Current Drug Targets - Volume 22, Issue 5, 2021
Volume 22, Issue 5, 2021
-
-
Physcion and Physcion 8-O-β-D-glucopyranoside: Natural Anthraquinones with Potential Anticancer Activities
Nature has provided prodigious reservoirs of pharmacologically active compounds for drug development since times. Physcion and physcion 8-O-β-D-glucopyranoside (PG) are bioactive natural anthraquinones which exert anti-inflammatory and anticancer properties with minimum or no adverse effects. Moreover, physcion also exhibits anti-microbial and hepatoprotective properties, while PG is known to have anti-sepsis as well as ameliorative activities against dementia. This review aims to highlight the natural sources and anticancer activities of physcion and PG, along with associated mechanisms of actions. On the basis of the literature, physcion and PG regulate multitudinous cell signaling pathways through the modulation of various regulators of cell cycle, protein kinases, microRNAs, transcriptional factors, and apoptosis linked proteins resulting in the effective killing of cancerous cells in vitro as well as in vivo. Both compounds effectively suppress metastasis, furthermore, physcion acts as an inhibitor of 6PGD and also plays an important role in chemosensitization. This review article suggests that physcion and PG are potent anticancer drug candidates, but further investigations on their mechanism of action and pre-clinical trials are mandatory in order to comprehend the full potential of these natural cancer killers in anticancer remedies.
-
-
-
Alzheimer's Disease: Related Targets, Synthesis of Available Drugs, Bioactive Compounds Under Development and Promising Results Obtained from Multi-target Approaches
We describe herein the therapeutic targets involved in Alzheimer’s disease as well as the available drugs and their synthetic routes. Bioactive compounds under development are also exploited to illustrate some recent research advances on the medicinal chemistry of Alzheimer’s disease, including structure-activity relationships for some targets. The importance of multi-target approaches, including some examples from our research projects, guides new perspectives in search of more effective drug candidates. This review comprises the period between 2001 and early 2020.
-
-
-
In Silico Study Examining New Phenylpropanoids Targets with Antidepressant Activity
Background: Natural products, such as phenylpropanoids, which are found in essential oils derived from aromatic plants, have been explored during non-clinical psychopharmacology studies, to discover new molecules with relevant pharmacological activities in the central nervous system, especially antidepressant and anxiolytic activities. Major depressive disorder is a highly debilitating psychiatric disorder and is considered to be a disabling public health problem, worldwide, as a primary factor associated with suicide. Current clinically administered antidepressants have late-onset therapeutic actions, are associated with several side effects, and clinical studies have reported that some patients do not respond well to treatment or reach complete remission. Objective: To review important new targets for antidepressant activity and to select phenylpropanoids with antidepressant activity, using Molegro Virtual Docker and Ossis Data Warris, and to verify substances with more promising antidepressant activity. Results and Conclusion: An in silico molecular modeling study, based on homology, was conducted to determine the three-dimensional structure of the 5-hydroxytryptamine 2A receptor (5- HT2AR), then molecular docking studies were performed and the predisposition for cytotoxicity risk among identified molecules was examined. A model for 5-HT2AR homology, with satisfactory results, was obtained indicating the good stereochemical quality of the model. The phenylpropanoid 4-allyl-2,6-dimethoxyphenol showed the lowest binding energy for 5-HT2AR, with results relevant to the L-arginine/nitric oxide (NO)/cGMP pathway, and showed no toxicity within the parameters of mutagenicity, carcinogenicity, reproductive system toxicity, and skin-tissue irritability, when evaluated in silico; therefore, this molecule can be considered promising for the investigation of antidepressant activity.
-
-
-
Antibiotic Potentiation of Natural Products: A Promising Target to Fight Pathogenic Bacteria
Authors: Nabeelah B. Sadeer and Mohamad Fawzi MahomoodallyPathogenic microorganisms should be considered as the number one foe of human, as witnessed by recent outbreaks of coronavirus disease (COVID-19) and with bacteria no longer sensitive to existing antibiotics. The resistance of pathogenic bacteria and deaths attributable to bacterial infections is increasing exponentially. Bacteria used different mechanisms to counterattack to existing antibiotics, namely (i) enzymatic inhibition, (ii) penicillin-binding protein modification, (iii) porin mutations, (iv) efflux pumps and (v) molecular modifications of antibiotic targets. Developing new antibiotics would be time-consuming to address such a situation, thus one of the promising approaches is by potentiating existing antibiotics. Plants used synergism to naturally defend and protect themselves from microbes. Using the same strategy, several studies have shown that the combinations of natural products and antibiotics could effectively prolong the lifespan of existing antibiotics and minimize the impact and emergence of antibiotic resistance. Combining essential oils constituents, namely uvaol, ferruginol, farnesol and carvacrol, with antibiotics, have proved to be efficient efflux pump inhibitors. Plant-derived compounds such as gallic acid and tannic acid are effective potentiators of various antibiotics, including novobiocin, chlorobiocin, coumermycin, fusidic acid, and rifampicin, resulting in a 4-fold increase in the potencies of these antibiotics. Several lines of research, as discussed in this review, have demonstrated the effectiveness of natural products in potentiating existing antibiotics. For this reason, the search for more efficient combinations should be an ongoing process with the aim to extend the life of the ones that we have and may preserve the life for the ones that are yet to come.
-
-
-
Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation
Authors: A. Harikrishnan, Sunali Khanna and V. VeenaBackground: Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. Methodology: In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. Results: Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. Conclusion: The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
-
-
-
To Explore the Potential Targets and Current Structure-based Design Strategies Utilizing Co-crystallized Ligand to Combat HCV
Authors: Heena Tarannum, Bhumika Chauhan, Asmita Samadder, Harekrishna Roy and Sisir NandiBackground: Hepatitis C Virus (HCV) belongs to the Hepacivirus family. HCV has been designated as a very dreadful virus as it can attack the liver, causing inflammation and even may lead to cancer in chronic conditions. It was estimated that 71 million people around the world have chronic HCV infection. World Health Organization (WHO) reported that about 399000 people died because of chronic cirrhosis and liver cancer globally. In spite of the abundance of availability of drugs for the treatment of HCV, however, the issue of drug resistance surpasses all the possibilities of therapeutic management of HCV. Therefore, to address this issue of ‘drug-resistance’, various HCV targets were explored to quest the evaluation of the mechanism of the disease progression. Methods: An attempt has been made in the present study to explore the various targets of HCV involved in the mechanism(s) of the disease initiation and progression and to focus on the mode of binding of ligands, which are co-crystallized at the active cavity of different HCV targets. Conclusion: The present study could predict some crucial features of these ligands, which possibly interacted with various amino acid residues responsible for their biological activity and molecular signaling pathway(s). Such binding mode may be considered as a template for the high throughput screening and designing of active congeneric ligands to combat HCV.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
