Current Drug Targets - Volume 14, Issue 9, 2013
Volume 14, Issue 9, 2013
-
-
Strategies for Developing Tuberculosis Vaccines: Emerging Approaches
More LessAuthors: Adriano Mollica, Azzurra Stefanucci and Roberto CostanteThe current vaccine against TB, bacille Calmette-Guerin (BCG) fails to protect against the most prevalent disease form, the pulmonary TB in adults. Thus, it is not a satisfactory vaccine. Given that T cells are central to protection against TB, future vaccine design should focus on T-lymphocyte populations. Most vaccines do not prevent infection but instead disease, that if they allow establishment of the pathogen in the host but prevent its harmful effects. The development of synthetic peptide-based immunogens is emerging as a possible approach in human vaccination in the future, as a replacement for conventional vaccines that use killed or attenuated whole microorganisms. The advantages of such synthetic vaccines (high potency, low adverse reactions, low cross-reactivity and high stability) are offset somewhat by the poorer inherent immunogenicity of these constructs. There is a greater need therefore to develop adjuvant/carrier systems to increase the immunogenicity of these newer vaccine candidates.
-
-
-
Structural Systems Pharmacology: A New Frontier in Discovering Novel Drug Targets
More LessAuthors: Hepan Tan, Xiaoxia Ge and Lei XieThe modern target-based drug discovery process, characterized by the one-drug-one-gene paradigm, has been of limited success. In contrast, phenotype-based screening produces thousands of active compounds but gives no hint as to what their molecular targets are or which ones merit further research. This presents a question: What is a suitable target for an efficient and safe drug? In this paper, we argue that target selection should take into account the proteome-wide energetic and kinetic landscape of drug-target interactions, as well as their cellular and organismal consequences. We propose a new paradigm of structural systems pharmacology to deconvolute the molecular targets of successful drugs as well as to identify druggable targets and their drug-like binders. Here we face two major challenges in structural systems pharmacology: How do we characterize and analyze the structural and energetic origins of drug-target interactions on a proteome scale? How do we correlate the dynamic molecular interactions to their in vivo activity? We will review recent advances in developing new computational tools for biophysics, bioinformatics, chemoinformatics, and systems biology related to the identification of genome-wide target profiles. We believe that the integration of these tools will realize structural systems pharmacology, enabling us to both efficiently develop effective therapeutics for complex diseases and combat drug resistance.
-
-
-
Phytochemistry and Pharmacognosy of Naturally Occurring Prenyloxyanthraquinones
More LessSeveral natural compounds containing an anthraquinone core linked to a prenyloxy chain have been reported in the literature in recent years. The discovery in the plant kingdom of such secondary metabolites is a novel acquisition in the phytochemistry research field and in many cases led to a re-consideration of the secondary metabolite pool of well known anthraquinone-containing plants. In this review article we will focus on the phytochemistry and pharmacognosy of prenyloxyanthraquinones putting in evidence the natural sources and their biological properties as anti-microbial and anticancer agents.
-
-
-
Yeast as a Biosensor of Detoxification: A Tool for Identifying New Compounds that Revert Multidrug Resistance
More LessDuring tumour progression, cells accumulate secondary mutations and/or chromosomal aberrations that generate genetic diversity within the tumour cell population. This may result in the acquisition of new properties that increase tumour malignancy, such as invasiveness or resistance to chemotherapy. One of the important mechanisms of chemotherapy resistance is overexpression or biochemical activation of ABC family transporters. ABC transporters remove antitumour drugs from the cell, reducing their intracellular concentration and producing resistance against a wide range of chemically unrelated drugs, known as multidrug resistant phenotype (MDR). During recent decades, much effort has been devoted to the isolation of compounds able to inhibit the activity of these transporters. However, few such compounds have reached clinical practice and MDR remains a serious complication in cancer therapy. In an innovative approach to finding new ABC inhibitors, we propose using fission yeast Schizosaccharomyces pombe as a biosensor of detoxification that would enable cost-efficient screening of natural compounds and chemical libraries for molecules that revert the MDR phenotype. Existing fission yeast tools provide genetic, biochemical and cell biological analysis, thereby facilitating identification of drug targets. Putative inhibitors and modulators of ABC transporters could be used in combination with chemotherapeutic drugs for the treatment of multidrug resistant tumours.
-
-
-
Antimicrobial Activity of Willowherb (Epilobium angustifolium L.) Leaves and Flowers
More LessAuthors: Ivan Kosalec, Nevenka Kopjar and Dario KremerSince the aetiology of benign prostatic hyperplasia (BHP) is still unknown, the use of medicinal herb extracts and products prepared thereof are recommended due to their antimicrobial activity, especially during early stages of BHP. A comparison was performed of the in vitro antimicrobial activity (using broth microdilution assay) of flowers and leaves of willowherb (Epilobium angustifolium L., Onagraceae) from Mt. Velebit (Croatia). The strains (standard ATCC and clinical isolates) of Staphylococcus aureus (including MRSA), Bacillus subtilis, Escherichia coli (including p-fimbriae positive strain), Pseudomonas aeruginosa, Proteus mirabilis, Candida albicans, C. tropicalis, C. dubliniensis and Saccharomyces cerevisiae were susceptible with MIC values between 4.6±0.2 and 18.2±0.8 mg/mL. The results of in vitro studies showed that no differences were found in the antimicrobial activity between the ethanol extracts of leaves and flowers of E. angustifolium. Using the quantitative fluorescent assay with ethidium bromide and acridine orange, the viability of C. albicans ATCC 10231 was assessed after in vitro exposure to E. angustifolium leaf and flower ethanol extracts. Apoptosis of C. albicans blastospores dominated over necrosis in all treated samples after short-term exposure with 6 to 12 mg/mL of extracts. In addition to the valuable biological activity of E. angustifolium extracts, the data obtained from the in vitro diffusion, the dilution assay and antifungal viability fluorescent assay suggest that leaf and flower ethanol extracts of E. angustifolium L. are a promising complementary herbal therapy of conditions such as BHP.
-
-
-
Hydroxytyrosol Expresses Antifungal Activity In Vitro
More LessAuthors: Natasa Zoric, Igor Horvat, Nevenka Kopjar, Ante Vucemilovic, Dario Kremer, Sinisa Tomic and Ivan KosalecHydroxytyrosol (HT) is a potent antioxidant found in olive oil and leaves. Using several in vitro approaches, we tested antifungal activity of HT. HT showed broad spectrum of antifungal activity against medically important yeasts and dermatophyte strains with MIC values ranging between 97.6 µgml-1 and 6.25 mgml-1. The antimicrobial activity of HT was also tested using the time-kill methodology. Below the MIC value, HT showed potent damage of cell wall of Candida albicans ATCC 10231 using fluorescent dye-exclusion method. At the subinhibitory concentration, HT also influenced dimorphic transition of Candida indicating that HT is inhibitor of germ-tube formation as one of the most important virulence factor of C. albicans. Furthermore, HT showed disturbances in cell surface hydrophobicity (CSH) of C. albicans. The in vitro results indicate that HT caused a significant cell wall damage and changes in CSH as well as inhibition of germ-tube formation as virulence factor of C. albicans. The study indicates that HT has a considerable in vitro antifungal activity against medically important yeasts.
-
-
-
Enhanced Antioxidant and Protective Activities on Retinal Ganglion Cells of Carotenoids-Overexpressing Transgenic Carrot
More LessCarotenoids are considered to act as antioxidants and protect humans from serious disorders such as skin degeneration and ageing, cardiovascular disease, certain types of cancer, and age-related diseases of the eye. In this study, these chemopreventive activities of a carotenoids-overexpressing transgenic carrot were evaluated. The results of DPPH, hydroxyl, and superoxide radical scavenging tests demonstrate that the acetone extract obtained from the taproots of the carrot plants exhibits significant antioxidant activity. A higher activity was detected in the transgenic carrot extract compared with the wild-type extract. A chemopreventive activity test for degenerative diseases of the eye revealed that pretreatment with the carrot extract reduced cell death in a retinal ganglion cell line, RGC-5 cells exposed to 1-buthionine- (R,S)-sulfoximine and L-glutamic acid.
-
-
-
Investigation of Chemical Compounds, Antioxidant and Antimicrobial Properties of Teucrium arduini L. (Lamiaceae)
More LessIn this paper chemical composition of the essential oil (analysed by GC and GC-MS), the content of phenolic compounds (analysed by HPLC), quantity of total phenols and total flavonoids (analysed by UV/Vis spectrophotometer), antioxidant and antimicrobial activities of ethanolic extracts were investigated in endemic Teucrium arduini L. in population of Mt Biokovo (Croatia). The oil was characterized by a high concentration of sesquiterpene hydrocarbons (70.4%) of which β-caryophyllene (35.2%) and germacrene D (18.7%) being the major compounds. Three phenolic compounds (quercetin, ferulic acid and rosmarinic acid) were identified and quantified in ethanolic extract of T. arduini using HPLC. The results also showed that T. arduini is a source of polyphenolic and other antioxidants with radical-scavenging and chelating properties. The ethanol extracts prepared from the leaf of T. arduini showed broad spectrum of antimicrobial activity on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus brasiliensis, which are susceptible on concentration below or equal to 4.00 mg/mL, whilst Microsporum gypseum was resistant at investigated concentrations.
-
-
-
Photodynamic Inactivation of Yeast and Bacteria by Extracts of Alternanthera brasiliana
More LessThis study was undertaken to evaluate the effect of Alternathera brasiliana (Amaranthaceae) extracts as photosensitizing agents in photodynamic antimicrobial therapies (PACT) against Staphylococcus aureus, Staphylococcus epidermidis and Candida dubliniensis. The crude hexane and ethanol extracts were obtained from A. brasiliana whole plant and showed absortion from 650 to 700nm. Also, singlet molecular oxygen (1O2) production (type II photosensitization reaction) was examined, and the results show that 1,3-diphenylisobenzofuran photodegradation was greatly enhanced in the presence of the A. brasiliana extracts. One plate in each assay was irradiated while the other was not irradiated, the number of colony-forming units per milliliter (CFU/mL) was obtained, and data analyzed by the Tukey test. The chemical composition of the extracts was determined by chromatographic and spectrometric techniques; steroids, triterpenes, and flavonoids were identified. Laser irradiation alone at 685nm using diode laser, output power of 35mW, and energy of 28 J/cm2, or non-irradiated crude extracts in sub-inhibitory concentration did not reduce the number of CFU/mL significantly, whereas irradiated hexane and ethanol extracts, in sub-inhibitory concentrations, inhibited the growth of these microorganisms. The photoactivation of hexane and ethanol extracts of A. brasiliana, in sub-inhibitory concentrations, using red laser radiation at 685nm had an antimicrobial effect.
-
-
-
Application of Pyrolysis-Gas Chromatography-Mass Spectrometry and Multivariate Analysis to Study Bacteria and Fungi in Biofilms Used for Bioremediation
More LessBiofilms are communities of microorganisms adhering to a surface and embedded in an extracellular polymeric matrix, frequently associated with disease and contamination, and also used for engineering applications such as bioremediation. A mixed biofilm formed by bacteria and fungi may provide an optimal habitat for addressing contaminated areas. To exploit the potential of natural microbial communities consisting of bacteria and fungi, it is essential to understand and control their formation. In this work, a method to discriminate among bacteria of genera Bacillus, Pseudomonas, Rhodococcus with respect to the fungus Pleorotus in a biofilm by means of pyrolysis-gaschromatography-mass spectrometry and multivariate analysis is reported. Methylated fatty acids were chosen as biomarkers of microorganisms in the pyrolysates. In situ thermal hydrolysis and methylation was applied. Pyrograms were used as fingerprints, thus allowing for the characterization of whole cells analyzed without any sample pretreatment. Normalized pyrographic peak areas were chosen as variables for chemometric data processing. Principal components analysis was applied as a dataexploration tool. Satisfactory results were obtained in analyzing a real biofilm. The influence of growth medium on whole bacteria fatty acid cell composition was also explored.
-
-
-
Advances in the Targeting Molecules Modified Chitosan-Based Nanoformulations
More LessAuthors: Hongliang Du, Xiaoqing Cai and Guangxi ZhaiChitosan, a cationic polysaccharide, has prompted the continuous impetus for the development of safe and effective drug delivery systems due to its unique properties such as mucoadhesive feature, absorption enhancement and active functional groups for chemical modifications. By using chitosan-based nanoformulations, many studies have attempted to improve the dispersion of loaded hydrophobic drugs in aqueous environment, protect the encapsulated proteins and genes against enzymatic degradation, and increase their absorption by target tissues. It’s noteworthy that the derivatization of chitosan-based carriers with a ligand leads to the selective targeting of the nanoformulations to selected cells, thereby facilitating far more sensitive internalization and localization of nanoformulations for diseases’ diagnosis and treatment. As such, this review focuses on some of the most poignant reports of the utility of targeting molecules such as carbohydrates, antibodies, peptides and some small molecules in chitosan-based nanoformulations for targeted delivery. Additionally, the affinity mechanism of different targeting molecules and the pros and cons of their conjugation strategies will be illustrated summarily.
-
-
-
Differential Scanning Calorimetry as a Tool to Investigate the Transfer of Anticancer Drugs to Biomembrane Model
More LessDifferent anticancer drugs clinically approved by international regulatory organizations present poor water solubility and low stability after systemic injection. Their administration requires suitable carriers capable of maximizing therapeutic efficacy. Lipid and polymeric nanotherapeutics, particularly liposomes, are widely used to deliver chemotherapeutics in the clinic. The interaction between chemotherapeutics and biocompatible lipids and polymers can affect their efficacy and play a pivotal role in chemotherapy. Phospholipids are the main components of liposomes and their interactions with therapeutic agents are widely investigated in the pharmaceutical field using differential scanning calorimetry (DSC). In this work, DSC was exploited to investigate the interaction between hydrophobic chemotherapeutics, i.e. docetaxel, tamoxifen and lapatinib, with lipid vesicles. Lipid carriers are prepared using dimyristoylphosphatidylcholine (DMPC), a phosphatidylcholine derivative, showing the same physicochemical features of the main lipids in the biological membranes. DMPC was used as a biological membrane model to evaluate interaction, passage, diffusion, and adsorption of chemotherapeutics. These processes were evaluated through the variation of thermotropic parameters of the biological membrane model. DSC studies were carried out in heating and cooling mode. Results demonstrated a modification of calorimetric curves and this effect is strictly related to the molar fraction and physicochemical features of chemotherapeutics. Furthermore, the interaction between chemotherapeutics and biological membranes affects their internalization and distribution inside tumors and this process depends on gel-liquid crystal transition of phospholipids. DSC results provide suitable information about this effect and can be used as tool to predict further interaction between chemotherapeutics and biological membranes.
-
-
-
Validated RP-HPLC Method for the Simultaneous Analysis of Gemcitabine and LY-364947 in Liposomal Formulations
More LessCombined use of gemcitabine (Gem) and LY-364947 (LY), a TGF-β1 receptor inhibitor, has shown promise for the treatment of fibrotic pancreatic cancer, by reducing collagen production and improving tumor drug penetration. The preparation and optimization of novel Gem and LY formulations, including co-encapsulation in liposomes, require a validated method for the simultaneous quantification of both drugs, a method that had yet to be developed. Here we demonstrate an RP-HPLC protocol for the simultaneous detection of Gem and LY at 266 and 228 nm with retention times of 3.37 and 11.34 mins, respectively. The method, which uses a C18 column and a KH2PO4 (10 mM)-methanol mobile phase, was validated for linearity, precision, accuracy, limits of detection, and robustness. Co-loaded liposomes with both Gem and LY (Gem/LY liposomes) were developed to investigate the protocol applicability to pharmacokinetic analysis and formulation characterization. The method specificity was evaluated in presence of liposomal components in fetal bovine serum (FBS). Finally, the method was demonstrated by quantifying Gem/LY liposomal encapsulation efficiency and concentration liposomes-spiked FBS.
-
-
-
Niosomes Encapsulating Ibuprofen–Cyclodextrin Complexes: Preparation and Characterization
More LessAuthors: Carlotta Marianecci, Federica Rinaldi, Sara Esposito, Luisa Di Marzio and Maria CarafaA new delivery system based on ibuprofen-β-cyclodextrin (βCd) complexation and its loading into non–ionic surfactant vesicles (NSVs) was developed to improve ibuprofen therapeutic efficacy in topical formulations. The proposed strategy exploits the well known solubilizing and stabilizing properties of cyclodextrins together with the high tolerability and percutaneous absorption enhancing properties of NSVs. The complexing capacity of Cds in the presence of Ibuprofen in aqueous solution was evaluated by means of phase solubility studies. The technique used to obtain solid ibuprofen-βCd complexes was the co-lyophilization method. The influence of the preparation method on the physicochemical properties of the final product was evaluated by means of Fourier Transform Infrared Spectroscopy and Differential scanning calorimetry studies. Ibuprofen-βCd complexes were included in Tween 20/Cholesterol vesicles and characterized in terms of size, zeta (ζ)-potential, stability, drug entrapment efficiency and drug release. The best ibuprofen-βCd-NSV system exhibited in vitro drug permeation properties significantly improved with respect to those of the plain drug suspension.
-
-
-
New Insights into Dietary Supplements Used in Sport: Active Substances, Pharmacological and Side Effects
More LessAuthors: Marijana Zovko Koncic and Michal TomczykAs a society we are increasingly concerned about our physical appearance. For example, as much as 24% of people in developed countries admittedly exercise to improve their performance. Professional sportsmen and amateurs alike are in a constant search for new means that will enable them better sport results in shorter time. Among those means,a prominent place belongs to dietary supplements. However, the producers often advertise products whose use in sports is neither scientifically founded nor safe. This brings on an irrational use of herbal supplements which sometimes leads to unwanted side effects, but is more often of little use. Thus, the aim of this review will be to systematically evaluate some of the herbal supplements that are used as adaptogenic and ergogenic aids in sport. The review will include available data on Rhodiola rosea, Withania somnifera, Schisandra chinensis, Tribulus terrestris, Vitis vinifera, Citrus aurantium, and others. Their effects, active ingredients as well as possible adverse effects will be discussed with special focus on clinical studies.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month