatic or develops mild disease after SARS-CoV-2 infection, a new inflammatory disorder affecting the cardiovascular system, multisystem inflammatory syndrome in children (MIS-C), has been reported. Similar to Kawasaki disease, acute myocarditis, coronary vasculitis, and aneurysms are typically seen in MISC, although these two are now considered distinct entities. A similar acute myocarditis is also observed in young male adults, in which a hyperinflammatory state after SARS-CoV-2 infection seems to be involved. Several side effects following vaccination against COVID-19 have been reported, including vaccine-induced immune thrombotic thrombocytopenia and acute myocarditis. Although these could be serious and life-threatening, the cases are very rare, thus, the benefits of immunization still outweigh the risks.
-
-
-
Tissue Factor and COVID-19: An Update
Authors: Ana T. A. Sachetto and Nigel MackmanThe coronavirus 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Infection with SARS-CoV-2 is associated with acute respiratory distress syndrome, thrombosis and a high rate of mortality. Thrombotic events increase with severity. Tissue factor (TF) expression is increased during viral and bacterial infections. This review summarizes studies that have examined TF expression in response to SARS-CoV-2 infection. SARS-CoV-2 virus and its proteins upregulate TF mRNA, protein and activity in a variety of cells, including bronchial epithelial cells, neutrophils, monocytes, macrophages, endothelial cells and adventitial fibroblasts. COVID-19 patients have increased TF expression in lungs, bronchoalveolar lavage fluid and circulating extracellular vesicles. The increase in TF was associated with coagulation activation markers, thrombosis, inflammatory markers, severity of disease and mortality. Taken together, the studies suggest that TF plays a central role in thrombosis in COVID- 19. TF may be a useful prognostic marker and therapeutic target to reduce thrombosis and inflammation.
-
-
-
Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
-
-
-
Fibrinogen, Fibrin, and Fibrin Degradation Products in COVID-19
Authors: Kadri Kangro, Alisa S. Wolberg and Matthew J. FlickSevere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the highly pathogenic and highly transmissible human coronavirus that is the causative agent for the worldwide COVID-19 pandemic. COVID-19 manifests predominantly as a respiratory illness with symptoms consistent with viral pneumonia, but other organ systems (e.g., kidney, heart, brain) can also become perturbed in COVID-19 patients. Accumulating data suggest that significant activation of the hemostatic system is a common pathological manifestation of SARS-CoV-2 infection. The clotting protein fibrinogen is one of the most abundant plasma proteins. Following activation of coagulation, the central coagulation protease thrombin converts fibrinogen to fibrin monomers, which selfassemble to form a matrix, the primary structural component of the blood clot. Severe COVID-19 is associated with a profound perturbation of circulating fibrinogen, intra- and extravascular fibrin deposition and persistence, and fibrin degradation. Current findings suggest high levels of fibrinogen and the fibrin degradation product D-dimer are biomarkers of poor prognosis in COVID-19. Moreover, emerging studies with in vitro and animal models indicate fibrin(ogen) as an active player in COVID-19 pathogenesis. Here, we review the current literature regarding fibrin(ogen) and COVID-19, including possible pathogenic mechanisms and treatment strategies centered on clotting and fibrin(ogen) function.
-
-
-
COVID-19 Induces Cytokine Storm and Dysfunctional Hemostasis
Authors: Jermilia Charles and Victoria A. PloplisBackground: Infection with SARS-CoV-2 leads to COVID-19 which can manifest in various ways from asymptomatic or mild disease to acute respiratory distress syndrome. The occurrence of dysregulated inflammatory responses in the form of a cytokine storm has been reported in patients with severe COVID-19. Infection can also lead to dysfunctional hemostasis reflected in elevated circulating D-dimer and fibrin degradation products. Components of hemostasis and the immune system during infection can result in a procoagulation and/or proinflammatory state. The interplay between coagulation and inflammation has been elucidated in a number of diseases. Objective: In this article, we discuss the occurrence of cytokine storms and dysfunctional hemostasis induced in COVID-19. Methods: This review was written using literature from the past two to three years investigating coagulation and inflammation in COVID-19. Additional literature, both clinical and basic research, related to pathogen infection and host responses were also considered in this review. Results/Conclusions: Infection with SARS-CoV-2 can lead to dysregulated inflammatory responses that may be detrimental to the host. The increased expression of various inflammatory factors can ultimately create an environment that promotes thrombosis.
-
-
-
Gastrointestinal System: COVID-19 and Potential Mechanisms Associated with Coagulopathy
SARS-CoV-2 is a novel coronavirus that expanded worldwide, generating a pandemic of acute respiratory syndrome called “coronavirus disease 2019” (COVID-19), which resulted in a global health crisis. The spectrum of COVID-19 manifestations ranges from none or mild symptoms to severe respiratory failure associated with systemic manifestations, mostly gastrointestinal symptoms. Hypercoagulability is an important feature of COVID-19 disease, which can potentially influence patients’ prognosis. Therefore, gastroenterologists should focus on subjects with concomitant hypercoagulable gastrointestinal disorders as they may display a higher risk of thrombotic complications during SARS-CoV-2 infection. The aim of this review is to summarize the available evidence regarding the interplay of the prothrombotic pathogenetic mechanisms of both COVID-19 and hypercoagulable digestive diseases and the possible clinical implications. We summarized the potential interplay of prothrombotic mechanisms of both COVID-19 and hypercoagulable digestive diseases in the graphical abstract.
-
-
-
Neurological Complications of SARS-CoV-2 Infection and COVID-19 Vaccines: From Molecular Mechanisms to Clinical Manifestations
By Manuel YepesCoronavirus Disease 2019 (COVID-19) is an infectious disease, caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), that reached pandemic proportions in 2020. Despite the fact that it was initially characterized by pneumonia and acute respiratory distress syndrome, it is now clear that the nervous system is also compromised in one third of these patients. Indeed, a significant proportion of COVID-19 patients suffer nervous system damage via a plethora of mechanisms including hypoxia, coagulopathy, immune response to the virus, and the direct effect of SARS-CoV-2 on endothelial cells, neurons, astrocytes, pericytes and microglia. Additionally, a low number of previously healthy individuals develop a variety of neurological complications after receiving COVID-19 vaccines and a large proportion of COVID-19 survivors experience longlasting neuropsychiatric symptoms. In conclusion, COVID-19 is also a neurological disease, and the direct and indirect effects of the virus on the nervous system have a significant impact on the morbidity and mortality of these patients. Here we will use the concept of the neurovascular unit, assembled by endothelial cells, basement membrane, perivascular astrocytes, neurons and microglia, to review the effects of SARS-CoV-2 in the nervous system. We will then use this information to review data published to this date on the neurological manifestations of COVID-19, the post- COVID syndrome and COVID-19 vaccines.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
