Current Drug Targets - Volume 16, Issue 9, 2015
Volume 16, Issue 9, 2015
-
-
Novel Approaches for Potential Therapy of Cystic Fibrosis
Authors: Victoria Sawczak, Paulina Getsy, Aliya Zaidi, Fei Sun, Khalequz Zaman and Benjamin GastonCystic fibrosis (CF) is a lethal autosomal recessive disease that causes severe damage to the respiratory and digestive systems. It results from a dysfunctional CF Transmembrane Conductance Regulator (CFTR) protein, which is a cAMP- regulated epithelial chloride channel. CFTR is also a subtype of the ABC-transporter superfamily, and is expressed primarily in the apical membrane of epithelial cells in the airways, pancreas, and intestines. A single amino acid deletion of phenylalanine (Phe) is the most common mutation in CF patients known as F508del-CFTR. Normally, wild-type CFTR is largely degraded before reaching the cell membrane and F508del-CFTR virtually never reaches the cell surface. Ultimately, our goal is to correct dysfunctional CFTR proteins in CF patients. Via high-throughput screening techniques, several novel compounds for potential drugs effective in reversing the molecular CF defect and prohibiting further progression of CF have recently been discovered. S-nitrosothiols (SNOs) are small, naturally occurring endogenous cell signaling compounds, which have potential relevance to human lung diseases, including CF. Remarkably, researchers have found that the level of SNOs are reduced in the CF airway. It was previously reported that different types of SNOs, such as GSNO and S-nitrosoglutathione diethyl ester will increase CFTR maturation and function at the plasma membrane in human airway epithelial cells. The mechanisms by which SNOs improve CFTR maturation remain elusive. Currently, clinical trials are still investigating the effectiveness and safety of novel corrector and potentiator drugs for F508del- CFTR. This review article offers a summary of our knowledge on the most up-to-date CF therapies.
-
-
-
PDZ Structure and Implication in Selective Drug Design against Cystic Fibrosis
Authors: Joshua Holcomb, Nicholas Spellmon, Laura Trescott, Fei Sun, Chunying Li and Zhe YangPDZ domains play an essential role in a number of cellular processes by facilitating protein scaffolding and assembly of protein complexes. These domains consist of 80 to 90 amino acids and are found to recognize short C-terminal sequences of target proteins. Protein complex formation between PDZ target molecules can lead to a number of signaling and regulatory cascades that may either promote or inhibit the activation of certain proteins. It has been shown that the interaction of the PDZ domains of NHERF2 with LPA2 plays an inhibitory role on the cystic fibrosis transmembrane conductance regulator (CFTR) by promoting the assembly of a CFTR–NHERF2–LPA2 complex. CFTR regulates chloride ion transport across the epithelial plasma membrane, and individuals possessing CFTR mutations show decreased protein function and consequently, viscous mucus accumulation due to improper fluid transport. This type of ailment is termed cystic fibrosis. Thus, insight to the structure of PDZ domains and how they function to form macromolecular complexes could be therapeutically important in augmenting CFTR channel activity in cystic fibrosis patients. Here we review the PDZ domain family while dissecting their structure, function and implications in CFTR regulation and cystic fibrosis.
-
-
-
Targeting ENaC as a Molecular Suspect in Cystic Fibrosis
Authors: Nadine Bangel-Ruland, Katja Tomczak and Wolf-Michael WeberCystic fibrosis (CF) is the most common life shortening autosomal inherited disorder, affecting 1 in 2500 newborns in the Caucasian population. In CF the lung pathology is associated with dehydration of the airways epithelial surface which in part results from Na+ hyperabsorption via the epithelial sodium channel (ENaC). The molecular mechanisms of this Na+ hyperabsorption and its correlation with the underlying genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) are not fully understood. However, it is obvious that a reduced Cl- secretion by CFTR and an enhanced Na+ absorption through ENaC lead to the so far incurable disease. Therefore, it could be indicated to pursue a double-tracked strategy in that way enabling Cl- secretion by a reconstitution of the defect CFTR as well as blocking ENaC to prevent Na+ hyperabsorption. Since the cloning of CFTR great efforts have been done in delivery of CFTR for the correction of the reduced Cl- secretion. Positive benefits for the inhibition of the CF related Na+ hyperabsorption offer technologies using small molecule inhibitors like ASOs or siRNA, which target translation and knockdown of ENaC, respectively. In this review we discuss possible CFTR/ENaC interactions in the context of CF, describe ENaC structure as well as some of the numerous attempts that were performed to prevent the Na+ hyperabsorption in CF related lung disease. Thus, we give a short summary of e.g. amiloride therapy approaches and focus on inventive blocking efforts using ASOs and siRNA.
-
-
-
Targeting Molecular Chaperones for the Treatment of Cystic Fibrosis: Is It a Viable Approach?
Authors: Ashley Heard, Jake Thompson, Jessica Carver, Michelle Bakey and X. Robert WangCystic Fibrosis (CF) is largely caused by protein misfolding and the loss of function of a plasma membrane anion channel known as the cystic fibrosis transmembrane conductance regulator (CFTR). The most common CF-causing mutation, F508del, leads to severe conformational defect in CFTR. The cellular chaperone machinery plays an important role in CFTR biogenesis and quality control. Multiple attempts have been made to improve the cell surface functional expression of the mutant CFTR by modulating the expression of components of the cellular chaperone machinery. The efficacy of such an approach has been low largely due to the severe intrinsic folding defects of the F508del CFTR. Moreover, the impact of chaperone perturbation on the chaperone machinery itself and on other physiologically important proteins might lead to potentially severe side effects. Approaches aimed at disrupting chaperone-CFTR interactions show greater efficacy, and are compatible with small-molecule drug discovery and gene therapy. Combination between chaperone modulators and F508del correctors might further enhance potency and specificity. As molecular chaperones play important roles in regulating inflammation and immunity, they can be potential targets for controlling airway infection and inflammation in patients. If such effects can be synergized with chaperone-mediated regulation of CFTR biogenesis and quality control, more efficacious therapeutics will be developed to combat CF lung disease.
-
-
-
SUMOylation Modulates CFTR Biogenesis: Is the Pathway Druggable?
Authors: Annette Ahner and Raymond A. FrizzellThe SUMOylation pathway is involved in the regulation of numerous and diverse cellular functions, nuclear as well as extra-nuclear. Thus, it is not surprising that SUMO pathway components are implicated in diseases as diverse as cystic fibrosis, cancer and neurodegenerative diseases. Therefore, the components of the SUMOylation pathway should provide valid therapeutic targets for manipulation. While the related ubiquitylation system encompasses a vast number of enzymes as potential drug targets, there are only a handful of components that comprise the SUMOylation cascade. Whereas this alleviates the problem of target redundancy, it may complicate the potential to achieve drug specificity. The development of small molecule inhibitors aimed at SUMO pathway components is in its early stages. This review provides an outline of the pathway and summarizes drug development efforts targeted at individual SUMOylation pathway components, with an emphasis on how CFTR protein processing may be affected.
-
-
-
Epigenetics in Cystic Fibrosis: Epigenetic Targeting of a Genetic Disease
Authors: Nualpun Sirinupong and Zhe YangCystic fibrosis (CF) is a deadly genetic disease that affects the lungs and digestive system. A mutation in the CF transmembrane conductance regulator (CFTR) gene is the cause of the disease. How epigenetics contributes to CFTR expression is still poorly understood. Epigenetics is a mechanism that alters gene expression without changing the underlying DNA sequence. Epigenetic mechanisms include DNA methylation and histone modification. Both mechanisms have been implicated in CFTR gene regulation. Here we review epigenetic regulation of CFTR transcription while discussing potential epigenetic targeting strategies including DNA methyltransferase, histone deacetylase, and histone methyltransferase and demethylase inhibition. Because of the reversibility of epigenetics, targeting epigenetic mechanisms has been an attractive therapeutic approach. However, epigenetic targeting of CF disease is still at its infant stage.
-
-
-
CFTR Regulation of Aquaporin-Mediated Water Transport: A Target in Male Fertility
Authors: Marco G. Alves, Rosália Sa, Tito T. Jesus, Mario Sousa and Pedro F. OliveiraThe formation of competent spermatozoa is associated with the movement of large quantities of water and electrolytes in the various tissues and luminal fluids of the male reproductive tract. The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl− and HCO3 − membrane transporter. CFTR gene mutations cause cystic fibrosis (CF), the most common lethal genetic disease in Caucasians. Of note, one hallmark in CF is male infertility. Indeed, mutations of CFTR gene cause abnormal production of germ cells and a reduction in germ cell quality and number. Compelling evidence illustrates that CFTR is involved in several pivotal processes for male fertility, including spermatogenesis and sperm capacitation. Recent studies show that CFTR acts as a molecular partner of specific water channels, known as aquaporins, in somatic testicular cells. Aquaporins are water-selective channels that enable high permeability fluxes of water across plasma membranes. In the male reproductive tract, water movements and ion concentrations are determinants for the male reproductive function. Therefore, aquaporins expression and function play a key role in male fertility. Herein we present an overview of the expression and function of CFTR in the male reproductive tract, highlighting the reproductive outcomes in male carriers of CFTR mutations and CF couples. We also present an up-to-date discussion on the expression and role of aquaporins in the male reproductive tract. Finally, we discuss the regulation of aquaporin-mediated water transport by CFTR in the male reproductive tract and its implication for male fertility.
-
-
-
Personalized Drug Therapy in Cystic Fibrosis: From Fiction to Reality
More LessPersonalized drug therapy for cystic fibrosis (CF) is a long-term dream for CF patients, caregivers, physicians and researchers. After years of study, the fiction of personalized treatment has turned to hope. Basic information about CFTR mutations classes and new treatments is needed if we are to deal properly with the new CF era. The problems involved in this issue, however, should be evaluated with greater care and attention. VX-770 is a new drug available to treat CF patients with some class III CFTR mutations and other drugs are being studied regarding other classes. The scientific literature has constantly given information about each therapy, both in vitro and in vivo. The hope is increasing. Nevertheless the “scientific world” still lacks information about patients´ reality and daily health related practical needs. Clinical trials have showed good evaluation of some drugs so far, but clinical response is a wide spectrum yet to be analyzed: CFTR mutations spectrum, costs related to the treatment with new drugs (for VX-770 therapy), variability of CF clinical expression, limitations to test in vitro drugs, absence of good clinical markers to evaluate drug response, absence of long-term studies and with patients below six years old, multidrug treatment used to improve the expression response, and finally, the most important problem, who will benefit from the new drugs therapy, are issues that constitute a barrier that should be overcome. Personalized drug therapy may not be a fiction anymore, but it is not yet a reality for all CF patients.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
