Current Drug Targets - Volume 21, Issue 3, 2020
Volume 21, Issue 3, 2020
-
-
TNF-α and IL-6: The Link between Immune and Bone System
Authors: Tiantian Wang and Chengqi HeOsteoimmunology is a new subject which focuses on the communication between the immune and the skeletal systems. Both the immune system and bone communicate with each other. Proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) play important roles in immune responses and bone metabolism. TNF-α and IL-6 enhance macrophage activation and antigen presentation, as well as regulating immunity through different mechanisms. A variety of groups have reported that TNF-α suppresses osteoblasts activity at some stages of differentiation and stimulates osteoclast proliferation and differentiation. In contrast, IL-6 mediates the actions of osteoblasts and osteoclasts through sophisticated mechanisms, which reflect dual effects. Both TNF-α and IL-6 can mediate the activity of osteocytes. Furthermore, both TNF-α and IL-6 are important pathogenic factors related to immune-mediated bone diseases including rheumatoid arthritis and postmenopausal osteoporosis. This review will discuss the contradictory findings concerning TNF-α and IL-6 in osteoimmunology and their potential for clinical application.
-
-
-
Nanosized Modification Strategies for Improving the Antitumor Efficacy of MEK Inhibitors
Authors: Yanan Li, Qingrong Dong, Ting Mei, Meichen Zheng, Ramasamy R. Kumar, Bin Yu, Chunsheng Wu, Hui Zhang and Feifei AnThe RAS-RAF-MEK-ERK signaling pathway (MAPK signaling) is hyperactivated in more than 30% of human cancers. The abnormal activation of this pathway is mainly due to the gain-offunction mutations in RAS or RAF genes. Furthermore, the crucial roles of mitogen-activated protein kinase kinase (MEK) in tumorigenesis, cell proliferation and apoptosis inhibition, make MEK inhibitors (MEKi) attractive candidates for the targeted therapy of MAPK pathway-related cancer. Several highly selective and potent non-ATP-competitive allosteric MEKi have been developed and have led to substantial improvements in clinical outcomes. However, the drug efficacies and response rates are limited due to complex pathway cross-talk and pessimistic drug solubility. Nanosized modifications have made great contributions to improving drug efficacies over the past decades. In this review, the important biological status of MEK kinase in the MAPK pathway is illuminated primarily to highlight the irreplaceable position and clinical status of MEKi. In addition, nanomodification strategies to enhance drug efficacy are briefly summarized, followed by the application advances of nanotechnology in the field of MEKi-related cancer theranostics. Finally, the obstacles impeding the development of nanosized MEKi are considered, and promising prospects are suggested. This informative report lays the groundwork for the clinical development of MEKi and outlines a rational frontline-treatment approach for personalized cancer treatment.
-
-
-
Role of Adenosine Kinase Inhibitor in Adenosine Augmentation Therapy for Epilepsy: A Potential Novel Drug for Epilepsy
Authors: Xiongfei Wang and Tianfu LiEpilepsy, an ancient disease, is defined as an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition. Antiepileptic drugs (AEDs) are currently used as first-line treatment for patients with epilepsy; however, around 36% of patients are diagnosed with refractory epilepsy, which means two or more AEDs have been considered as failed after sufficiently correct usage. Unfortunately, it is unlikely that the improvement of the efficacy of AEDs will be easily achieved, especially since no AEDs show efficacy in ceasing epileptogenesis. Consequently, several endogenous anticonvulsants attract investigators and epileptologists, such as galanin, cannabis, and adenosine. Astrogliosis is a neuropathological hallmark of epilepsy, whatever the etiology is, and astrogliosis is frequently associated with overexpression of adenosine kinase, which means downregulation of synaptic levels of adenosine. Consequently, adenosine is negatively regulated by adenosine kinase through the astrocyte-based cycle. On the other hand, focal adenosine augmentation therapy, using adenosine kinase inhibitor, has been proved to be effective for reducing seizures in both animal models and in vitro human brain tissue resected from a variety of etiology of refractory epilepsy patients. In addition to reducing seizures, adenosine augmentation therapy can also palliate co-morbidities, like sleep, cognition, or depression. Of importance, transgenic mice with reduced ADK were resistant to epileptogenesis induced by acute brain injury. In terms of translation, based on findings of adenosinerelated epileptogenic mechanisms, the application into clinical practice seems to be feasible by molecular strategies that have been already experimentally implemented, including gene and RNA interference. In the present review, we will focus on the evidence of ADK dysfunction in the epileptic brain from human beings and animals, and review the role of ADK inhibitor in adenosine augmentation therapy and the underlying mechanism of prevention of epileptogenesis.
-
-
-
Targeting Cancer Stem Cells Pathways for the Effective Treatment of Cancer
Authors: Ashish R. Dwivedi, Amandeep Thakur, Vijay Kumar, Ira Skvortsova and Vinod KumarResistance to chemotherapy and relapse are major hurdles for the effective treatment of cancer. Major reason for this is a small sub population of cancer stem cells (CSCs) and its microenvironment. CSCs are critical driving force for several types of cancer, such as gastric, colon, breast and many more. Hence, for the complete eradication of cancer, it is necessary to develop therapeutic approaches that can specifically target CSCs. Chemical agents that target different proteins involved in CSC signaling pathways, either as single agent or simultaneously targeting two or more proteins have generated promising pre-clinical and clinical results. In the current review article, we have discussed various targets and cellular pathways that can be explored for the effective and complete eradication of CSCs. Some latest developments in the field of design, synthesis and screening of ligands to target cancer stem cells have been summarized in the current review article.
-
-
-
Urea Transporters Identified as Novel Diuretic Drug Targets
Authors: Min Li, Shun Zhang and Baoxue YangBackground: Urea Transporters are a family of membrane channel proteins that facilitate the passive transport of urea across the plasma membrane. UTs are divided into two subgroups, UT-A and UT-B. UT-As are primarily located in renal tubule epithelia and UT-Bs are highly expressed in renal descending vasa recta and extrarenal multiple tissues. Various urea transporter knockout mice exhibit low urine concentrating ability, which suggests that UTs are novel diuretic targets. With highthroughput screening of small molecule drug-like compound libraries, various potent UT inhibitors with IC50 at nanomolar level were identified. Furthermore, selective UT inhibitors exhibit diuretic activity without disturbing electrolyte and metabolism balance, which confirms the potential of UTs as diuretic targets and UT inhibitors as novel diuretics that do not cause electrolyte imbalance. Objective: This review article summarizes the identification and validation of urea transporter as a potential diuretic target and the discovery of small molecule UT inhibitors as a novel type of diuretics. Conclusion: UTs are a potential diuretic target. UT inhibitors play significant diuresis and can be developed to diuretics without disturbing electrolyte balance.
-
-
-
The Therapeutic Potential of Chemokines in the Treatment of Chemotherapy-Induced Peripheral Neuropathy
Authors: Lin Zhou, Luyao Ao, Yunyi Yan, Wanting Li, Anqi Ye, Yahui Hu, Weirong Fang and Yunman LiBackground: Some of the current challenges and complications of cancer therapy are chemotherapy- induced peripheral neuropathy (CIPN) and the neuropathic pain that are associated with this condition. Many major chemotherapeutic agents can cause neurotoxicity, significantly modulate the immune system and are always accompanied by various adverse effects. Recent evidence suggests that cross-talk occurs between the nervous system and the immune system during treatment with chemotherapeutic agents; thus, an emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN, as demonstrated by the upregulation of chemokines. Chemokines were originally identified as regulators of peripheral immune cell trafficking, and chemokines are also expressed on neurons and glial cells in the central nervous system. Objective: In this review, we collected evidence demonstrating that chemokines are potential mediators and contributors to pain signalling in CIPN. The expression of chemokines and their receptors, such as CX3CL1/CX3CR1, CCL2/CCR2, CXCL1/CXCR2, CXCL12/CXCR4 and CCL3/CCR5, is altered in the pathological conditions of CIPN, and chemokine receptor antagonists attenuate neuropathic pain behaviour. Conclusion: By understanding the mechanisms of chemokine-mediated communication, we may reveal chemokine targets that can be used as novel therapeutic strategies for the treatment of CIPN.
-
-
-
Recent Advances in the Discovery of Novel HSP90 Inhibitors: An Update from 2014
More LessHSP90 is a member of the family of heat shock proteins responsible for folding proteins into mature conformations and thus maintaining their biological function in cells. Since it is involved in all hallmarks of cancer, HSP90 has been considered as a promising drug target for cancer therapy. Eighteen HSP90 inhibitors have entered clinical trials, however, none has been approved by the FDA. There is still a great need for novel HSP90 inhibitors with strong anticancer activity and good safety profile. In the past several years, many new molecules were identified as HSP90 inhibitors and some of them have shown promising pharmacological profiles in preclinical evaluations. In this review, HSP90 inhibitors identified from 2014 to date are summarized and their design strategies, chemical structures, and biological activities are reviewed. The inhibitors are categorized by their different target domains and selectivity as N-terminal, C-terminal, and isoform-selective HSP90 inhibitors.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
