Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Introduction

Alzheimer’s disease (AD), the most common form of dementia, is a major global health issue. Its complex pathology, including amyloid-beta (Aβ) aggregation, leads to neuronal damage and cognitive decline. Since Aβ plays a major role in AD, therapies targeting its production, aggregation, and clearance are being actively explored. This review discusses recent advances in gene therapy, enzyme inhibitors, molecular modeling, and nano-delivery systems aimed at modifying AD progression, highlighting their potential and challenges.

Methods

This review compiles findings on BACE1 and γ-secretase inhibitors, gene therapies that modify amyloid metabolism, and combination therapies. Studies have been selected based on their focus on Aβ regulation and their impact on disease progression, cognitive function, and breakthroughs in diagnostics, molecular modeling, and drug delivery for neurodegenerative conditions.

Results

BACE1 inhibitors, such as verubecestat, and γ-secretase inhibitors, shows potential, however, they face significant challenges related to BBB penetration and adverse effects. Gene therapies using AAV vectors and CRISPR/Cas9 technologies are promising, particularly for individuals genetically predisposed to these diseases. Combination therapies targeting amyloid, tau, and neuro-inflammation have emerged as effective approaches. Advancements in PET, SPECT, MRI, small molecule probes, molecular modeling, and nano-particle-based drug delivery are improving diagnostic and treatment options.

Discussion

The findings emphasize the multifactorial complexity of amyloid disorders and the limitations of mono-therapies. While certain agents demonstrated efficacy in early disease stages, most treatments have failed in advanced phases due to poor central nervous system (CNS) bioavailability, adverse effects, or insufficient target engagement. Novel delivery systems, combination therapies, and computational design approaches offer enhanced translational potential. However, challenges such as immune responses, delivery efficiency, and off-target effects continue to pose significant barriers.

Conclusion

Aβ-targeted therapies, including enzyme inhibitors and gene therapies, hold promise, though challenges such as BBB penetration and toxicity still remain. Combination therapies, along with advancements in diagnostics and drug delivery technology, are essential for finding effective treatments for Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Future research should prioritize overcoming the persistent barriers to BBB penetration, enhancing therapeutic selectivity, and refining drug delivery systems to enable more precise, targeted interventions, to ultimately reduce the progression of disease at the molecular level.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501388678250618070927
2025-06-24
2025-12-09
Loading full text...

Full text loading...

References

  1. YakupovaE.I. BobylevaL.G. ShumeykoS.A. VikhlyantsevI.M. BobylevA.G. Amyloids: The history of toxicity and functionality.Biology202110539410.3390/biology1005039434062910
    [Google Scholar]
  2. KisilevskyR. RaimondiS. BellottiV. Historical and current concepts of fibrillogenesis and in vivo amyloidogenesis: Implications of amyloid tissue targeting.Front. Mol. Biosci.201631710.3389/fmolb.2016.0001727243018
    [Google Scholar]
  3. GoldsburyC. BaxaU. SimonM.N. StevenA.C. EngelA. WallJ.S. AebiU. MüllerS.A. Amyloid structure and assembly: Insights from scanning transmission electron microscopy.J. Struct. Biol.2011173111310.1016/j.jsb.2010.09.01820868754
    [Google Scholar]
  4. NguyenB.A. SinghV. AfrinS. YakubovskaA. WangL. AhmedY. PedrettiR. Fernandez-RamirezM.C. SinghP. PękałaM. Cabrera HernandezL.O. KumarS. LemoffA. Gonzalez-PrietoR. SawayaM.R. EisenbergD.S. BensonM.D. SaelicesL. Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy.Nat. Commun.202415158110.1038/s41467‑024‑44820‑338233397
    [Google Scholar]
  5. Alzheimer’s Association 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  6. PrinceM.J. WimoA. GuerchetM.M. AliG.C. WuY.T. PrinaM. World Alzheimer report 2015 - The global impact of dementia: An analysis of prevalence, incidence, cost and trends.LondonAlzheimer's Disease International2015
    [Google Scholar]
  7. ForloniG. Oligomers and neurodegeneration: New evidence.Aging Dis.20231461977198010.14336/AD.2023.032737199592
    [Google Scholar]
  8. FriegB. HanM. GillerK. DienemannC. RiedelD. BeckerS. AndreasL.B. GriesingerC. SchröderG.F. Cryo-EM structures of lipidic fibrils of amyloid-β (1-40).Nat. Commun.2024151129710.1038/s41467‑023‑43822‑x38351005
    [Google Scholar]
  9. De StrooperB. KarranE. The cellular phase of alzheimer’s disease.Cell2016164460361510.1016/j.cell.2015.12.05626871627
    [Google Scholar]
  10. CummingsJ. ZhouY. LeeG. ZhongK. FonsecaJ. ChengF. Alzheimer’s disease drug development pipeline: 2024.Alzheimers Dement.20241021246510.1002/trc2.1246538659717
    [Google Scholar]
  11. SinnigeT. Molecular mechanisms of amyloid formation in living systems.Chem. Sci.202213247080709710.1039/D2SC01278B35799826
    [Google Scholar]
  12. SigurdsonC.J. BartzJ.C. GlatzelM. cellular and molecular mechanisms of prion disease.Annu. Rev. Pathol.201914149751610.1146/annurev‑pathmechdis‑012418‑01310930355150
    [Google Scholar]
  13. MorenoJ.A. TellingG.C. Insights into mechanisms of transmission and pathogenesis from transgenic mouse models of prion diseases.Methods Mol. Biol.2017165821925210.1007/978‑1‑4939‑7244‑9_1628861793
    [Google Scholar]
  14. GeschwindMD Prion diseases.Continuum20152161612163810.1212/CON.0000000000000251
    [Google Scholar]
  15. KumagaiS DaikaiT OnoderaT. Bovine spongiform encephalopathy - a review from the perspective of food safety.Food Saf.201972214710.14252/foodsafetyfscj.2018009
    [Google Scholar]
  16. AguzziA. BaumannF. BremerJ. The prion’s elusive reason for being.Annu. Rev. Neurosci.200831143947710.1146/annurev.neuro.31.060407.12562018558863
    [Google Scholar]
  17. BrásI.C. OuteiroT.F. Alpha-Synuclein: Mechanisms of release and pathology progression in synucleinopathies.Cells202110237510.3390/cells1002037533673034
    [Google Scholar]
  18. GoedertM. SpillantiniM.G. Del TrediciK. BraakH. 100 years of Lewy pathology.Nat. Rev. Neurol.201391132410.1038/nrneurol.2012.24223183883
    [Google Scholar]
  19. PotterK.J. WernerI. DenrocheH.C. MontaneJ. PlesnerA. ChenY. LeiD. SoukhatchevaG. WarnockG.L. OberholzerJ. FraserP.E. VerchereC.B. Amyloid formation in human islets is enhanced by heparin and inhibited by heparinase.Am. J. Transplant.20151561519153010.1111/ajt.1313425833002
    [Google Scholar]
  20. MizukamiH. KudohK. Diversity of pathophysiology in type 2 diabetes shown by islet pathology.J. Diabetes Investig.202213161310.1111/jdi.1367934562302
    [Google Scholar]
  21. JuckerM. WalkerL.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases.Nature20135017465455110.1038/nature1248124005412
    [Google Scholar]
  22. KahnS.E. CooperM.E. Del PratoS. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future.Lancet201438399221068108310.1016/S0140‑6736(13)62154‑624315620
    [Google Scholar]
  23. WestermarkP. AnderssonA. WestermarkG.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus.Physiol. Rev.201191379582610.1152/physrev.00042.200921742788
    [Google Scholar]
  24. GulisanoW. MaugeriD. BaltronsM.A. FàM. AmatoA. PalmeriA. Role of amyloid-β and tau proteins in alzheimer's disease: Confuting the amyloid cascade.J. Alzheimers Dis.201864s1S611S63110.3233/JAD‑179935
    [Google Scholar]
  25. GandhiJ. AntonelliA.C. AfridiA. VatsiaS. JoshiG. RomanovV. MurrayI.V.J. KhanS.A. Protein misfolding and aggregation in neurodegenerative diseases: A review of pathogeneses, novel detection strategies, and potential therapeutics.Rev. Neurosci.201930433935810.1515/revneuro‑2016‑003530742586
    [Google Scholar]
  26. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  27. YanR. VassarR. Targeting the β secretase BACE1 for Alzheimer’s disease therapy.Lancet Neurol.201413331932910.1016/S1474‑4422(13)70276‑X24556009
    [Google Scholar]
  28. HampelH. VassarR. De StrooperB. HardyJ. WillemM. SinghN. ZhouJ. YanR. VanmechelenE. De VosA. NisticòR. CorboM. ImbimboB.P. StrefferJ. VoytyukI. TimmersM. Tahami MonfaredA.A. IrizarryM. AlbalaB. KoyamaA. WatanabeN. KimuraT. YarenisL. ListaS. KramerL. VergalloA. The β-secretase BACE1 in alzheimer’s disease.Biol. Psychiatry202189874575610.1016/j.biopsych.2020.02.00132223911
    [Google Scholar]
  29. EganM.F. KostJ. TariotP.N. AisenP.S. CummingsJ.L. VellasB. SurC. MukaiY. VossT. FurtekC. MahoneyE. Harper MozleyL. VandenbergheR. MoY. MichelsonD. Randomized trial of verubecestat for mild-to-moderate alzheimer’s disease.N. Engl. J. Med.2018378181691170310.1056/NEJMoa170644129719179
    [Google Scholar]
  30. DoodyR.S. RamanR. FarlowM. IwatsuboT. VellasB. JoffeS. KieburtzK. HeF. SunX. ThomasR.G. AisenP.S. SiemersE. SethuramanG. MohsR. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease.N. Engl. J. Med.2013369434135010.1056/NEJMoa121095123883379
    [Google Scholar]
  31. JackC.R.Jr BennettD.A. BlennowK. CarrilloM.C. DunnB. HaeberleinS.B. HoltzmanD.M. JagustW. JessenF. KarlawishJ. LiuE. MolinuevoJ.L. MontineT. PhelpsC. RankinK.P. RoweC.C. ScheltensP. SiemersE. SnyderH.M. SperlingR. ElliottC. MasliahE. RyanL. SilverbergN. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.01829653606
    [Google Scholar]
  32. HurJ.Y. γ-Secretase in Alzheimer’s disease.Exp. Mol. Med.202254443344610.1038/s12276‑022‑00754‑835396575
    [Google Scholar]
  33. NilssonP. IwataN. MuramatsuS. TjernbergL.O. WinbladB. SaidoT.C. Gene therapy in Alzheimer’s disease – potential for disease modification.J. Cell. Mol. Med.201014474175710.1111/j.1582‑4934.2010.01038.x20158567
    [Google Scholar]
  34. DaciR FlotteTR Delivery of adeno-associated virus vectors to the central nervous system for correction of single gene disorders.Int. J. Mol. Sci.2024252105010.3390/ijms25021050
    [Google Scholar]
  35. LiY. MacyczkoJ.R. LiuC.C. BuG. ApoE4 reduction: An emerging and promising therapeutic strategy for Alzheimer’s disease.Neurobiol. Aging2022115202810.1016/j.neurobiolaging.2022.03.01135453035
    [Google Scholar]
  36. Ortiz-VirumbralesM. MorenoC.L. KruglikovI. MarazuelaP. SproulA. JacobS. ZimmerM. PaullD. ZhangB. SchadtE.E. EhrlichM.E. TanziR.E. ArancioO. NoggleS. GandyS. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons.Acta Neuropathol. Commun.2017517710.1186/s40478‑017‑0475‑z29078805
    [Google Scholar]
  37. GriciucA. FedericoA.N. NatasanJ. ForteA.M. McGintyD. NguyenH. VolakA. LeRoyS. GandhiS. LernerE.P. HudryE. TanziR.E. MaguireC.A. Gene therapy for Alzheimer’s disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation.Hum. Mol. Genet.202029172920293510.1093/hmg/ddaa17932803224
    [Google Scholar]
  38. BhardwajS. KesariK.K. RachamallaM. ManiS. AshrafG.M. JhaS.K. KumarP. AmbastaR.K. DurejaH. DevkotaH.P. GuptaG. ChellappanD.K. SinghS.K. DuaK. RuokolainenJ. KamalM.A. OjhaS. JhaN.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics.J. Adv. Res.20224020722110.1016/j.jare.2021.07.00136100328
    [Google Scholar]
  39. SongC. ShiJ. ZhangP. ZhangY. XuJ. ZhaoL. ZhangR. WangH. ChenH. Immunotherapy for Alzheimer’s disease: Targeting β-amyloid and beyond.Transl. Neurodegener.20221111810.1186/s40035‑022‑00292‑335300725
    [Google Scholar]
  40. SevignyJ. ChiaoP. BussièreT. WeinrebP.H. WilliamsL. MaierM. DunstanR. SallowayS. ChenT. LingY. O’GormanJ. QianF. ArastuM. LiM. ChollateS. BrennanM.S. Quintero-MonzonO. ScannevinR.H. ArnoldH.M. EngberT. RhodesK. FerreroJ. HangY. MikulskisA. GrimmJ. HockC. NitschR.M. SandrockA. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165377618505610.1038/nature1932327582220
    [Google Scholar]
  41. DoodyR.S. ThomasR.G. FarlowM. IwatsuboT. VellasB. JoffeS. KieburtzK. RamanR. SunX. AisenP.S. SiemersE. Liu-SeifertH. MohsR. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2014370431132110.1056/NEJMoa131288924450890
    [Google Scholar]
  42. SpencerB. MasliahE. Immunotherapy for Alzheimer’s disease: Past, present and future.Front. Aging Neurosci.2014611410.3389/fnagi.2014.0011424959143
    [Google Scholar]
  43. RezaiA.R. RanjanM. HautM.W. CarpenterJ. D’HaeseP.F. MehtaR.I. NajibU. WangP. ClaassenD.O. ChazenJ.L. KrishnaV. DeibG. ZiblyZ. HodderS.L. WilhelmsenK.C. FinomoreV. KonradP.E. KaplittM. Focused ultrasound-mediated blood-brain barrier opening in Alzheimer’s disease: Long-term safety, imaging, and cognitive outcomes.J. Neurosurg.2022139127528310.3171/2022.9.JNS22156536334289
    [Google Scholar]
  44. CummingsJ. The role of biomarkers in alzheimer’s disease drug development.Adv. Exp. Med. Biol.20191118296110.1007/978‑3‑030‑05542‑4_230747416
    [Google Scholar]
  45. ZamparS. WirthsO. Immunotherapy targeting amyloid-β peptides in alzheimer’s disease.Brisbane (AU)Exon Publications202010.36255/exonpublications.alzheimersdisease.2020.ch2
    [Google Scholar]
  46. ZetterbergH. BendlinB.B. Biomarkers for Alzheimer’s disease—preparing for a new era of disease-modifying therapies.Mol. Psychiatry202126129630810.1038/s41380‑020‑0721‑932251378
    [Google Scholar]
  47. MoJ.J. LiJ.Y. YangZ. LiuZ. FengJ.S. Traditional chinese medicine research projects of Guangdong Province (20171152), and Doctoral Research Fund of Guangdong Medical University (B2014004).Ann. Clin. Transl. Neurol.201741293194210.1002/acn3.46929296624
    [Google Scholar]
  48. HoncharenkoD. JunejaA. RoshanF. MaityJ. Galán-AcostaL. BiverstålH. HjorthE. JohanssonJ. FisahnA. NilssonL. StrömbergR. Amyloid-β peptide targeting peptidomimetics for prevention of neurotoxicity.ACS Chem. Neurosci.20191031462147710.1021/acschemneuro.8b0048530673220
    [Google Scholar]
  49. GoyalD. ShuaibS. MannS. GoyalB. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (aβ) aggregation: Potential therapeutics of alzheimer’s disease.ACS Comb. Sci.2017192558010.1021/acscombsci.6b0011628045249
    [Google Scholar]
  50. HorsleyJ.R. JovcevskiB. WegenerK.L. YuJ. PukalaT.L. AbellA.D. Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: A potential therapeutic strategy for Alzheimer’s disease.Biochem. J.2020477112039205410.1042/BCJ2020029032427336
    [Google Scholar]
  51. SehraN. ParmarR. JainR. Peptide-based amyloid-beta aggregation inhibitors.RSC Med. Chem.2024Online ahead of print.10.1039/D4MD00729H39882170
    [Google Scholar]
  52. KumarJ. SimV. D-amino acid-based peptide inhibitors as early or preventative therapy in Alzheimer disease.Prion20148111912410.4161/pri.2822024553069
    [Google Scholar]
  53. CataniaM. ColomboL. SorrentinoS. CagnottoA. LucchettiJ. BarbagalloM.C. VannetielloI. VecchiE.R. FavagrossaM. CostanzaM. GiacconeG. SalmonaM. TagliaviniF. Di FedeG. A novel bio-inspired strategy to prevent amyloidogenesis and synaptic damage in Alzheimer’s disease.Mol. Psychiatry202227125227523410.1038/s41380‑022‑01745‑x36028569
    [Google Scholar]
  54. LuJ. CaoQ. WangC. ZhengJ. LuoF. XieJ. LiY. MaX. HeL. EisenbergD. NowickJ. JiangL. LiD. Structure-based peptide inhibitor design of amyloid-β aggregation.Front. Mol. Neurosci.2019125410.3389/fnmol.2019.0005430886570
    [Google Scholar]
  55. RibaričS. Peptides as potential therapeutics for alzheimer’s disease.Molecules201823228310.3390/molecules2302028329385735
    [Google Scholar]
  56. ParthsarathyV. McCleanP.L. HölscherC. TaylorM. TinkerC. JonesG. KolosovO. SalvatiE. GregoriM. MasseriniM. AllsopD. A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease.PLoS One2013815476910.1371/journal.pone.005476923382963
    [Google Scholar]
  57. AmijeeH. BateC. WilliamsA. VirdeeJ. JeggoR. SpanswickD. ScopesD.I.C. TreherneJ.M. MazzitelliS. ChawnerR. EyersC.E. DoigA.J. The N-methylated peptide SEN304 powerfully inhibits Aβ(1-42) toxicity by perturbing oligomer formation.Biochemistry201251428338835210.1021/bi300415v23025847
    [Google Scholar]
  58. JokarS. KhazaeiS. BehnammaneshH. ShamlooA. ErfaniM. BeikiD. BaviO. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy.Biophys. Rev.201911690192510.1007/s12551‑019‑00606‑231713720
    [Google Scholar]
  59. SharmaK. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review).Mol. Med. Rep.20192021479148710.3892/mmr.2019.1037431257471
    [Google Scholar]
  60. HowardR. McShaneR. LindesayJ. RitchieC. BaldwinA. BarberR. BurnsA. DeningT. FindlayD. HolmesC. HughesA. JacobyR. JonesR. JonesR. McKeithI. MacharouthuA. O’BrienJ. PassmoreP. SheehanB. JuszczakE. KatonaC. HillsR. KnappM. BallardC. BrownR. BanerjeeS. OnionsC. GriffinM. AdamsJ. GrayR. JohnsonT. BenthamP. PhillipsP. Donepezil and memantine for moderate-to-severe Alzheimer’s disease.N. Engl. J. Med.20123661089390310.1056/NEJMoa110666822397651
    [Google Scholar]
  61. KrishandasN. Advances in brain amyloid imaging.Semin. Nucl. Med.202151324125210.1053/j.semnuclmed.2020.12.005
    [Google Scholar]
  62. DeardorffW.J. GrossbergG. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate- to-severe Alzheimer’s disease.Drug Des. Devel. Ther.2016103267327910.2147/DDDT.S8646327757016
    [Google Scholar]
  63. KnezD. SovaM. KošakU. GobecS. Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer’s disease.Future Med. Chem.20179881183210.4155/fmc‑2017‑003628504893
    [Google Scholar]
  64. TangB.C. WangY.T. RenJ. Basic information about memantine and its treatment of Alzheimer’s disease and other clinical applications.Ibrain20239334034810.1002/ibra.1209837786758
    [Google Scholar]
  65. VillemagneV.L. Fodero-TavolettiM.T. MastersC.L. RoweC.C. Tau imaging: Early progress and future directions.Lancet Neurol.201514111412410.1016/S1474‑4422(14)70252‑225496902
    [Google Scholar]
  66. RichardsD. SabbaghM.N. Florbetaben for PET imaging of beta-amyloid plaques in the brain.Neurol. Ther.201432798810.1007/s40120‑014‑0022‑926000224
    [Google Scholar]
  67. ChapleauM. IaccarinoL. Soleimani-MeigooniD. RabinoviciG.D. The role of amyloid pet in imaging neurodegenerative disorders: A Review.J. Nucl. Med.202263Suppl. 113S19S10.2967/jnumed.121.26319535649652
    [Google Scholar]
  68. RenW. XuM. LiangS.H. XiangH. TangL. ZhangM. DingD. LiX. ZhangH. HuY. Discovery of a novel fluorescent probe for the sensitive detection of β-amyloid deposits.Biosens. Bioelectron.20167513614110.1016/j.bios.2015.08.03026313423
    [Google Scholar]
  69. LiaoE.E. YangM. Nathan KochenN. VunnamN. BraunA.R. FergusonD.M. SachsJ.N. Proteasomal stimulation by MK886 and its derivatives can rescue tau-induced neurite pathology.Mol. Neurobiol.202360106133614410.1007/s12035‑023‑03417‑537428404
    [Google Scholar]
  70. MartínezG. VernooijR.W.M. Fuentes PadillaP. ZamoraJ. Bonfill CospX. FlickerL. 18F PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI).Cochrane Libr.2017201711CD01221610.1002/14651858.CD012216.pub229164603
    [Google Scholar]
  71. MikułaE. Review—Recent advancements in electrochemical biosensors for alzheimer’s disease biomarkers detection.Curr. Med. Chem.20202710.2174/092986732766620111114134133176635
    [Google Scholar]
  72. KoreckaM. ShawL.M. Mass spectrometry-based methods for robust measurement of Alzheimer’s disease biomarkers in biological fluids.J. Neurochem.2021159221123310.1111/jnc.1546534244999
    [Google Scholar]
  73. QiaoR FuC ForghamH JavedI HuangX ZhuJ Magnetic iron oxide nanoparticles for brain imaging and drug delivery.Adv. Drug Deliv. Rev.202319711482210.1016/j.addr.2023.114822
    [Google Scholar]
  74. AdelusiTI OyedeleAQK BoyenleID OgunlanaAT AdeyemiR UkachiCD Molecular modeling in drug discovery.Inform. Med. Unlocked20222910088010.1016/j.imu.2022.100880
    [Google Scholar]
  75. ZardeckiC. DuttaS. GoodsellD.S. VoigtM. BurleyS.K. RCSB protein data bank: A resource for chemical, biochemical, and structural explorations of large and small biomolecules.J. Chem. Educ.201693356957510.1021/acs.jchemed.5b00404
    [Google Scholar]
  76. NiaziSK MariamZ Computer-aided drug design and drug discovery: A prospective analysis.Pharmaceuticals20231712210.3390/ph17010022
    [Google Scholar]
  77. GiorgettiS GrecoC TortoraP AprileF. Targeting amyloid aggregation: An overview of strategies and mechanisms.Int. J. Mol. Sci.2018199267710.3390/ijms19092677
    [Google Scholar]
  78. BoulosI. JabbourJ. KhouryS. MikhaelN. TishkovaV. CandoniN. GhadiehH.E. VeeslerS. BassimY. AzarS. HarbF. Exploring the world of membrane proteins: Techniques and methods for understanding structure, function, and dynamics.Molecules20232820717610.3390/molecules2820717637894653
    [Google Scholar]
  79. QuentinD. RaunserS. Electron cryomicroscopy as a powerful tool in biomedical research.J. Mol. Med.201896648349310.1007/s00109‑018‑1640‑y29730699
    [Google Scholar]
  80. AmannS.J. KeihslerD. BodrugT. BrownN.G. HaselbachD. Frozen in time: Analyzing molecular dynamics with time-resolved cryo-EM.Structure202331141910.1016/j.str.2022.11.01436584678
    [Google Scholar]
  81. MengXY ZhangHX MezeiM CuiM Molecular docking: A powerful approach for structure-based drug discovery.Curr. Comput.-Aided Drug Des.20117214615710.2174/157340911795677602
    [Google Scholar]
  82. GioiaD. BertazzoM. RecanatiniM. MasettiM. CavalliA. Dynamic Docking: A paradigm shift in computational drug discovery.Molecules20172211202910.3390/molecules2211202929165360
    [Google Scholar]
  83. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  84. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  85. GuedesI.A. de MagalhãesC.S. DardenneL.E. Receptor–ligand molecular docking.Biophys. Rev.201461758710.1007/s12551‑013‑0130‑228509958
    [Google Scholar]
  86. TorresPHM SoderoACR JofilyP Silva-JrFP Key topics in molecular docking for drug design.Int. J. Mol. Sci.20192018457410.3390/ijms20184574
    [Google Scholar]
  87. ChenG. SeukepA.J. GuoM. Recent advances in molecular docking for the research and discovery of potential marine drugs.Mar. Drugs2020181154510.3390/md1811054533143025
    [Google Scholar]
  88. LexaK.W. CarlsonH.A. Protein flexibility in docking and surface mapping.Q. Rev. Biophys.201245330134310.1017/S003358351200006622569329
    [Google Scholar]
  89. HollingsworthS.A. DrorR.O. Molecular dynamics simulation for all.Neuron20189961129114310.1016/j.neuron.2018.08.01130236283
    [Google Scholar]
  90. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  91. OkumuraH. Perspective for molecular dynamics simulation studies of amyloid-β aggregates.J. Phys. Chem. B202312751109311094010.1021/acs.jpcb.3c0605138109338
    [Google Scholar]
  92. ManV.H. HeX. GaoJ. WangJ. Effects of all-atom molecular mechanics force fields on amyloid peptide assembly: The case of PHF6 peptide of Tau protein.J. Chem. Theory Comput.202117106458647110.1021/acs.jctc.1c0002834491058
    [Google Scholar]
  93. WilleH. DoroshL. AmidianS. Schmitt-UlmsG. StepanovaM. Combining molecular dynamics simulations and experimental analyses in protein misfolding.Adv. Protein Chem. Struct. Biol.20191183311010.1016/bs.apcsb.2019.10.00131928730
    [Google Scholar]
  94. GrassoG. RebellaM. MuscatS. MorbiducciU. TuszynskiJ. DananiA. DeriuM. Conformational dynamics and stability of U-shaped and S-shaped amyloid β assemblies.Int. J. Mol. Sci.201819257110.3390/ijms1902057129443891
    [Google Scholar]
  95. HanW SchultenK. Fibril elongation by Aβ(17-42): Kinetic network analysis of hybrid-resolution molecular dynamics simulations.J. Am. Chem. Soc.201413635124501246010.1021/ja507002p
    [Google Scholar]
  96. KirmizialtinS. HuangL. MakarovD.E. Topography of the free-energy landscape probed via mechanical unfolding of proteins.J. Chem. Phys.20051222323491510.1063/1.193165916008495
    [Google Scholar]
  97. HellerG.T. AprileF.A. MichaelsT.C.T. LimbockerR. PerniM. RuggeriF.S. ManniniB. LöhrT. BonomiM. CamilloniC. De SimoneA. FelliI.C. PierattelliR. KnowlesT.P.J. DobsonC.M. VendruscoloM. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease.Sci. Adv.2020645eabb592410.1126/sciadv.abb592433148639
    [Google Scholar]
  98. GambaP. LeonarduzziG. TamagnoE. GuglielmottoM. TestaG. SotteroB. GargiuloS. BiasiF. MauroA. ViñaJ. PoliG. Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-β in amplifying neuronal damage in Alzheimer’s disease: Three partners in crime.Aging Cell201110340341710.1111/j.1474‑9726.2011.00681.x21272192
    [Google Scholar]
  99. BraymerJ.J. ChoiJ.S. DeTomaA.S. WangC. NamK. KampfJ.W. RamamoorthyA. LimM.H. Development of bifunctional stilbene derivatives for targeting and modulating metal-amyloid-β species.Inorg. Chem.20115021107241073410.1021/ic201220521954910
    [Google Scholar]
  100. HuX. LiuC. WangK. ZhaoL. QiuY. ChenH. HuJ. XuJ. Multifunctional anti-Alzheimer’s disease effects of natural xanthone derivatives: A primary structure-activity evaluation.Front Chem.20221084220810.3389/fchem.2022.84220835646819
    [Google Scholar]
  101. ShuaibS. NarangS.S. GoyalD. GoyalB. Computational design and evaluation of β-sheet breaker peptides for destabilizing Alzheimer’s amyloid-β42 protofibrils.J. Cell. Biochem.201912010179351795010.1002/jcb.2906131162715
    [Google Scholar]
  102. LemkulJ.A. BevanD.R. The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer’s disease.ACS Chem. Neurosci.201231184585610.1021/cn300091a23173066
    [Google Scholar]
  103. RiekR. GüntertP. DöbeliH. WipfB. WüthrichK. NMR studies in aqueous solution fail to identify significant conformational differences between the monomeric forms of two Alzheimer peptides with widely different plaque-competence, Aβ(1–40)ox and Aβ(1–42) ox.Eur. J. Biochem.2001268225930593610.1046/j.0014‑2956.2001.02537.x11722581
    [Google Scholar]
  104. LazoN.D. GrantM.A. CondronM.C. RigbyA.C. TeplowD.B. On the nucleation of amyloid β-protein monomer folding.Protein Sci.20051461581159610.1110/ps.04129220515930005
    [Google Scholar]
  105. YangK. LvZ. ZhaoW. LaiG. ZhengC. QiF. ZhaoC. HuK. ChenX. FuF. LiJ. XieG. WangH. WuX. ZhengW. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson’s disease.Front. Pharmacol.202415146885010.3389/fphar.2024.146885039508052
    [Google Scholar]
  106. Szała-MendykB. PhanT.M. MohantyP. MittalJ. Challenges in studying the liquid-to-solid phase transitions of proteins using computer simulations.Curr. Opin. Chem. Biol.20237510233310.1016/j.cbpa.2023.10233337267850
    [Google Scholar]
  107. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon2022850939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  108. Sriwidodo UmarA.K. WathoniN. ZothantluangaJ.H. DasS. LuckanagulJ.A. Liposome-polymer complex for drug delivery system and vaccine stabilization.Heliyon2022820893410.1016/j.heliyon.2022.e0893435243059
    [Google Scholar]
  109. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Transferrin- functionalized liposomes loaded with vitamin VB12 for Alzheimer’s disease therapy.Int. J. Pharm.202262612216710.1016/j.ijpharm.2022.12216736075524
    [Google Scholar]
  110. AndradeS. PereiraM.C. LoureiroJ.A. Caffeic acid loaded into engineered lipid nanoparticles for Alzheimer’s disease therapy.Colloids Surf. B Biointerfaces202322511327010.1016/j.colsurfb.2023.11327036996633
    [Google Scholar]
  111. KongL. LiX. NiY. XiaoH. YaoY. WangY. JuR. LiH. LiuJ. FuM. WuY. YangJ. ChengL. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice.Int. J. Nanomedicine2020152841285810.2147/IJN.S23960832425521
    [Google Scholar]
  112. VieiraD. GamarraL. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier.Int. J. Nanomedicine2016115381541410.2147/IJN.S11721027799765
    [Google Scholar]
  113. SantosA. VeigaF. FigueirasA. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity, and biomedical applications.Materials20191316510.3390/ma1301006531877717
    [Google Scholar]
  114. GothwalA. KumarH. NakhateK.T. Ajazuddin DuttaA. BorahA. GuptaU. Lactoferrin coupled lower-generation PAMAM dendrimers for brain-targeted delivery of memantine in aluminum-chloride-induced Alzheimer’s disease in mice.Bioconjug. Chem.201930102573258310.1021/acs.bioconjchem.9b0050531553175
    [Google Scholar]
  115. Arbez-GindreC. SteeleB.R. Micha-ScrettasM. Dendrimers in alzheimer’s disease: Recent approaches in multi-targeting strategies.Pharmaceutics202315389810.3390/pharmaceutics1503089836986759
    [Google Scholar]
  116. KannanS. DaiH. NavathR.S. BalakrishnanB. JyotiA. JanisseJ. RomeroR. KannanR.M. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model.Sci. Transl. Med.20124130130ra4610.1126/scitranslmed.300316222517883
    [Google Scholar]
  117. KlementievaO. Benseny-CasesN. GellaA. AppelhansD. VoitB. CladeraJ. Dense shell glycodendrimers as potential nontoxic anti-amyloidogenic agents in Alzheimer’s disease. Amyloid-dendrimer aggregates morphology and cell toxicity.Biomacromolecules201112113903390910.1021/bm200863621936579
    [Google Scholar]
  118. MoreiraD.A. SantosS.D. LeiroV. PêgoA.P. Dendrimers and derivatives as multifunctional nanotherapeutics for alzheimer’s disease.Pharmaceutics2023154105410.3390/pharmaceutics1504105437111540
    [Google Scholar]
  119. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano1007140332707641
    [Google Scholar]
  120. YangF. CabeM. NowakH.A. LangertK.A. Chitosan/poly(lactic- co-glycolic) acid nanoparticle formulations with finely tuned size distributions for enhanced mucoadhesion.Pharmaceutics20221419510.3390/pharmaceutics1401009535056991
    [Google Scholar]
  121. ReddyP.H. ManczakM. YinX. GradyM.C. MitchellA. TonkS. KuruvaC.S. BhattiJ.S. KandimallaR. VijayanM. KumarS. WangR. PradeepkiranJ.A. OgunmokunG. ThamaraiK. QuesadaK. BolesA. ReddyA.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease.J. Alzheimers Dis.201861384386610.3233/JAD‑17051229332042
    [Google Scholar]
  122. CaoY. ZhangR. The application of nanotechnology in treatment of Alzheimer’s disease.Front. Bioeng. Biotechnol.202210104298610.3389/fbioe.2022.104298636466349
    [Google Scholar]
  123. LiY. ZhangW. ZhaoR. ZhangX. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment.Bioact. Mater.20221539240810.1016/j.bioactmat.2022.02.02535386357
    [Google Scholar]
  124. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  125. Abdal DayemA. HossainM. LeeS. KimK. SahaS. YangG.M. ChoiH. ChoS.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles.Int. J. Mol. Sci.201718112010.3390/ijms1801012028075405
    [Google Scholar]
  126. ChiangM.C. YangY.P. NicolC.J.B. WangC.J. Gold nanoparticles in neurological diseases: A review of neuroprotection.Int. J. Mol. Sci.2024254236010.3390/ijms2504236038397037
    [Google Scholar]
  127. SanatiM. KhodagholiF. AminyavariS. GhasemiF. GholamiM. KebriaeezadehA. SabzevariO. HajipourM.J. ImaniM. MahmoudiM. SharifzadehM. Impact of gold nanoparticles on amyloid β-induced Alzheimer’s disease in a rat animal model: Involvement of STIM proteins.ACS Chem. Neurosci.20191052299230910.1021/acschemneuro.8b0062230933476
    [Google Scholar]
  128. KimM.J. RehmanS.U. AminF.U. KimM.O. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB /JNK/GSK3β signaling pathway.Nanomedicine20171382533254410.1016/j.nano.2017.06.02228736294
    [Google Scholar]
  129. ZhangJ. LiuR. ZhangD. ZhangZ. ZhuJ. XuL. GuoY. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease.Colloids Surf. B Biointerfaces202120011158410.1016/j.colsurfb.2021.11158433508658
    [Google Scholar]
  130. BeheraA. SaN. PradhanS.P. SwainS. SahuP.K. Metal nanoparticles in Alzheimer’s disease.J. Alzheimers Dis. Rep.20237179181010.3233/ADR‑22011237662608
    [Google Scholar]
  131. SharmaM. TiwariV. ChaturvediS. WahajuddinM. ShuklaS. PandaJ.J. Self-fluorescent lone tryptophan nanoparticles as theranostic agents against alzheimer’s disease.ACS Appl. Mater. Interfaces20221411130791309310.1021/acsami.2c0109035263093
    [Google Scholar]
  132. DuanL. LiX. JiR. HaoZ. KongM. WenX. GuanF. MaS. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases.Polymers2023159219610.3390/polym1509219637177342
    [Google Scholar]
  133. La BarberaL. MauriE. D’AmelioM. GoriM. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer’s disease: Current trends and future perspectives.Front. Neurosci.20221693985510.3389/fnins.2022.93985535992936
    [Google Scholar]
  134. FakhriS. AbdianS. ZarneshanS.N. MoradiS.Z. FarzaeiM.H. AbdollahiM. Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases.Int. J. Nanomedicine20221729933110.2147/IJN.S34718735095273
    [Google Scholar]
  135. RaulinA.C. DossS.V. TrottierZ.A. IkezuT.C. BuG. LiuC.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies.Mol. Neurodegener.20221717210.1186/s13024‑022‑00574‑436348357
    [Google Scholar]
  136. IkuraH. EndoJ. KitakataH. MoriyamaH. SanoM. FukudaK. Molecular mechanism of pathogenesis and treatment strategies for AL amyloidosis.Int. J. Mol. Sci.20222311633610.3390/ijms2311633635683015
    [Google Scholar]
  137. JeelaniS. Jagat ReddyR.C. MaheswaranT. AsokanG.S. DanyA. AnandB. Theranostics: A treasured tailor for tomorrow.J. Pharm. Bioallied Sci.201465610.4103/0975‑7406.13724925210387
    [Google Scholar]
  138. FranciscoT.N. MalafaiaD. MeloL. SilvaA.M.S. AlbuquerqueH.M.T. Recent advances in fluorescent theranostics for alzheimer’s disease: A comprehensive survey on design, synthesis, and properties.ACS Omega2024912135561359110.1021/acsomega.3c1041738559945
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501388678250618070927
Loading
/content/journals/cdt/10.2174/0113894501388678250618070927
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test