Current Drug Targets - Volume 17, Issue 12, 2016
Volume 17, Issue 12, 2016
-
-
The Antioxidant Effects of Radix Astragali (Astragalus membranaceus and Related Species) in Protecting Tissues from Injury and Disease
Authors: Muhammad Shahzad, Arham Shabbir, Ken Wojcikowski, Hans Wohlmuth and Glenda C. GobeOxidative stress plays a key role in the pathogenesis of various diseases. Antioxidants protect the cells and tissues from oxidative stress by scavenging free radicals and reactive oxygen species. These antioxidants may be endogenous or exogenous. Plants are considered as potential and powerful exogenous source of antioxidants. Astragalus species (spp.), especially Astragalus membranaceus, have a long history of medicinal use in traditional Chinese medicine. Specifically, constituents of the dried roots of Astragalus spp. (Radix Astragali) provide significant protection against heart, brain, kidney, intestine, liver and lung injury in various models of oxidative stress-related disease. Different isolated constituents of Astragalus spp., such as astragalosides, flavonoids and polysaccharides also displayed significant prevention of tissue injury via antioxidant mechanisms. In this article, the antioxidant benefits of Astragalus spp. and its isolated components in protecting tissues from injury are reviewed, along with identification of the various constituents that possess antioxidant activity.
-
-
-
Tapping into Mitochondria to Find Novel Targets for Diabetes Complications
Authors: Nicole B. Flemming, Linda A. Gallo, Micheal S. Ward and Josephine M. ForbesMitochondria produce the majority of cellular energy via the “slow burn” of substrates such as glucose, free fatty acids and ketones. In diabetes, altered mitochondrial energetics and substrate utilisation may explain, in part, an organ’s susceptibility to complications. This is particularly evident at sites such as the kidney, heart, neurons and retina, which have high energy demands and oxygen consumption rates to meet functional requirements. Within this review we highlight the recent research implicating mitochondrial dysfunction, with particular focus on the contribution of mitochondrial reactive oxygen species, on the development and progression of diabetes complications. Finally, we discuss the current strategies which are being assessed to combat mitochondrial dysfunction in diabetes complications.
-
-
-
Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium
Authors: Malgorzata M. Brzóska, Sylwia Borowska and Michal TomczykEpidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd’s toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals’ models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking.
-
-
-
Chronic Exposure to Low-Level Cadmium in Diabetes: Role of Oxidative Stress and Comparison with Polychlorinated Biphenyls
Among the most important physiological functions, maintenance of the oxidation reduction equilibrium in cells stands out as a major homeostatic event. Many environmental contaminants efficiently trap cellular reducing compounds, but the actual importance of this mode of toxicity is far from being precisely known. This statement applies to cases of slowly developing chronic diseases, such as neurodegenerations, diabetes, and many others. The involvement of oxidative challenge in diabetes is considered in connection with chronic dietary exposure to low-level concentrations of cadmium. Comparison is made with polychlorobiphenyl molecules (PCB): they are structurally unrelated to cadmium, they preferentially distribute into different organs than cadmium, and they follow different metabolic pathways. Yet, they have also pro-oxidative properties, and they are associated with diabetes. Since neither cadmium nor PCB is a direct oxidant, they both follow indirect pathways to shift the redox equilibrium. Thus, a difference must be made between the adaptable response of the organism, i.e. the anti-oxidant response, and the irreversible damage generated by oxidizing species, i.e. oxidative damage, when exposure occurs at low concentrations. The approximate border between high and low levels of exposure is estimated in this review from the available relevant data, and the strengths and weaknesses of experimental models are delineated. Eventually, chronic low level exposure to these contaminants sparks cellular responses setting ground for dysfunction and disease, such as diabetes: oxidative damage is an accompanying phenomenon and not necessarily an early mechanism of toxicity.
-
-
-
Redox-Related Mechanisms to Rebalance Cancer-Deregulated Cell Growth
A delicate balance exists between the process of carcinogenesis and tissue regeneration. A number of malignant tumours are considered the outcome of an impaired or incomplete regeneration process, resulting in persistently dividing cells. Regeneration-competent tissues and animals are able to prevent and counteract growth abnormalities and seem to have a low vulnerability to chemical carcinogenesis. Cancer cell survival depends, among other things, on various redox-related mechanisms, which are targets of currently developed therapies. Disadvantages of these therapies are a lack of specificity and drug resistance. As the majority of these redox-related mechanisms also play an important role in successful and coordinated cell functioning and reproduction, the regeneration process offers a unique parallel context for modern cancer research. This review focuses on the interconnections between regeneration and carcinogenesis and how an understanding of regenerative forces and redox-controlled mechanisms could contribute to the identification of new therapeutic targets to block the growth and survival of cancer cells.
-
-
-
Metallothionein as a Scavenger of Free Radicals - New Cardioprotective Therapeutic Agent or Initiator of Tumor Chemoresistance?
Cardiotoxicity is a serious complication of anticancer therapy by anthracycline antibiotics. Except for intercalation into DNA/RNA structure, inhibition of DNA-topoisomerase and histone eviction from chromatin, the main mechanism of their action is iron-mediated formation of various forms of free radicals, which leads to irreversible damage to cancer cells. The most serious adverse effect of anthracyclines is, thus, cardiomyopathy leading to congestive heart failure, which is caused by the same mechanisms. Here, we briefly summarize the basic types of free radicals formed by anthracyclines and the main processes how to scavenge them. From these, the main attention is paid to metallothioneins. These low-molecular cysteine-rich proteins are introduced and their functions and properties are reviewed. Further, their role in detoxification of metals and drugs is discussed. Based on these beneficial roles, their use as a new therapeutic agent against oxidative stress and for cardioprotection is critically evaluated with respect to their ability to increase chemoresistance against some types of commonly used cytostatics.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
