Current Drug Targets - Volume 22, Issue 10, 2021
Volume 22, Issue 10, 2021
-
-
Nanocarriers for Photodynamic Therapy Intended to Cutaneous Tumors
More LessPhotodynamic Therapy (PDT) is a therapeutic modality used for several malignant and premalignant skin disorders, including Bowen's disease skin cancers and Superficial Basal Cell Carcinoma (BCC). Several photosensitizers (PSs) have been explored for tumor destruction of skin cancers, after their activation by a light source of appropriate wavelength. Topical release of PSs avoids prolonged photosensitization reactions associated with systemic administration; however, its clinical usefulness is influenced by its poor tissue penetration and the stability of the active agent. Nanotechnology-based drug delivery systems are promising tool to enhance the efficiency for PDT of cancer. This review focuses on PSs encapsulated in nanocarriers explored for PDT of skin tumors.
-
-
-
P2X7 Receptor as a Potential Target for Major Depressive Disorder
Authors: Zeyi Huang and Sijie TanMajor depressive disorder (MDD) is a common mental disorder. Although the genetic, biochemical, and psychological factors have been related to the development of MDD, it is generally believed that a series of pathological changes in the brain caused by chronic stress is the main cause of MDD. However, the specific mechanisms underlying chronic stress-induced MDD are largely undermined. Recent investigations have found that increased pro-inflammatory cytokines and changes in the inflammatory pathway in the microglia cells in the brain are the potential pathophysiological mechanism of MDD. P2X7 receptor (P2X7R) and its mediated signaling pathway play a key role in microglia activation. The present review aimed to present and discuss the accumulating data on the role of P2X7R in MDD. Firstly, we summarized the research progress in the correlation between P2X7R and MDD. Subsequently, we presented the P2X7R mediated microglia activation in MDD and the role of P2X7R in increased blood-brain barrier (BBB) permeability caused by chronic stress. Lastly, we also discussed the potential mechanism underlying-P2X7R expression changes after chronic stress. In conclusion, P2X7R is a key molecule regulating the activation of microglia. Chronic stress activates microglia in the hippocampus by secreting interleukin- 1β (IL-1β) and other inflammatory cytokines, and increasing the BBB permeability, thus promoting the occurrence and development of MDD, which indicated that P2X7R might be a promising therapeutic target for MDD.
-
-
-
Role of Statins in New-onset Diabetes Mellitus: The Underlying Cause, Mechanisms Involved, and Strategies to Combat
Statins have transformed the treatment of cardiovascular diseases through primary and secondary prevention of events. Despite the success of statin's management of cardiovascular conditions, certain clinical trials, reviews, and meta-analysis point out that statins have the propensity to induce diabetes. The risk further increases with intensive statin therapy or in patients with diabetes. A proper mechanism for the induction of the diabetic condition has not yet been determined. The involvement of statin with beta cells in insulin secretion and peripheral cells in insulin resistance has been widely studied and established. The present review provides an update on the recent understanding of statin-induced diabetes. This covers the origin of statins, their development, possible mechanisms that explain the adverse effects in glucose homeostasis, and probable targets to remedy the condition.
-
-
-
Interplay between DNA Methyltransferase 1 and microRNAs During Tumorigenesis
Authors: Pooja Yadav, Shreetama Bandyopadhayaya, Bridget M. Ford and Chandi MandalCancer is a genetic disease resulting from genomic changes; however, epigenetic alterations act synergistically with these changes during tumorigenesis and cancer progression. Epigenetic variations are gaining more attention as an important regulator in tumor progression, metastasis and therapy resistance. Aberrant DNA methylation at CpG islands is a central event in epigeneticmediated gene silencing of various tumor suppressor genes. DNA methyltransferase 1 (DNMT1) predominately methylates at CpG islands on hemimethylated DNA substrates in proliferation of cells. DNMT1 has been shown to be overexpressed in various cancer types and exhibits tumor-promoting potential. The major drawbacks to DNMT1-targeted cancer therapy are the adverse effects arising from nucleoside and non-nucleoside based DNMT1 inhibitors. This paper focuses on the regulation of DNMT1 by various microRNAs (miRNAs), which may be assigned as future DNMT1 modulators, and highlights how DNMT1 regulates various miRNAs involved in tumor suppression. Importantly, the role of reciprocal inhibition between DNMT1 and certain miRNAs in tumorigenic potential is approached in this review. Hence, this review seeks to project an efficient and strategic approach using certain miRNAs in conjunction with conventional DNMT1 inhibitors as a novel cancer therapy. It has also been pinpointed to select miRNA candidates associated with DNMT1 regulation that may not only serve as potential biomarkers for cancer diagnosis and prognosis, but may also predict the existence of aberrant methylation activity in cancer cells.
-
-
-
Can Host Cell Proteins Like ACE2, ADAM17, TMPRSS2, Androgen Receptor be the Efficient Targets in SARS-CoV-2 Infection?
Authors: Vivek K. Gupta, Madhan K. Murthy and Shripad PatilA novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV- -2), which caused a large disease outbreak in Wuhan, China in December 2019, is currently spreading across the world. Along with binding of the virus spike with the host cell receptor, fusion of the viral envelope with host cell membranes is a critical step in establishing successful infection of SARS-CoV-2. In this entry process, a diversity of host cell proteases and androgen receptor play a very important role directly or indirectly. These features of SARS-CoV-2 entry contribute to its rapid spread and severe symptoms, high fatality rates among infected patients. This review is based on the latest published literature including review articles, research articles, hypothetical manuscript, preprint articles and official documents. The literature search was made from various published papers on physiological aspects relevant to SARS-CoV and SARS-CoV-2. In this report, we focus on the role of host cell proteases (ACE2, ADAM17, TMPRSS2) and androgen receptor (AR) in SARS-CoV-2 infection. The hypotheses put forth by us are based on the role played by the proteases ACE2, ADAM17, TMPRSS2 and AR in SARS-CoV-2 infection, which were deduced based on various studies. We have also summarized how these host proteins increase the pathology and the infective ability of SARS-CoV-2 and we posit that their inhibition may be a therapeutic option for preventing SARS-CoV-2 infection.
-
-
-
An Overview of Computer-aided Drug Design Tools and Recent Applications in Designing of Anti-diabetic Agents
Authors: Paranjeet Kaur and Gopal KhatikBackground: In this fast-growing era, high throughput data is now being easily accessed by getting transformed into datasets which store the information. Such information is valuable to optimize the hypothesis and drug design via computer-aided drug design (CADD). Nowadays, we can explore the role of CADD in various disciplines like Nanotechnology, Biochemistry, Medical Sciences, Molecular Biology, etc. Methods: We searched the valuable literature using a pertinent database with given keywords like computer-aided drug design, anti-diabetic, drug design, etc. We retrieved all valuable articles which are recent and discussing the role of computation in the designing of anti-diabetic agents. Results: To facilitate the drug discovery process, the computational approach has set landmarks in the whole pipeline for drug discovery from target identification and mechanism of action to the identification of leads and drug candidates. Along with this, there is a determined endeavor to describe the significance of in-silico studies in predicting the absorption, distribution, metabolism, excretion, and toxicity profile. Thus, globally, CADD is accepted with a variety of tools for studying QSAR, virtual screening, protein structure prediction, quantum chemistry, material design, physical and biological property prediction. Conclusion: Computer-assisted tools are used as the drug discovery tool in the area of different diseases, and here we reviewed the collaborative aspects of information technologies and chemoinformatic tools in the discovery of anti-diabetic agents, keeping in view the growing importance for treating diabetes.
-
-
-
A Comprehensive Review on Pellets as a Dosage Form in Pharmaceuticals
Oral route of administration is widely accepted and desired because of its versatility, convenience, and, most importantly, patient compliance. Multiparticulate systems like granules and pellets are more advantageous when compared to single-unit dosage forms, as they are capable of distributing the drug more evenly in the gastrointestinal tract. The current paper focuses on pellets, the merits and demerits associated, various pelletization techniques, and their characterization. It also focuses on how pellets can be employed for drug delivery is controlled and sustained release formulations. It gives a complete emphasis on the drug and excipients that can be used in pellet formation, the marketed formulations, and the research pertaining to pellets.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
