Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Biofilms are complicated microbial communities attached to surfaces, bringing about serious clinical, industrial, and environmental issues due to their resistance to conventional antimicrobial treatments. One critical factor of biofilm formation and persistence is quorum sensing - a mechanism that enables cell-to-cell communication and controls the gene expression pattern depending on the population density. It is based on the constant production, secretion, and response of small signalling molecules, termed auto-inducers. The main role of QS is the regulation of vital processes in the cell, such as biofilm formation and virulence factor production, which intensify pathogenicity, drug resistance, and toxin production. In this respect, interruption of QS can be a potential druggable target, and the discovery of QS-inhibiting agents as anti-virulence compounds may offer an alternative therapeutic approach to conventional antibiotics. Quorum sensing inhibition implies a novel strategy against microbial pathogenicity as it only reduces cell-to-cell communication pathways and thus attenuates various physiological responses coordinated by the QS mechanism. Hence, it qualifies as a suitable target for drug discovery. This article provides a comprehensive overview of the Las, Rhl, Pqs, and Iqs quorum sensing cascades in , elucidating their molecular targets and regulatory roles in virulence. Focusing on therapeutic potential, the review highlights recently identified QS inhibitors and their mechanisms of action, focusing on molecular targets within QS cascades. The review underscores the critical importance of identifying key molecular targets within QS cascades, as their precise knowledge enables the strategic design of inhibitors that disrupt bacterial communication. This work advances innovative therapeutic paradigms by identifying key QS targets, offering promising strategies to disrupt virulence pathways and combat infections.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501373124250410105111
2025-04-17
2025-10-07
Loading full text...

Full text loading...

References

  1. TangK.W.K. MillarB.C. MooreJ.E. Antimicrobial resistance (AMR).Br. J. Biomed. Sci.2023801138710.3389/bjbs.2023.1138737448857
    [Google Scholar]
  2. PatelV. PatelR. Plants as latent sources of new antimicrobials and resistance modifying agents against multi drug resistant (MDR).Strains.201642742
    [Google Scholar]
  3. FounouR.C. BlockerA.J. NoubomM. TsayemC. ChoukemS.P. DongenM.V. FounouL.L. The COVID-19 pandemic: A threat to antimicrobial resistance containment.Future Sci. OA202178FSO73610.2144/fsoa‑2021‑001234290883
    [Google Scholar]
  4. HutchingsM.I. TrumanA.W. WilkinsonB. Antibiotics: Past, present and future.Curr. Opin. Microbiol.201951728010.1016/j.mib.2019.10.00831733401
    [Google Scholar]
  5. MoradaliM.F. GhodsS. RehmB.H.A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence.Front. Cell. Infect. Microbiol.201773910.3389/fcimb.2017.0003928261568
    [Google Scholar]
  6. SantajitS. SookrungN. IndrawattanaN. Quorum sensing in ESKAPE bugs: A target for combating antimicrobial resistance and bacterial virulence.Biology20221110146610.3390/biology1110146636290370
    [Google Scholar]
  7. ValentiniM. GonzalezD. MavridouD.A.I. FillouxA. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa.Curr. Opin. Microbiol.201841152010.1016/j.mib.2017.11.00629166621
    [Google Scholar]
  8. BouyahyaA. ChamkhiI. BalahbibA. RebezovM. ShariatiM.A. WilairatanaP. MubarakM.S. BenaliT. El OmariN. Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: A comprehensive review.Molecules2022275148410.3390/molecules2705148435268585
    [Google Scholar]
  9. Sánchez-JiménezA. LlamasM.A. Marcos-TorresF.J. Transcriptional regulators controlling virulence in Pseudomonas aeruginosa. Int. J. Mol. Sci.202324151189510.3390/ijms24151189537569271
    [Google Scholar]
  10. QinS. XiaoW. ZhouC. PuQ. DengX. LanL. LiangH. SongX. WuM. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics.Signal Transduct. Target. Ther.20227119910.1038/s41392‑022‑01056‑135752612
    [Google Scholar]
  11. ZhaoJ. LiX. HouX. QuanC. ChenM. Widespread existence of quorum sensing inhibitors in marine bacteria: Potential drugs to combat pathogens with novel strategies.Mar. Drugs201917527510.3390/md1705027531072008
    [Google Scholar]
  12. BobanT. NadarS. TauroS. Breaking down bacterial communication: A review of quorum quenching agents.Future J. Pharm. Sci.2023917710.1186/s43094‑023‑00526‑9
    [Google Scholar]
  13. SonbolF. El-BannaT. ElgamlA. AboelsuodK.M. Impact of quorum sensing system on virulence factors production in Pseudomonas aeruginosa.J. Pure Appl. Microbiol.20221621226123810.22207/JPAM.16.2.51
    [Google Scholar]
  14. NealsonK.H. PlattT. HastingsJ.W. Cellular control of the synthesis and activity of the bacterial luminescent system.J. Bacteriol.1970104131332210.1128/jb.104.1.313‑322.19705473898
    [Google Scholar]
  15. FuquaW.C. WinansS.C. GreenbergE.P. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators.J. Bacteriol.1994176226927510.1128/jb.176.2.269‑275.19948288518
    [Google Scholar]
  16. PaggiR.A. MartoneC.B. FuquaC. CastroR.E. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus.FEMS Microbiol. Lett.20032211495210.1016/S0378‑1097(03)00174‑512694909
    [Google Scholar]
  17. PadderS.A. PrasadR. ShahA.H. Quorum sensing: A less known mode of communication among fungi.Microbiol. Res.2018210515810.1016/j.micres.2018.03.00729625658
    [Google Scholar]
  18. QiaoH. ChenJ. YangS. Enhanced polysaccharide production through quorum sensing system in Cordyceps militaris.J. Basic Microbiol.2024647e240010310.1002/jobm.20240010338771080
    [Google Scholar]
  19. WongsukT. PumeesatP. LuplertlopN. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity.J. Basic Microbiol.201656544044710.1002/jobm.20150075926972663
    [Google Scholar]
  20. NagaN.G. El-BadanD.E. GhanemK.M. ShaabanM.I. It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy.Cell Commun. Signal.202321113310.1186/s12964‑023‑01154‑937316831
    [Google Scholar]
  21. ChenR. DézielE. GroleauM.C. SchaeferA.L. GreenbergE.P. Social cheating in a Pseudomonas aeruginosa quorum-sensing variant.Proc. Natl. Acad. Sci. USA2019116147021702610.1073/pnas.181980111630846553
    [Google Scholar]
  22. PapenfortK. BasslerB.L. Quorum sensing signal–response systems in Gram-negative bacteria.Nat. Rev. Microbiol.201614957658810.1038/nrmicro.2016.8927510864
    [Google Scholar]
  23. ChongG. KimyonÖ. ManefieldM. Quorum sensing signal synthesis may represent a selective advantage independent of its role in regulation of bioluminescence in Vibrio fischeri.PLoS One201386e6744310.1371/journal.pone.006744323825662
    [Google Scholar]
  24. ChuX. YangQ. Regulatory mechanisms and physiological impacts of quorum sensing in Gram-negative bacteria.Infect. Drug Resist.2024175395541010.2147/IDR.S48538839654694
    [Google Scholar]
  25. LiuL. ZengX. ZhengJ. ZouY. QiuS. DaiY. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review.Microbiol. Res.202226212710210.1016/j.micres.2022.12710235792523
    [Google Scholar]
  26. ErkihunM. AsmareZ. EndalamewK. GetieB. KirosT. BerhanA. Medical scope of biofilm and quorum sensing during biofilm formation: Systematic review.Bacteria20243311813510.3390/bacteria3030008
    [Google Scholar]
  27. HaqueS. YadavD.K. BishtS.C. YadavN. SinghV. DubeyK.K. JawedA. WahidM. DarS.A. Quorum sensing pathways in Gram-positive and -negative bacteria: Potential of their interruption in abating drug resistance.J. Chemother.201931416118710.1080/1120009X.2019.159917531007147
    [Google Scholar]
  28. D’SouzaG. ShitutS. PreussgerD. YousifG. WaschinaS. KostC. Ecology and evolution of metabolic cross-feeding interactions in bacteria.Nat. Prod. Rep.201835545548810.1039/C8NP00009C29799048
    [Google Scholar]
  29. GomilaA. CarratalàJ. BadiaJ.M. CamprubíD. PirizM. ShawE. Diaz-BritoV. EspejoE. NicolásC. BruguésM. PerezR. LéridaA. CastroA. BiondoS. FraccalvieriD. LimónE. GudiolF. PujolM. Preoperative oral antibiotic prophylaxis reduces Pseudomonas aeruginosa surgical site infections after elective colorectal surgery: A multicenter prospective cohort study.BMC Infect. Dis.201818150710.1186/s12879‑018‑3413‑130290773
    [Google Scholar]
  30. SkariyachanS. SridharV.S. PackirisamyS. KumargowdaS.T. ChallapilliS.B. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal.Folia Microbiol.201863441343210.1007/s12223‑018‑0585‑429352409
    [Google Scholar]
  31. SubhadraB. KimD.H. WooK. SurendranS. ChoiC.H. Control of biofilm formation in healthcare: Recent advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors.Materials2018119167610.3390/ma1109167630201944
    [Google Scholar]
  32. Rodríguez-UrretavizcayaB. VilaplanaL. MarcoM.P. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections.Int. J. Antimicrob. Agents202464510732310.1016/j.ijantimicag.2024.10732339242051
    [Google Scholar]
  33. KaliaV.C. Quorum sensing inhibitors: An overview.Biotechnol. Adv.201331222424510.1016/j.biotechadv.2012.10.00423142623
    [Google Scholar]
  34. LuL. LiM. YiG. LiaoL. ChengQ. ZhuJ. ZhangB. WangY. ChenY. ZengM. Screening strategies for quorum sensing inhibitors in combating bacterial infections.J. Pharm. Anal.202212111410.1016/j.jpha.2021.03.00935573879
    [Google Scholar]
  35. SinghA.A. SinghA.K. NerurkarA. Disrupting the quorum sensing mediated virulence in soft rot causing Pectobacterium carotovorum by marine sponge associated Bacillus sp. OA10.World J. Microbiol. Biotechnol.2021371510.1007/s11274‑020‑02982‑433392779
    [Google Scholar]
  36. DefoirdtT. Quorum-sensing systems as targets for antivirulence therapy.Trends Microbiol.201826431332810.1016/j.tim.2017.10.00529132819
    [Google Scholar]
  37. SikdarR. EliasM. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: A review of recent advances.Expert Rev. Anti Infect. Ther.202018121221123310.1080/14787210.2020.179481532749905
    [Google Scholar]
  38. WangD. CuiF. RenL. LiJ. LiT. Quorum-quenching enzymes: Promising bioresources and their opportunities and challenges as alternative bacteriostatic agents in food industry.Compr. Rev. Food Sci. Food Saf.20232221104112710.1111/1541‑4337.1310436636773
    [Google Scholar]
  39. DeryabinD. GaladzhievaA. KosyanD. DuskaevG. Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: Modes of action.Int. J. Mol. Sci.20192022558810.3390/ijms2022558831717364
    [Google Scholar]
  40. NgW.L. BasslerB.L. Bacterial quorum-sensing network architectures.Annu. Rev. Genet.200943119722210.1146/annurev‑genet‑102108‑13430419686078
    [Google Scholar]
  41. RenJ.L. ZhangE. YeX.W. WangM.M. YuB. WangW.H. GuoY.Z. LiuH.M. Design, synthesis and antibacterial evaluation of novel AHL analogues.Bioorg. Med. Chem. Lett.201323144154415610.1016/j.bmcl.2013.05.03523735742
    [Google Scholar]
  42. ChbibC. Impact of the structure-activity relationship of AHL analogues on quorum sensing in Gram-negative bacteria.Bioorg. Med. Chem.202028311528210.1016/j.bmc.2019.11528231918952
    [Google Scholar]
  43. JakobsenT.H. van GennipM. PhippsR.K. ShanmughamM.S. ChristensenL.D. AlhedeM. SkindersoeM.E. RasmussenT.B. FriedrichK. UtheF. JensenP.Ø. MoserC. NielsenK.F. EberlL. LarsenT.O. TannerD. HøibyN. BjarnsholtT. GivskovM. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing.Antimicrob. Agents Chemother.20125652314232510.1128/AAC.05919‑1122314537
    [Google Scholar]
  44. GallowayW.R.J.D. HodgkinsonJ.T. BowdenS.D. WelchM. SpringD.R. Quorum sensing in Gram-negative bacteria: Small-molecule modulation of AHL and AI-2 quorum sensing pathways.Chem. Rev.20111111286710.1021/cr100109t21182299
    [Google Scholar]
  45. DizajS.M. LotfipourF. Barzegar-JalaliM. ZarrintanM.H. AdibkiaK. Antimicrobial activity of the metals and metal oxide nanoparticles.Mater. Sci. Eng. C20144427828410.1016/j.msec.2014.08.03125280707
    [Google Scholar]
  46. LeeJ. ZhangL. The hierarchy quorum sensing network in Pseudomonas aeruginosa.Protein Cell201561264110.1007/s13238‑014‑0100‑x25249263
    [Google Scholar]
  47. GambelloM.J. IglewskiB.H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression.J. Bacteriol.199117393000300910.1128/jb.173.9.3000‑3009.19911902216
    [Google Scholar]
  48. ChadhaJ. HarjaiK. ChhibberS. Revisiting the virulence hallmarks of Pseudomonas aeruginosa : A chronicle through the perspective of quorum sensing.Environ. Microbiol.20222462630265610.1111/1462‑2920.1578434559444
    [Google Scholar]
  49. KhayatM.T. AbbasH.A. IbrahimT.S. ElbaramawiS.S. KhayyatA.N. AlharbiM. HegazyW.A.H. YehiaF.A.A. Synergistic benefits: Exploring the anti-virulence effects of metformin/vildagliptin antidiabetic combination against Pseudomonas aeruginosa via controlling quorum sensing systems.Biomedicines2023115144210.3390/biomedicines1105144237239113
    [Google Scholar]
  50. GrabskiH.V. TiratsuyanS.G. Interaction of quercetin with LasR of Pseudomonas aeruginosa: Mechanistic insights of the Inhibition of virulence through quorum sensing. 4th International Conference on Nanotechnologies and Biomedical EngineeringSpringer, Cham, 2020, pp. 585-588.2020
    [Google Scholar]
  51. JayaramanS. Adhilaxmi KannanM. RajendhranN. JohnG.J. RamasamyT. Indole-3-acetic acid impacts biofilm formation and virulence production of Pseudomonas aeruginosa.Biofouling202339880081510.1080/08927014.2023.226953737853689
    [Google Scholar]
  52. GaninH. RayoJ. AmaraN. LevyN. KriefP. MeijlerM.M. Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing.MedChemComm20134117517910.1039/C2MD20196H
    [Google Scholar]
  53. AnjuV.T. BusiS. RanganathanS. AmpasalaD.R. KumarS. SuchiangK. KumavathR. DyavaiahM. Sesamin and sesamolin rescues Caenorhabditis elegans from Pseudomonas aeruginosa infection through the attenuation of quorum sensing regulated virulence factors.Microb. Pathog.202115510491210.1016/j.micpath.2021.10491233932548
    [Google Scholar]
  54. AldawsariM. KhafagyE.S. SaqrA. AlalaiweA. AbbasH. ShaldamM. HegazyW. GodaR. Tackling virulence of Pseudomonas aeruginosa by the natural furanone sotolon.Antibiotics202110787110.3390/antibiotics1007087134356792
    [Google Scholar]
  55. YuX. LiL. SunS. ChangA. DaiX. LiH. WangY. ZhuH. A cyclic dipeptide from marine fungus Penicillium chrysogenum DXY-1 exhibits anti-quorum sensing activity.ACS Omega20216117693770010.1021/acsomega.1c0002033778279
    [Google Scholar]
  56. AlasiriA. SoltaneR. TahaM.N. Abd El-AleamR.H. AlshehriF. SayedA.M. Bakuchiol inhibits Pseudomonas aeruginosa’s quorum sensing-dependent biofilm formation by selectively inhibiting its transcriptional activator protein LasR.Int. J. Biol. Macromol.202425512802510.1016/j.ijbiomac.2023.12802537979739
    [Google Scholar]
  57. KhayatM.T. IbrahimT.S. KhayyatA.N. AlharbiM. ShaldamM.A. MohammadK.A. KhafagyE.S. El-damasyD.A. HegazyW.A.H. AbbasH.A. Sodium citrate alleviates virulence in Pseudomonas aeruginosa. Microorganisms2022105104610.3390/microorganisms1005104635630488
    [Google Scholar]
  58. AbbasH.A. ElsherbiniA.M. ShaldamM.A. Repurposing metformin as a quorum sensing inhibitor in Pseudomonas aeruginosa.Afr. Health Sci.201717380881910.4314/ahs.v17i3.2429085409
    [Google Scholar]
  59. AbbasH.A. ShaldamM.A. EldamasiD. Curtailing quorum sensing in Pseudomonas aeruginosa by sitagliptin.Curr. Microbiol.20207761051106010.1007/s00284‑020‑01909‑432020464
    [Google Scholar]
  60. KhayatM.T. AbbasH.A. IbrahimT.S. KhayyatA.N. AlharbiM. DarwishK.M. ElhadyS.S. KhafagyE.S. SafoM.K. HegazyW.A.H. Anti-quorum sensing activities of gliptins against Pseudomonas aeruginosa and Staphylococcus aureus. Biomedicines2022105116910.3390/biomedicines1005116935625906
    [Google Scholar]
  61. KostylevM. KimD.Y. SmalleyN.E. SalukheI. GreenbergE.P. DandekarA.A. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy.Proc. Natl. Acad. Sci. USA2019116147027703210.1073/pnas.181979611630850547
    [Google Scholar]
  62. GroleauM.C. TailleferH. VincentA.T. ConstantP. DézielE. Pseudomonas aeruginosa isolates defective in function of the LasR quorum sensing regulator are frequent in diverse environmental niches.Environ. Microbiol.20222431062107510.1111/1462‑2920.1574534488244
    [Google Scholar]
  63. PaczkowskiJ.E. McCreadyA.R. CongJ.P. LiZ. JeffreyP.D. SmithC.D. HenkeB.R. HughsonF.M. BasslerB.L. An autoinducer analogue reveals an alternative mode of ligand binding for the lasr quorum-sensing receptor.ACS Chem. Biol.201914337838910.1021/acschembio.8b0097130763066
    [Google Scholar]
  64. PesciE.C. MilbankJ.B.J. PearsonJ.P. McKnightS. KendeA.S. GreenbergE.P. IglewskiB.H. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa.Proc. Natl. Acad. Sci. USA19999620112291123410.1073/pnas.96.20.1122910500159
    [Google Scholar]
  65. McCreadyA.R. PaczkowskiJ.E. CongJ.P. BasslerB.L. An autoinducer-independent RhlR quorum-sensing receptor enables analysis of RhlR regulation.PLoS Pathog.2019156e100782010.1371/journal.ppat.100782031194839
    [Google Scholar]
  66. Ó MuimhneacháinE. ReenF.J. O’GaraF. McGlackenG.P. Analogues of Pseudomonas aeruginosa signalling molecules to tackle infections.Org. Biomol. Chem.201816216917910.1039/C7OB02395B29095463
    [Google Scholar]
  67. CruzR.L. AsfahlK.L. Van den BosscheS. CoenyeT. CrabbéA. DandekarA.A. RhlR-regulated acyl-homoserine lactone quorum sensing in a cystic fibrosis isolate of Pseudomonas aeruginosa.MBio2020112e00532-2010.1128/mBio.00532‑2032265330
    [Google Scholar]
  68. Soto-AcevesM.P. Cocotl-YañezM. Servín-GonzálezL. Soberón-ChávezG. The Rhl quorum-sensing system is at the top of the regulatory hierarchy under phosphate-limiting conditions in Pseudomonas aeruginosa PAO1.J. Bacteriol.20212035e00475-2010.1128/JB.00475‑2033288622
    [Google Scholar]
  69. LetiziaM. MelliniM. FortunaA. ViscaP. ImperiF. LeoniL. RampioniG. PqsE expands and differentially modulates the RhlR quorum sensing regulon in Pseudomonas aeruginosa.Microbiol. Spectr.2022103e00961-2210.1128/spectrum.00961‑2235604161
    [Google Scholar]
  70. NamS. HamS.Y. KwonH. KimH.S. MoonS. LeeJ.H. LimT. SonS.H. ParkH.D. ByunY. Discovery and characterization of pure RhlR antagonists against Pseudomonas aeruginosa infections.J. Med. Chem.202063158388840710.1021/acs.jmedchem.0c0063032696644
    [Google Scholar]
  71. ChoiH.Y. LeD.D. KimW.G. Curvularin isolated from Phoma macrostoma is an antagonist of rhlr quorum sensing in Pseudomonas aeruginosa. Front. Microbiol.20221391388210.3389/fmicb.2022.91388235903467
    [Google Scholar]
  72. SimanekK.A. PaczkowskiJ.E. Resistance is not futile: The role of quorum sensing plasticity in Pseudomonas aeruginosa infections and its link to intrinsic mechanisms of antibiotic resistance.Microorganisms2022106124710.3390/microorganisms1006124735744765
    [Google Scholar]
  73. WoodsK.E. AkhterS. RodriguezB. TownsendK.A. SmithN. SmithB. WambuaA. CraddockV. Abisado-DuqueR.G. SantaE.E. MansonD.E. OakleyB.R. HancockL.E. MiaoY. BlackwellH.E. ChandlerJ.R. Characterization of natural product inhibitors of quorum sensing reveals competitive inhibition of Pseudomonas aeruginosa RhlR by ortho -vanillin.Microbiol. Spectr.2024129e00681-2410.1128/spectrum.00681‑2439046261
    [Google Scholar]
  74. LiuJ. ChenQ.X. WuW.F. WangD. ZhaoS.Y. LiJ.H. ChangY.Q. ZengS.G. HuJ.Y. LiY.J. DuJ.X. JiaoS.M. XiaoH.C. ZhangQ. XuJ. ZhaoJ.F. ZhouH.B. WangY.H. ZouJ. SunP.H. Novel ligustilide derivatives target quorum sensing system LasR/LasB and relieve inflammatory response against Pseudomonas aeruginosa infection.Eur. J. Med. Chem.202426311597210.1016/j.ejmech.2023.11597237995562
    [Google Scholar]
  75. SinghV.K. AlmpaniM. MauraD. KitaoT. FerrariL. FontanaS. BergaminiG. CalcaterraE. PignaffoC. NegriM. de Oliveira PereiraT. SkinnerF. GkikasM. AndreottiD. FeliciA. DézielE. LépineF. RahmeL.G. Tackling recalcitrant Pseudomonas aeruginosa infections in critical illness via anti-virulence monotherapy.Nat. Commun.2022131510310.1038/s41467‑022‑32833‑936042245
    [Google Scholar]
  76. SimanekK.A. TaylorI.R. RichaelE.K. Lasek-NesselquistE. BasslerB.L. PaczkowskiJ.E. The PqsE-RhlR interaction regulates RhlR DNA binding to control virulence factor production in Pseudomonas aeruginosa.Microbiol. Spectr.2022101e02108-2110.1128/spectrum.02108‑2135019777
    [Google Scholar]
  77. RampioniG. FalconeM. HeebS. FrangipaniE. FletcherM.P. DubernJ.F. ViscaP. LeoniL. CámaraM. WilliamsP. Unravelling the genome-wide contributions of specific 2-Alkyl-4-Quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa.PLoS Pathog.20161211e100602910.1371/journal.ppat.100602927851827
    [Google Scholar]
  78. DasT. SabirS. ChenR. FarrellJ. KrielF.H. WhiteleyG.S. GlasbeyT.O. ManosJ. WillcoxM.D.P. KumarN. Halogenated dihydropyrrol-2-one molecules inhibit pyocyanin biosynthesis by blocking the pseudomonas quinolone signaling system.Molecules2022274116910.3390/molecules2704116935208954
    [Google Scholar]
  79. TaylorI.R. PaczkowskiJ.E. JeffreyP.D. HenkeB.R. SmithC.D. BasslerB.L. Inhibitor mimetic mutations in the Pseudomonas aeruginosa PqsE enzyme reveal a protein–protein interaction with the quorum-sensing receptor RhlR that is vital for virulence factor production.ACS Chem. Biol.202116474075210.1021/acschembio.1c0004933793200
    [Google Scholar]
  80. TaylorI.R. JeffreyP.D. MoustafaD.A. GoldbergJ.B. BasslerB.L. The PqsE active site as a target for small molecule antimicrobial agents against Pseudomonas aeruginosa.Biochemistry202261171894190310.1021/acs.biochem.2c0033435985643
    [Google Scholar]
  81. BaldelliV. D’AngeloF. PavoncelloV. FiscarelliE.V. ViscaP. RampioniG. LeoniL. Identification of FDA-approved antivirulence drugs targeting the Pseudomonas aeruginosa quorum sensing effector protein PqsE.Virulence202011165266810.1080/21505594.2020.177050832423284
    [Google Scholar]
  82. MokN. ChanS.Y. LiuS.Y. ChuaS.L. Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa.Food Funct.20201176496650810.1039/D0FO00046A32697213
    [Google Scholar]
  83. TajaniA.S. Amiri TehranizadehZ. PourmohammadA. PourmohammadA. IranshahiM. FarhadiF. SoheiliV. Fazly BazzazB.S. Anti-quorum sensing and antibiofilm activity of coumarin derivatives against Pseudomonas aeruginosa PAO1: Insights from in vitro and in silico studies.Iran. J. Basic Med. Sci.202326444545237009015
    [Google Scholar]
  84. HamedM.M. AbdelsamieA.S. RoxK. SchützC. KanyA.M. RöhrigT. SchmelzS. BlankenfeldtW. Arce-RodriguezA. Borrero-de AcuñaJ.M. JahnD. RademacherJ. RingshausenF.C. CramerN. TümmlerB. HirschA.K.H. HartmannR.W. EmptingM. Towards translation of pqsr inverse agonists: From in vitro efficacy optimization to in vivo proof-of-principle.Adv. Sci.2023105220444310.1002/advs.20220444336596691
    [Google Scholar]
  85. ShandilS. YuT.T. SabirS. BlackD.S. KumarN. Synthesis of novel quinazolinone analogues for quorum sensing inhibition.Antibiotics2023127122710.3390/antibiotics1207122737508323
    [Google Scholar]
  86. GrossmanS. SoukariehF. RichardsonW. LiuR. MashabiA. EmsleyJ. WilliamsP. CámaraM. StocksM.J. Novel quinazolinone inhibitors of the Pseudomonas aeruginosa quorum sensing transcriptional regulator PqsR.Eur. J. Med. Chem.202020811277810.1016/j.ejmech.2020.11277832927392
    [Google Scholar]
  87. CollaltoD. GiallonardiG. FortunaA. MeneghiniC. FiscarelliE. ViscaP. ImperiF. RampioniG. LeoniL. in vitro activity of antivirulence drugs targeting the las or pqs quorum sensing against cystic fibrosis Pseudomonas aeruginosa isolates.Front. Microbiol.20221384523110.3389/fmicb.2022.84523135547141
    [Google Scholar]
  88. LiS. ChenS. FanJ. CaoZ. OuyangW. TongN. HuX. HuJ. LiP. FengZ. HuangX. LiY. XieM. HeR. JianJ. WuB. XuC. WuW. GuoJ. LinJ. SunP. Anti-biofilm effect of novel thiazole acid analogs against Pseudomonas aeruginosa through IQS pathways.Eur. J. Med. Chem.2018145647310.1016/j.ejmech.2017.12.07629324344
    [Google Scholar]
  89. ThiM.T.T. WibowoD. RehmB.H.A. Pseudomonas aeruginosa Biofilms.Int. J. Mol. Sci.20202122867110.3390/ijms2122867133212950
    [Google Scholar]
  90. AbdelhamidA.G. YousefA.E. Combating bacterial biofilms: Current and emerging antibiofilm strategies for treating persistent infections.Antibiotics2023126100510.3390/antibiotics1206100537370324
    [Google Scholar]
  91. PaluchE. Rewak-SoroczyńskaJ. JędrusikI. MazurkiewiczE. JermakowK. Prevention of biofilm formation by quorum quenching.Appl. Microbiol. Biotechnol.202010451871188110.1007/s00253‑020‑10349‑w31927762
    [Google Scholar]
  92. FongJ. ZhangC. YangR. BooZ.Z. TanS.K. NielsenT.E. GivskovM. LiuX.W. BinW. SuH. YangL. Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of P. aeruginosa.Sci. Rep.201881115510.1038/s41598‑018‑19504‑w29348452
    [Google Scholar]
  93. JeyakumarS.P. TamilvendanK. KumarM.K.P. ReddyY.N. EarannaN. BiplabD. Stopping not till the rot rots: Quorum quenching as a biocontrol method for soft rot control in agriculture.Biocatal. Agric. Biotechnol.20245710309810.1016/j.bcab.2024.103098
    [Google Scholar]
  94. KhalidS.J. AinQ. KhanS.J. JalilA. SiddiquiM.F. AhmadT. BadshahM. AdnanF. Targeting Acyl Homoserine Lactones (AHLs) by the quorum quenching bacterial strains to control biofilm formation in Pseudomonas aeruginosa. Saudi J. Biol. Sci.20222931673168210.1016/j.sjbs.2021.10.06435280554
    [Google Scholar]
  95. RomeroD. TraxlerM.F. LópezD. KolterR. Antibiotics as signal molecules.Chem. Rev.201111195492550510.1021/cr200050921786783
    [Google Scholar]
  96. FlemmingH.C. WuertzS. Bacteria and archaea on Earth and their abundance in biofilms.Nat. Rev. Microbiol.201917424726010.1038/s41579‑019‑0158‑930760902
    [Google Scholar]
  97. MachadoI. SilvaL.R. GiaourisE.D. MeloL.F. SimõesM. Quorum sensing in food spoilage and natural-based strategies for its inhibition.Food Res. Int.202012710875410.1016/j.foodres.2019.10875431882100
    [Google Scholar]
  98. SeveroC. AnjosI. SouzaV.G.L. CanejoJ.P. BronzeM.R. FernandoA.L. CoelhosoI. BettencourtA.F. RibeiroI.A.C. Development of cranberry extract films for the enhancement of food packaging antimicrobial properties.Food Packag. Shelf Life20212810064610.1016/j.fpsl.2021.100646
    [Google Scholar]
  99. PatelR. SoniM. SoyantarB. ShivangiS. SutariyaS. SarafM. GoswamiD. A clash of quorum sensing vs. quorum sensing inhibitors: An overview and risk of resistance.Arch. Microbiol.2023205410710.1007/s00203‑023‑03442‑x36881156
    [Google Scholar]
  100. DefoirdtT. BoonN. BossierP. Can bacteria evolve resistance to quorum sensing disruption?PLoS Pathog.201067e100098910.1371/journal.ppat.100098920628566
    [Google Scholar]
  101. DoğanŞ. GökalsınB. Şenkardeşİ. DoğanA. SesalN.C. Anti-quorum sensing and anti-biofilm activities of Hypericum perforatum extracts against Pseudomonas aeruginosa.J. Ethnopharmacol.201923529330010.1016/j.jep.2019.02.02030763694
    [Google Scholar]
  102. Cortes-LópezH. Castro-RosasJ. García-ContrerasR. Rodríguez-ZavalaJ.S. González-PedrajoB. Díaz-GuerreroM. Hernández-MoralesJ. Muñoz-CazaresN. Soto-HernándezM. Ruíz-PosadasL.M. Castillo-JuárezI. Antivirulence activity of a dietary phytochemical: Hibiscus acid isolated from Hibiscus sabdariffa L. reduces the virulence of Pseudomonas aeruginosa in a mouse infection model.J. Med. Food202124993494310.1089/jmf.2020.013533751918
    [Google Scholar]
  103. ThornhillS.G. KumarM. VegaL.M. McLeanR.J.C. Cadmium ion inhibition of quorum signalling in Chromobacterium violaceum.Microbiology2017163101429143510.1099/mic.0.00053128895513
    [Google Scholar]
  104. BaliE.B. Erkan TürkmenK. ErdönmezD. SağlamN. Comparative study of inhibitory potential of dietary phytochemicals against quorum sensing activity of and biofilm formation by Chromobacterium violaceum 12472, and swimming and swarming behaviour of Pseudomonas aeruginosa PAO1.Food Technol. Biotechnol.201957221222110.17113/ftb.57.02.19.582331537970
    [Google Scholar]
  105. ImamuraY. YanagiharaK. TomonoK. OhnoH. HigashiyamaY. MiyazakiY. HirakataY. MizutaY. KadotaJ. TsukamotoK. KohnoS. Role of Pseudomonas aeruginosa quorum-sensing systems in a mouse model of chronic respiratory infection.J. Med. Microbiol.200554651551810.1099/jmm.0.46004‑015888457
    [Google Scholar]
  106. García-ContrerasR. Nuñez-LópezL. Jasso-ChávezR. KwanB.W. BelmontJ.A. Rangel-VegaA. MaedaT. WoodT.K. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating.ISME J.20159111512510.1038/ismej.2014.9824936763
    [Google Scholar]
  107. LazarV. OpreaE. DituL.M. Resistance, tolerance, virulence and bacterial pathogen fitness—Current state and envisioned solutions for the near future.Pathogens202312574610.3390/pathogens1205074637242416
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501373124250410105111
Loading
/content/journals/cdt/10.2174/0113894501373124250410105111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test