Current Drug Targets - Volume 22, Issue 7, 2021
Volume 22, Issue 7, 2021
-
-
Target Genetic Abnormalities for the Treatment of Colon Cancer and Its Progression to Metastasis
Authors: Tushar Baviskar, Munira Momin, Jingwen Liu, Bin Guo and Lokesh BhattColorectal carcinogenesis involves various processes from the accumulation of genetic alterations to genetic and epigenetic modulations and chromosomal abnormalities. It also involves mutations in oncogenes and tumour suppressor genes. Genomic instability plays a vital role in CRC. Advances in modern biological techniques and molecular level studies have identified various genes involved in colorectal cancer (CRC). KRAS, BRAF, PI3K, and p53 genes play a significant role in different phases of CRC. Alteration of these genes leads to development or progression and metastasis colon cancer. This review focuses on the role of KRAS, BRAF, PI3KCA, and TP53 genes in carcinogenesis and their significance in various stages of CRC. It also provides insights on specific modulators acting on these genes. Further, this review discusses the mechanism of the pathways involving these genes in carcinogenesis and current molecules and treatment options under various stages of clinical evaluation.
-
-
-
Inhibition of Virulence Factors and Biofilm Formation of Acinetobacter Baumannii by Naturally-derived and Synthetic Drugs
Authors: Nilushi I. Bamunuarachchi, Fazlurrahman Khan and Young-Mog KimAcinetobacter baumannii is a gram-negative, aerobic, non-motile, and pleomorphic bacillus. A. baumannii is also a highly-infectious pathogen causing high mortality and morbidity rates in intensive care units. The discovery of novel agents against A. baumannii infections is urgently needed due to the emergence of drug-resistant A. baumannii strains and the limited number of efficacious antibiotics available for treatment. In addition to the production of several virulence factors, A. baumannii forms biofilms on the host cell surface as well. Formation of biofilms occurs through initial surface attachment, microcolony formation, biofilm maturation, and detachment stages, and is one of the major drug resistance mechanisms employed by A. baumannii. Several studies have previously reported the efficacy of naturally-derived and synthetic compounds as anti- biofilm and anti-virulence agents against A. baumannii. Here, inhibition of biofilm formation and virulence factors of A. baumannii using naturally-derived and synthetic compounds are reviewed.
-
-
-
TL1A: A New Potential Target in the Treatment of Inflammatory Bowel Disease
Inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), are chronic inflammatory diseases of the gastrointestinal tract. In the last few years, the development of biological agents targeting cytokines and receptors involved in IBD pathogenesis has led to better outcomes and has improved the course of the disease. Despite their effectiveness, drugs such as tumor necrosis factor (TNF) inhibitors, anti-Interleukin-12/23 and anti-integrins, do not induce a response in about one-third of patients, and 40% of patients lose response over time. Therefore, more efficient therapies are required. Recent studies showed that TL1A (Tumor necrosis factor-like cytokine 1A) acts as a regulator of mucosal immunity and participates in immunological pathways involved in the IBD pathogenesis. In this review article, we analyze the role of TL1A as a new potential target therapy in IBD patients.
-
-
-
Targeted Drug Delivery Using Tuftsin-bearing Liposomes: Implications in the Treatment of Infectious Diseases and Tumors
More LessTuftsin, a tetrapeptide (Thr-Lys-Pro-Arg), acts as an immunopotentiating molecule with its ability to bind and activate many immune cells, including macrophages or monocytes, neutrophils and dendritic cells. The specific targeting activity of tuftsin has been further increased by its palmitoylation followed by its incorporation into the lipid bilayer of liposomes. Tuftsin-bearing liposomes (Tuft-liposomes) possess several characteristics that enable them to act as a potential drug and vaccine carriers. Tuft-liposomes-loaded anti-microbial drugs have been shown to be highly effective against many infectious diseases, including tuberculosis, leishmaniasis, malaria, candidiasis and cryptococosis. Moreover, Tuft-liposomes also increased the activity of anticancer drug etoposide against fibrosarcoma in mice. Tuft-liposomes showed the immune-potentiating effect and rejuvenated the immune cells in the leukopenic mice. In addition, antigens encapsulated in Tuftsin-bearing liposomes demonstrated greater immunogenicity by increasing the T cell proliferation and antibody secretion. Keeping into consideration their specific targeting and immunopotentiating effects, Tuft-liposomes may potentially be used as promising drug and vaccine delivery systems.
-
-
-
Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting
Authors: Abdulsalam Alhalmi, Sarwar Beg, Kanchan Kohli, Md. Waris and Tanuja SinghHepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high incidence and mortality rate worldwide among several types of cancers. A large variety of chemotherapeutic agents employed for the treatment have a limited success rate owing to their limited site-specific drug targeting ability. Thus, there is a demand to develop novel approaches for the treatment of HCC. With advancements in nanotechnology-based drug delivery approaches, the challenges of conventional chemotherapy have been continuously decreasing. Nanomedicines constituted of lipidic and polymeric composites provide a better platform for delivering and opening new pathways for HCC treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles, nanotubes, micelles, quantum dots, etc., has been investigated in the treatment of HCC. These nanocarriers are considered to be highly effective clinically for delivering chemotherapeutic drugs with high site-specificity ability and therapeutic efficiency. The present review highlights the current focus on the application of nanocarrier systems using various ligand-based receptor-specific targeting strategies for the treatment and management of HCC. Moreover, the article has also included information on the current clinically approved drug therapy for hepatocellular carcinoma treatment and updates of regulatory requirements for approval of such nanomedicines.
-
-
-
MiRNA, a New Treatment Strategy for Pulmonary Fibrosis
Authors: Yanhong Liu, Hongguang Nie, Yan Ding, Yapeng Hou, Kejun Mao and Yong CuiPulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.
-
-
-
Deciphering Role of Cytokines for Therapeutic Strategies Against Rheumatoid Arthritis
Authors: Gaurav Doshi and Ami ThakkarRheumatoid Arthritis (RA) is a systemic, chronic, autoimmune, inflammatory disorder that affects both large and small synovial joints in a symmetric pattern. RA initiates as painful inflammation of the joints leading to stiffness of joint, joint destruction and further worsens the condition causing permanent irreversible damage to the joints, making them physically disabled. Across the globe, there are around 1.2 million cases of RA reported. Inspite of various available therapeutic and pharmacological agents against RA, none of the treatments assure complete cure. Understanding the in depth-role of cytokines and interleukins in the disease pathogenesis of RA could help in exploiting them for developing novel therapeutic strategies against RA. This review provides insights into the pathogenesis of RA and gives a brief overview of cytokines, which play an important role in the progression of the disease. We have also discussed the possible role of interleukins in the context of RA, which could help future researchers to explore them for identifying new therapeutic agents.
-
-
-
Post-menopausal Osteoporosis and Probiotics
Authors: Sangeeta Huidrom, Mirza A. Beg and Tariq MasoodPostmenopausal osteoporosis (PMO) is characterized by low bone mass and structural deterioration of bone tissue with increased risk of fracture in postmenopausal women. It is due to the deficiency of estrogen production after menopause, which causes the imbalance in the bone remodeling process where resorption/formation skewed more towards resoption, which leads to bone loss. It causes high morbidity and severe health complication among the affected women. The current PMO therapy has many unwanted side effects and even increases the possibility of tumorigenesis. Therefore, an alternative therapy that is safe and effective is required. Probiotics are dietary supplements consisting of beneficial microbes and when administered in an adequate amount, confer a health benefit to the host. Recent scientific evidences suggested the link between the intestinal microbiota and bone health. This review discusses the process of bone remodeling and the role of intestinal microbiota on the bone metabolism of the host. Further, it summarizes the recent studies of probiotic on an animal model of PMO and also in post postmenopausal women.
-
-
-
An Agathokakological Tale of Δ9-THC: Exploration of Possible Biological Targets
Δ9-Tetrahydrocannabinol (Δ9-THC), the active phytocannabinoid in cannabis, is virtually an adjunct to the endogenous endocannabinoid signaling system. By interacting with G-proteincoupled receptors CB1 and CB2, Δ9-THC affects peripheral and central circulation by lowering sympathetic activity, altering gene expression, cell proliferation, and differentiation, decreasing leukocyte migration, modulating neurotransmitter release, thereby modulating cardiovascular functioning, tumorigenesis, immune responses, behavioral and locomotory activities. Δ9-THC effectively suppresses chemotherapy-induced vomiting, retards malignant tumor growth, inhibits metastasis, and promotes apoptosis. Other mechanisms involved are targeting cell cycle at the G2-M phase in human breast cancer, downregulation of E2F transcription factor 1 (E2F1) in human glioblastoma multiforme, and stimulation of ER stress-induced autophagy. Δ9-THC also plays a role in ameliorating neuroinflammation, excitotoxicity, neuroplasticity, trauma, and stroke and is associated with reliving childhood epilepsy, brain trauma, and neurodegenerative diseases. Δ9-THC via CB1 receptors affects nociception, emotion, memory, and reduces neuronal excitability and excitotoxicity in epilepsy. It also increases renal blood flow, reduces intraocular pressure via a sympathetic pathway, and modulates hormonal release, thereby decreasing the reproductive function and increasing glucose metabolism. Versatile medical marijuana has stimulated abundant research demonstrating substantial therapeutic promise, suggesting the possibilities of first-in-class drugs in diverse therapeutic segments. This review represents the current pharmacological status of the phytocannabinoid, Δ9-THC, and synthetic analogs in cancer, cardiovascular, and neurodegenerative disorders.
-
-
-
New Approaches for the Treatment of Chagas Disease
Chagas disease, caused by the protozoan Trypanosoma cruzi is a neglected tropical disease with high prevalence (5.7 million in Latin America, WHO 2015), significant burden, and significant morbimortality mostly due to severe heart disorders during the chronic phase of infection. Chagas disease is endemic in Latin America, and medical care for the disease is the major expense for Brazil’s Universal Healthcare System (Sistema Único de Saúde (SUS). The efficacy of the available drugs benznidazole and nifurtimox are low for the chronic phase of Chagas disease, the phase in which most patients are diagnosed, and there are frequent side effects, and drug resistance occurs. The rapid deployment of new drug regimens that are effective for the chronic phase treatment is low-cost and less toxic than the currently available therapy, which is a global priority. Repurposing drugs already in clinical use with other combinations would be the fastest and safest strategy for treating Chagas disease patients. We hypothesize that the combined treatment using repurposing drugs with benznidazole will be more efficacious than benznidazole alone. This needs to be tested further both in vitro and in animal models to understand the efficacy of the treatment before performing human clinical trials. We further hypothesize that producing nanoparticle formulation of the drugs can reduce their toxicity and improve therapeutic use.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
