Current Drug Targets - Volume 22, Issue 8, 2021
Volume 22, Issue 8, 2021
-
-
Endogenous Enzyme-responsive Nanoplatforms for Anti-tumor Therapy
Authors: Xue-Fang Lou, Yong-Zhong Du and Xiao-Ling XuThe emergency of responsive drug delivery systems has contributed to reduced cytotoxicity, improved permeability in tissues and extended circulation time of the active drug. In particular, enzyme-responsive nanoplatforms have attracted a lot of attention due to the specificity and efficiency of an enzyme-catalyzed reaction. In this review, enzyme-based mono responsive drug delivery systems designed in the past 5 years have been summarized. These drug delivery systems were introduced by different tumor-related enzymes such as matrix metalloproteinase, esterase, hyaluronidase, caspase and cathepsin. Moreover, the enzyme-sensitive nanoplatforms activated by dual-stimuli have been also described. Although great progress had been made in the past years, the translation into clinical practice is still difficult. Thus, three obstacles (enzyme heterogeneity, reaction environment, animal model) were also discussed. In short, enzyme-activated drug delivery systems offer great potential in treating cancers.
-
-
-
Rediscovering Tocophersolan: A Renaissance for Nano-Based Drug Delivery and Nanotheranostic Applications
Authors: Dickson P. Wande, Qin Cui, Shijie Chen, Cheng Xu, Hui Xiong and Jing YaoA unique and pleiotropic polymer, d-alpha-tocopheryl polyethylene glycol succinate (Tocophersolan), is a polymeric, synthetic version of vitamin E. Tocophersolan has attracted enormous attention as a versatile excipient in different biomedical applications including drug delivery systems and nutraceuticals. The multiple inherent properties of Tocophersolan allow it to play flexible roles in drug delivery system design, including excipients with outstanding biocompatibility, solubilizer with the ability to promote drug dissolution, drug permeation enhancer, P-glycoprotein inhibitor, and anticancer compound. For these reasons, Tocophersolan has been widely used for improving the bioavailability of numerous pharmaceutical active ingredients. Tocophersolan has been approved by stringent regulatory authorities (such as the US FDA, EMA, and PMDA) as a safe pharmaceutical excipient. In this review, the current advances in nano-based delivery systems consisting of Tocophersolan, with possibilities for futuristic applications in drug delivery, gene therapy, and nanotheranostics, were systematically curated.
-
-
-
Self-Assembled Micelles of Amphiphilic PEGylated Drugs for Cancer Treatment
Authors: Majdi Al-Amili, Zhu Jin, Zhongmin Wang and Shengrong GuoGenerally, poor solubility and imprecise delivery of chemotherapeutic drugs can compromise their efficacies for clinical cancer treatment. In order to address such concerns, poor water-soluble drugs are conjugated with poly(ethylene glycol) (PEG) to obtain PEGylated drugs, which have improved water solubility and can also self-assemble in an aqueous solution to form micelles (PEGylated drug micelles). The surface PEG layer enhances the micelles’ colloidal stability and reduces the interaction with physiological surroundings. Meanwhile, PEGylated drug micelles are tumor- targeting via the enhanced permeation and retention (EPR) effect to improve antitumor efficacy in comparison with free drugs. PEGylated drug micelles employ drugs as parts of the carrier medium, which increases the micelles’ drug loading capacity relatively. The development of stimuli- responsive PEGylated drug micelles facilitates the drug release to be smart and controllable. Moreover, the PEGylated drug micelles show great potentials in overcoming the challenges of cancer therapy, such as multidrug resistance (MDR), angiogenesis, immunosuppression, and so on. In this review, we highlight the research progresses of PEGylated drug micelles, including the structures and properties, smart stimuli-responsive PEGylated drug micelles, and the challenges that have been overcome by PEGylated drug micelles.
-
-
-
Biomimetic Drug Delivery Systems Oriented by Biological Function in Tumor Targeting
Authors: Rui Wang and Xianyi ShaThe emergence of nanoscale drug delivery systems provides new opportunities for targeting the delivery of chemotherapeutic drugs and has achieved excellent results. In recent years, with the rise in the concept of intelligent drug delivery systems, the design and preparation of carriers have become more and more complicated, which is not conducive to clinical transformation. Researchers are gradually focused on biomimetic nanoscale drug delivery systems, trying to combine the physicochemical properties of nanoscale carriers with the natural biological functions of endogenous substances, so as to boost tumor targeting delivery. In this article, we first classify and introduce biomimetic nanoscale drug delivery systems, and then emphasize their unique biological functions. The biomimetic nanoscale drug delivery systems have the advantages of simple preparation, powerful functions, and low immunogenicity, having a good application prospect.
-
-
-
Cell-penetrating Peptide-mediated Nanovaccine Delivery
By Jizong JiangVaccination with small antigens, such as proteins, peptides, or nucleic acids, is used to activate the immune system and trigger the protective immune responses against a pathogen. Currently, nanovaccines are undergoing development instead of conventional vaccines. The size of nanovaccines is in the range of 10-500 nm, which enables them to be readily taken up by cells and exhibit improved safety profiles. However, low-level immune responses, as the removal of redundant pathogens, trigger counter-effective activation of the immune system invalidly and present a challenging obstacle to antigen recognition and its uptake via antigen-presenting cells (APCs). In addition, toxicity can be substantial. To overcome these problems, a variety of cell-penetrating peptide (CPP)-mediated vaccine delivery systems based on nanotechnology have been proposed, most of which are designed to improve the stability of antigens in vivo and their delivery into immune cells. CPPs are particularly attractive components of antigen delivery. Thus, the unique translocation property of CPPs ensures that they remain an attractive carrier with the capacity to deliver cargo in an efficient manner for the application of drugs, gene transfer, protein, and DNA/RNA vaccination delivery. CPP-mediated nanovaccines can enhance antigen uptake, processing, and presentation by APCs, which are the fundamental steps in initiating an immune response. This review describes the different types of CPP-based nanovaccines delivery strategies.
-
-
-
Application and Future Prospect of Extracellular Matrix Targeted Nanomaterials in Tumor Theranostics
Authors: Wenyou Fang, Dan Su, Wenjie Lu, Nan Wang, Rong Mao, Yuan Chen, Kunkun Ge, Aizong Shen and Rongfeng HuSystemic chemotherapy and radiotherapy have been widely used in clinics for several decades, but their disadvantages, such as systemic cytotoxicity and severe side effects, are the biggest obstacle to maximum therapeutic efficacy. In recent years, the impact of extracellular matrix components in tumor progression has gained the attention of researchers, and with the rapid development of nanomaterials, extracellular matrix targeted nanomaterials have become a promising strategy in tumor theranostics. In this review, we will outline the recent and relevant examples of various tumor extracellular matrix targeted nanomaterials applied in tumor therapy and imaging. And we will discuss the challenges and prospects of nanomaterials for future tumor therapy.
-
-
-
The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery
Authors: Jianwei Bao, Qianqian Zhang, Tijie Duan, Rongfeng Hu and Jihui TangNano-drug delivery systems (Nano-DDS) offer powerful advantages in drug delivery and targeted therapy for diseases. Compared to the traditional drug formulations, Nano-DDS can increase solubility, biocompatibility, and reduce off-targeted side effects of free drugs. However, they still have some disadvantages that pose a limitation in reaching their full potential in clinical use. Protein adsorption in blood, activation of the complement system, and subsequent sequestration by the mononuclear phagocyte system (MPS) consequently result in nanoparticles (NPs) to be rapidly cleared from circulation. Therefore, NPs have low drug delivery efficiency. So, it is important to develop stealth NPs for reducing bio–nano interaction. In this review, we first conclude the interaction between NPs and biological environments, such as blood proteins and MPS, and factors influencing each other. Next, we will summarize the new strategies to reduce NPs protein adsorption and uptake by the MPS based on current knowledge of the bio–nano interaction. Further directions will also be highlighted for the development of biomimetic stealth nano-delivery systems by combining targeted strategies for a better therapeutic effect.
-
-
-
Recent Progress in Stimuli-Responsive Intelligent Nano Scale Drug Delivery Systems: A Special Focus Towards pH-Sensitive Systems
More LessStimuli-responsive nanocarriers are gaining much attention due to their versatile multifunctional activities, including disease diagnosis and treatment. Recently, clinical applications of nano-drug delivery systems for cancer treatment pose a challenge due to their limited cellular uptake, low bioavailability, poor targetability, stability issues, and unfavourable pharmacokinetics. To overcome these issues, researchers are focussing on stimuli-responsive systems. Nanocarriers elicit their role through endogenous (pH, temperature, enzyme, and redox) or exogenous (temperature, light, magnetic field, ultrasound) stimulus. These systems were designed to overcome the shortcomings such as non-specificity and toxicity associated with the conventional drug delivery systems. The pH variation between healthy cells and tumor microenvironment creates a platform for the generation of pH-sensitive nano delivery systems. Herein, we propose to present an overview of various internal and external stimuli-responsive behavior-based drug delivery systems. Herein, the present review will focus specifically on the significance of various pH-responsive nanomaterials such as polymeric nanoparticles, nano micelles, inorganic-based pH-sensitive drug delivery carriers such as calcium phosphate nanoparticles, and carbon dots in cancer treatment. Moreover, this review elaborates the recent findings on pH-based stimuli-responsive drug delivery systems with special emphasis on our reported stimuli-responsive systems for cancer treatment.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
