Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Background

Kidney stones have always been a significant matter in the healthcare sector worldwide, with a high prevalence rate, especially in women. Urolithiasis is the solid mineral deposits in the renal calyces and kidney pelvis. Expounding upon the pathophysiology, various mechanisms such as supersaturation, crystallization, and aggregation are explored. Some new targets can potentially stop the disease's underlying cause that has been found.

Aim

To compile the Recent Progression and treatment approaches for kidney stone management.

Material and Methods

A systematic review was conducted using a comprehensive literature search on the roles of osteopontin, vitamin D, nephrocalcin, and other factors in kidney stone formation in Google Scholar, PubMed, Elsevier, OPN is a multifunctional protein that limits the formation of stones by participating in resorption. The other is the concentration of vitamin D, which raises calcium absorption and causes kidney stones to form. Further, the review encapsulates the spectrum of treatment approaches encompassing phytoconstituents, pharmacotherapy, and minimally invasive procedures, including surgical interventions.

Results

From the Phytochemical-based literature survey, Rubicodifolin, L-ascorbic acid, Thymoquinone, , show promising activity in managing kidney stone. Apart from that, we have found such data that has been published in reputed journals. This synthetic drug-based approach shows traditional drug-based targeting. Where Nifedipine, Chlorthalidone, Allopurinol, , were used for symptomatic relief. Peptide-based approach reveals that several peptides for the treatment of kidney stone, where Lumasiran, a phase III clinical trial peptide molecule, targets glycolate oxidase and reduces calcium oxalate crystal levels.

Conclusion

To implement more effective treatments, it is necessary to identify and develop a targeted therapy for the druggable targets. Various such druggable targets have been reported such as osteopontin which has come out as a protein with various functions including involvement in the inhibition of crystal adherence to the renal epithelium. Another such target is vitamin D and nephrocalcin.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501346592250505050431
2025-05-09
2025-10-25
Loading full text...

Full text loading...

References

  1. KhanS.R. PearleM.S. RobertsonW.G. GambaroG. CanalesB.K. DoiziS. TraxerO. TiseliusH-G. Kidney stones (Primer).Nat. Rev. Dis. Prim.201621600810.1038/nrdp.2016.827188687
    [Google Scholar]
  2. SchottC. PourtousiA. ConnaughtonD.M. Monogenic causation of pediatric nephrolithiasis.Front. Urol.20222107571110.3389/fruro.2022.1075711
    [Google Scholar]
  3. LiuY. ChenY. LiaoB. LuoD. WangK. LiH. ZengG. Epidemiology of urolithiasis in Asia.Asian J. Urol.20185420521410.1016/j.ajur.2018.08.00730364478
    [Google Scholar]
  4. PennistonK.L. McLarenI.D. GreenleeR.T. NakadaS.Y. Urolithiasis in a rural Wisconsin population from 1992 to 2008: Narrowing of the male-to-female ratio.J. Urol.201118551731173610.1016/j.juro.2010.12.03421420112
    [Google Scholar]
  5. ScalesC.D.Jr SmithA.C. HanleyJ.M. SaigalC.S. Prevalence of kidney stones in the United States.Eur. Urol.201262116016510.1016/j.eururo.2012.03.05222498635
    [Google Scholar]
  6. GoldfarbD.S. A woman with recurrent calcium phosphate kidney stones.Clin. J. Am. Soc. Nephrol.2012771172117810.2215/CJN.0056011222595827
    [Google Scholar]
  7. MaQ. FangL. SuR. MaL. XieG. ChengY. Uric acid stones, clinical manifestations and therapeutic considerations.Postgrad. Med. J.201894111445846210.1136/postgradmedj‑2017‑13533230002092
    [Google Scholar]
  8. CoeF.L. EvanA. WorcesterE. Kidney stone disease.J. Clin. Invest.2005115102598260810.1172/JCI2666216200192
    [Google Scholar]
  9. ThomasK. WongK. WithingtonJ. BultitudeM. DohertyA. Cystinuria—a urologist’s perspective.Nat. Rev. Urol.201411527027710.1038/nrurol.2014.5124662732
    [Google Scholar]
  10. CoeF.L. WorcesterE.M. EvanA.P. Idiopathic hypercalciuria and formation of calcium renal stones.Nat. Rev. Nephrol.201612951953310.1038/nrneph.2016.10127452364
    [Google Scholar]
  11. DaudonM. BounxoueiB. Santa CruzF. Leite da SilvaS. DioufB. AngwafooF.F.III TalatiJ. DesrezG. Composition of renal stones currently observed in non-industrialized countries.Prog. Urol.20041461151116115751409
    [Google Scholar]
  12. FrickK.K. BushinskyD.A. Molecular mechanisms of primary hypercalciuria.J. Am. Soc. Nephrol.20031441082109510.1097/01.ASN.0000062960.26868.1712660344
    [Google Scholar]
  13. EvanA.P. Physiopathology and etiology of stone formation in the kidney and the urinary tract.Pediatr. Nephrol.201025583184110.1007/s00467‑009‑1116‑y19198886
    [Google Scholar]
  14. MoeO.W. Kidney stones: Pathophysiology and medical management.Lancet2006367950733334410.1016/S0140‑6736(06)68071‑916443041
    [Google Scholar]
  15. HerringL.C. Observations on the analysis of ten thousand urinary calculi.J. Urol.196288454556210.1016/S0022‑5347(17)64842‑013954078
    [Google Scholar]
  16. MandelN.S. MandelG.S. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition.J. Urol.198914261516152110.1016/S0022‑5347(17)39145‑02585627
    [Google Scholar]
  17. PakC.Y.C. PoindexterJ.R. Adams-HuetB. PearleM.S. Predictive value of kidney stone composition in the detection of metabolic abnormalities.Am. J. Med.20031151263210.1016/S0002‑9343(03)00201‑812867231
    [Google Scholar]
  18. ShahJ. WhitfieldH.N. Urolithiasis through the ages.BJU Int.200289880181010.1046/j.1464‑410X.2002.02769.x11972501
    [Google Scholar]
  19. StamatelouK. GoldfarbD.S. Epidemiology of kidney stones.Healthcare.202311342410.3390/healthcare1103042436766999
    [Google Scholar]
  20. ChewcharatA. CurhanG. Trends in the prevalence of kidney stones in the United States from 2007 to 2016.Urolithiasis2021491273910.1007/s00240‑020‑01210‑w32870387
    [Google Scholar]
  21. AbufarajM. XuT. CaoC. WaldhoerT. SeitzC. D’andreaD. SiyamA. TarawnehR. FajkovicH. SchernhammerE. YangL. ShariatS.F. Prevalence and trends in kidney stone among adults in the USA: Analyses of national health and nutrition examination survey 2007–2018 data.Eur. Urol. Focus2021761468147510.1016/j.euf.2020.08.01132900675
    [Google Scholar]
  22. ChenZ. ProsperiM. BirdV.Y. Prevalence of kidney stones in the USA: The national health and nutrition evaluation survey.J. Clin. Urol.201912429630210.1177/2051415818813820
    [Google Scholar]
  23. AggarwalK.P. NarulaS. KakkarM. TandonC. Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators.BioMed Res. Int.2013201312110.1155/2013/29295324151593
    [Google Scholar]
  24. WangZ. ZhangY. ZhangJ. DengQ. LiangH. Recent advances on the mechanisms of kidney stone formation (Review).Int. J. Mol. Med.202148214914910.3892/ijmm.2021.498234132361
    [Google Scholar]
  25. YoodeeS. PeerapenP. PlumworasawatS. ThongboonkerdV. Roles of heat-shock protein 90 and its four domains (N, LR, M and C) in calcium oxalate stone-forming processes.Cell. Mol. Life Sci.202279845410.1007/s00018‑022‑04483‑z35900595
    [Google Scholar]
  26. DhondupT. KittanamongkolchaiW. VaughanL.E. MehtaR.A. ChhinaJ.K. EndersF.T. HicksonL.J. LieskeJ.C. RuleA.D. Risk of ESRD and mortality in kidney and bladder stone formers.Am. J. Kidney Dis.201872679079710.1053/j.ajkd.2018.06.01230146423
    [Google Scholar]
  27. KumarV. FarellG. DeganelloS. LieskeJ.C. Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals.J. Am. Soc. Nephrol.200314228929710.1097/01.ASN.0000046030.24938.0A12538728
    [Google Scholar]
  28. DeanC. KanellosJ. PhamH. GomesM. OatesA. GroverP. RyallR. Effects of inter-α-inhibitor and several of its derivatives on calcium oxalate crystallization in vitro.Clin. Sci. (Lond.)200098447148010.1042/cs098047110731483
    [Google Scholar]
  29. EvanA.P. CoeF.L. LingemanJ.E. ShaoY. SommerA.J. BledsoeS.B. AndersonJ.C. WorcesterE.M. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque.Anat. Rec. (Hoboken)2007290101315132310.1002/ar.2058017724713
    [Google Scholar]
  30. RobertsonW.G. PeacockM. NordinB.E. Activity products in stone-forming and non-stone-forming urine.Clin. Sci.19683435795945666884
    [Google Scholar]
  31. RatkalkarV.N. KleinmanJ.G. Mechanisms of stone formation.Clin. Rev. Bone Miner. Metab.201193-418719710.1007/s12018‑011‑9104‑822229020
    [Google Scholar]
  32. CeriniC. GeiderS. DussolB. HennequinC. DaudonM. VeeslerS. NitscheS. BoistelleR. BerthézèneP. DupuyP. VaziA. BerlandY. DagornJ.C. VerdierJ.M. Nucleation of calcium oxalate crystals by albumin: Involvement in the prevention of stone formation.Kidney Int.19995551776178610.1046/j.1523‑1755.1999.00426.x10231440
    [Google Scholar]
  33. RodgersA.L. Allie-HamdulayS. JacksonG.E. DurbachI. Theoretical modeling of the urinary supersaturation of calcium salts in healthy individuals and kidney stone patients: Precursors, speciation and therapeutic protocols for decreasing its value.J. Cryst. Growth2013382677410.1016/j.jcrysgro.2013.07.031
    [Google Scholar]
  34. HamamotoS. TaguchiK. FujiiY. Molecular mechanism of renal stone formation.Clin. Calcium201121101481148721960233
    [Google Scholar]
  35. FasanoJ.M. KhanS.R. Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: An in vitro study.Kidney Int.200159116917810.1046/j.1523‑1755.2001.00477.x11135069
    [Google Scholar]
  36. WorcesterE.M. CoeF.L. Nephrolithiasis.Prim. Care2008352369391, vii10.1016/j.pop.2008.01.00518486720
    [Google Scholar]
  37. ThongboonkerdV. Proteomics of crystal–cell interactions: A model for kidney stone research.Cells201989107610.3390/cells809107631547429
    [Google Scholar]
  38. FinlaysonB. ReidF. The expectation of free and fixed particles in urinary stone disease.Invest. Urol.1978156442448649291
    [Google Scholar]
  39. KhanS.R. HackettR.L. Developmental morphology of calcium oxalate foreign body stones in rats.Calcif. Tissue Int.198537216517310.1007/BF025548363924373
    [Google Scholar]
  40. KhanS.R. HackettR.L. Urolithogenesis of mixed foreign body stones.J. Urol.198713851321132810.1016/S0022‑5347(17)43592‑03312647
    [Google Scholar]
  41. RobertsonW.G. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall’s plugs and calcium oxalate crystalluria in a computer model of renal function.Urolithiasis201543Suppl. 19310710.1007/s00240‑014‑0737‑125407799
    [Google Scholar]
  42. CoeF.L. EvanA.P. WorcesterE.M. LingemanJ.E. Three pathways for human kidney stone formation.Urol. Res.201038314716010.1007/s00240‑010‑0271‑820411383
    [Google Scholar]
  43. CookeSAR. The site of calcification in the human renal papilla.Br. J. Surg.1970571289089610.1002/bjs.18005712055487030
    [Google Scholar]
  44. KhanS.R. Crystal-induced inflammation of the kidneys: Results from human studies, animal models, and tissue-culture studies.Clin. Exp. Nephrol.200482758810.1007/s10157‑004‑0292‑015235923
    [Google Scholar]
  45. KeddisM.T. RuleA.D. Nephrolithiasis and loss of kidney function.Curr. Opin. Nephrol. Hypertens.201322439039610.1097/MNH.0b013e32836214b923736840
    [Google Scholar]
  46. RandallA. The origin and growth of renal calculi.Ann. Surg.193710561009102710.1097/00000658‑193706000‑0001417856988
    [Google Scholar]
  47. WorcesterE.M. CoeF.L. Clinical practice. Calcium kidney stones.N. Engl. J. Med.20103631095496310.1056/NEJMcp100101120818905
    [Google Scholar]
  48. KhanS.R. Renal tubular damage/dysfunction: Key to the formation of kidney stones.Urol. Res.2006342869110.1007/s00240‑005‑0016‑216404622
    [Google Scholar]
  49. KuoR.L. LingemanJ.E. EvanA.P. PatersonR.F. ParksJ.H. BledsoeS.B. MunchL.C. CoeF.L. Urine calcium and volume predict coverage of renal papilla by Randall’s plaque.Kidney Int.20036462150215410.1046/j.1523‑1755.2003.00316.x14633137
    [Google Scholar]
  50. LieskeJ.C. TobackF.G. Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals.Am. J. Physiol.19932645 Pt 2F800F8078498532
    [Google Scholar]
  51. EvanA.P. WorcesterE.M. CoeF.L. WilliamsJ.Jr LingemanJ.E. Mechanisms of human kidney stone formation.Urolithiasis201543S1Suppl. 1193210.1007/s00240‑014‑0701‑025108546
    [Google Scholar]
  52. LieskeJ.C. HammesM.S. TobackF.G. Role of calcium oxalate monohydrate crystal interactions with renal epithelial cells in the pathogenesis of nephrolithiasis: A review.Scanning Microsc.19961025195339813629
    [Google Scholar]
  53. ChaiyaritS. SinghtoN. ThongboonkerdV. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes.Chem. Biol. Interact.2016246303510.1016/j.cbi.2015.12.01826748311
    [Google Scholar]
  54. StandalT. BorsetM. SundanA. Role of osteopontin in adhesion, migration, cell survival and bone remodeling.Exp. Oncol.200426317918415494684
    [Google Scholar]
  55. IcerM.A. Gezmen-KaradagM. The multiple functions and mechanisms of osteopontin.Clin. Biochem.201859172410.1016/j.clinbiochem.2018.07.00330003880
    [Google Scholar]
  56. HiroseM. TozawaK. OkadaA. HamamotoS. HigashibataY. GaoB. HayashiY. ShimizuH. KubotaY. YasuiT. KohriK. Role of osteopontin in early phase of renal crystal formation: Immunohistochemical and microstructural comparisons with osteopontin knock-out mice.Urol. Res.201240212112910.1007/s00240‑011‑0400‑z21833789
    [Google Scholar]
  57. HamamotoS. YasuiT. OkadaA. HiroseM. MatsuiY. KonS. SakaiF. KojimaY. HayashiY. TozawaK. UedeT. KohriK. Crucial role of the cryptic epitope slayglr within osteopontin in renal crystal formation of mice.J. Bone Miner. Res.201126122967297710.1002/jbmr.49521898593
    [Google Scholar]
  58. AsselmanM. VerhulstA. de BroeM.E. VerkoelenC.F. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys.J. Am. Soc. Nephrol.200314123155316610.1097/01.ASN.0000099380.18995.F714638914
    [Google Scholar]
  59. TangJ. ChoncholM.B. Vitamin D and kidney stone disease.Curr. Opin. Nephrol. Hypertens.201322438338910.1097/MNH.0b013e328360bbcd23739765
    [Google Scholar]
  60. ShakhssalimN. Roohi GilaniK. ParvinM. Mohammadi TorbatiP. KashiA.H. AzadvariM. GolestanB. BasiriA. An assessment of parathyroid hormone, calcitonin, 1,25 (OH)2 vitamin D3, estradiol and testosterone in men with active calcium stone disease and evaluation of its biochemical risk factors.Urol. Res.20113911710.1007/s00240‑010‑0276‑320490785
    [Google Scholar]
  61. SakhaeeK. MaaloufN.M. KumarR. PaschA. MoeO.W. Nephrolithiasis-associated bone disease: Pathogenesis and treatment options.Kidney Int.201179439340310.1038/ki.2010.47321124301
    [Google Scholar]
  62. GoldfarbD.S. AveryA.R. Beara-LasicL. DuncanG.E. GoldbergJ. A twin study of genetic influences on nephrolithiasis in women and men.Kidney Int. Rep.20194453554010.1016/j.ekir.2018.11.01730993229
    [Google Scholar]
  63. HunterD.J. De LangeM. SniederH. Mac GregorA.J. SwaminathanR. ThakkerR.V. SpectorT.D. Genetic contribution to renal function and electrolyte balance: A twin study.Clin. Sci. (Lond.)2002103325926510.1042/cs103025912193151
    [Google Scholar]
  64. HemminkiK. HemminkiO. FörstiA. SundquistK. SundquistJ. LiX. Familial risks in urolithiasis in the population of Sweden.BJU Int.2018121347948510.1111/bju.1409629235239
    [Google Scholar]
  65. HirataM. NagaiA. KamataniY. NinomiyaT. TamakoshiA. YamagataZ. KuboM. MutoK. KiyoharaY. MushirodaT. MurakamiY. YujiK. FurukawaY. ZembutsuH. TanakaT. OhnishiY. NakamuraY. MatsudaK. ShionoM. MisumiK. KaiedaR. HaradaH. MinamiS. WatanabeA. EmotoN. TakahashiK. TakedaS. FunakiT. AsaiS. MoriyamaM. TakahashiY. FujiokaT. ObaraW. MoriS. ItoH. NagayamaS. MikiY. MasumotoA. YamadaA. NishizawaY. KodamaK. KutsumiH. SugimotoY. KoretsuneY. KusuokaH. YoshimoriK. Overview of biobank japan follow-up data in 32 diseases.J. Epidemiol.2017273S22S2810.1016/j.je.2016.12.00628190660
    [Google Scholar]
  66. TanikawaC. KamataniY. TeraoC. UsamiM. TakahashiA. MomozawaY. SuzukiK. OgishimaS. ShimizuA. SatohM. MatsuoK. MikamiH. NaitoM. WakaiK. YamajiT. SawadaN. IwasakiM. TsuganeS. KohriK. YuA.S.L. YasuiT. MurakamiY. KuboM. MatsudaK. Novel risk loci identified in a genome-wide association study of urolithiasis in a japanese population.J. Am. Soc. Nephrol.201930585586410.1681/ASN.201809094230975718
    [Google Scholar]
  67. HannanF.M. BabinskyV.N. ThakkerR.V. Disorders of the calcium-sensing receptor and partner proteins: Insights into the molecular basis of calcium homeostasis.J. Mol. Endocrinol.2016573R127R14210.1530/JME‑16‑012427647839
    [Google Scholar]
  68. WingM.R. PatelS.S. RamezaniA. RajD.S. Gut microbiome in chronic kidney disease.Exp. Physiol.2016101447147710.1113/EP08528326337794
    [Google Scholar]
  69. Le BarsP. MatamorosS. MontassierE. Le VaconF. PotelG. SoueidanA. JordanaF. de La CochetièreM.F. The oral cavity microbiota: Between health, oral disease, and cancers of the aerodigestive tract.Can. J. Microbiol.201763647549210.1139/cjm‑2016‑060328257583
    [Google Scholar]
  70. LynchS.V. PedersenO. The human intestinal microbiome in health and disease.N. Engl. J. Med.2016375242369237910.1056/NEJMra160026627974040
    [Google Scholar]
  71. TainY.L. HsuC.N. Role of the gut microbiota in children with kidney disease.Children (Basel)202310226926910.3390/children1002026936832398
    [Google Scholar]
  72. RobijnS. HoppeB. VervaetB.A. D’HaeseP.C. VerhulstA. Hyperoxaluria: A gut–kidney axis?Kidney Int.201180111146115810.1038/ki.2011.28721866092
    [Google Scholar]
  73. SivaS. BarrackE.R. ReddyG.P.V. ThamilselvanV. ThamilselvanS. MenonM. BhandariM. A critical analysis of the role of gut Oxalobacter formigenes in oxalate stone disease.BJU Int.20091031182110.1111/j.1464‑410X.2008.08122.x19021605
    [Google Scholar]
  74. WanchaiK. PongchaidechaA. ChatsudthipongV. ChattipakornS.C. ChattipakornN. LungkaphinA. Role of gastrointestinal microbiota on kidney injury and the obese condition.Am. J. Med. Sci.20173531596910.1016/j.amjms.2016.11.01928104104
    [Google Scholar]
  75. IvanovskiO. DrüekeT.B. A new era in the treatment of calcium oxalate stones?Kidney Int.2013836998100010.1038/ki.2013.4123728004
    [Google Scholar]
  76. MihalopoulosM. YaghoubianA. RazdanS. KhusidJ.A. MehrazinR. BadaniK.K. SfakianosJ.P. AtallahW.M. TewariA.K. WiklundP. GuptaM. KyprianouN. Understanding the link between kidney stones and cancers of the upper urinary tract and bladder.Am. J. Clin. Exp. Urol.202210527729836313208
    [Google Scholar]
  77. SchlieperG. WestenfeldR. BrandenburgV. KettelerM. Vascular calcification in patients with kidney disease: Inhibitors of calcification in blood and urine.Seminars in dialysis.Hoboken, New JerseyWiley Online Library200711312110.1111/j.1525‑139X.2007.00257.x
    [Google Scholar]
  78. CaoL.C. BoevéE.R. de BruijnW.C. RobertsonW.G. SchröderF.H. A review of new concepts in renal stone research.Scann. Microsc.199373104910648146606
    [Google Scholar]
  79. AsplinJ. DeGanelloS. NakagawaY.N. CoeF.L. Evidence that nephrocalcin and urine inhibit nucleation of calcium oxalate monohydrate crystals.Am. J. Physiol.19912615 Pt 2F824F8301951713
    [Google Scholar]
  80. NakagawaY. AhmedM. HallS.L. DeganelloS. CoeF.L. Isolation from human calcium oxalate renal stones of nephrocalcin, a glycoprotein inhibitor of calcium oxalate crystal growth. Evidence that nephrocalcin from patients with calcium oxalate nephrolithiasis is deficient in gamma-carboxyglutamic acid.J. Clin. Invest.19877961782178710.1172/JCI1130193584470
    [Google Scholar]
  81. CoeF.L. NakagawaY. ParksJ.H. Inhibitors within the nephron.Am. J. Kidney Dis.199117440741310.1016/S0272‑6386(12)80633‑02008908
    [Google Scholar]
  82. SirivongsD. NakagawaY. VishnyW.K. FavusM.J. CoeF.L. Evidence that mouse renal proximal tubule cells produce nephrocalcin.Am. J. Physiol.19892573 Pt 2F390F3982782421
    [Google Scholar]
  83. LieskeJ.C. LeonardR. TobackF.G. Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions.Am. J. Physiol.19952684 Pt 2F604F6127733317
    [Google Scholar]
  84. LieskeJ.C. Walsh-ReitzM.M. TobackF.G. Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation.Am. J. Physiol.19922624 Pt 2F622F6301566875
    [Google Scholar]
  85. McKeeM.D. NanclA. KhanS.R. Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi.J. Bone Miner. Res.199510121913192910.1002/jbmr.56501012118619372
    [Google Scholar]
  86. AtmaniF. LacourB. DrüekeT. DaudonM. Isolation and purification of a new glycoprotein from human urine inhibiting calcium oxalate crystallization.Urol. Res.1993211616610.1007/BF002951958456540
    [Google Scholar]
  87. AlelignT. PetrosB. Kidney stone disease: An update on current concepts.Adv. Urol.20182018306836510.1155/2018/306836529515627
    [Google Scholar]
  88. WojcikowskiK. JohnsonD.W. GobeG. Herbs or natural substances as complementary therapies for chronic kidney disease: Ideas for future studies.J. Lab. Clin. Med.2006147416016610.1016/j.lab.2005.11.01116581343
    [Google Scholar]
  89. GobeG.C. WojcikowskiK. Nontraditional (non-Western pharmaceutical) treatments for chronic kidney disease.Clin. Nephrol.2020931495410.5414/CNP92S10831829927
    [Google Scholar]
  90. YarnellE. Botanical medicines for the urinary tract.World J. Urol.200220528529310.1007/s00345‑002‑0293‑012522584
    [Google Scholar]
  91. ShahzadM. SmallD.M. MoraisC. WojcikowskiK. ShabbirA. GobeG.C. Protection against oxidative stress-induced apoptosis in kidney epithelium by Angelica and Astragalus.J. Ethnopharmacol.201617941241910.1016/j.jep.2015.12.02726719285
    [Google Scholar]
  92. TiwariA. SoniV. LondheV. BhandarkarA. BandawaneD. NipateS. An overview on potent indigenous herbs for urinary tract infirmity: Urolithiasis.Asian J. Pharm. Clin. Res.20125712
    [Google Scholar]
  93. MandaviaD.R. PatelM.K. PatelJ.C. AnovadiyaA.P. BaxiS.N. TripathiC.R. Anti-urolithiatic effect of ethanolic extract of Pedalium murex linn. fruits on ethylene glycol-induced renal calculi.Urol. J.201310394695224078501
    [Google Scholar]
  94. SahaS. VermaR.J. Inhibition of calcium oxalate crystallisation in vitro by an extract of Bergenia ciliata.Arab J. Urol.201311218719210.1016/j.aju.2013.04.00126558080
    [Google Scholar]
  95. SoundararajanP. MaheshR. RameshT. BegumV.H. Effect of Aerva lanata on calcium oxalate urolithiasis in rats.Ind. J. Exp. Biol.2006441298198617176671
    [Google Scholar]
  96. GeethaK. ManavalanR. VenkappayyaD. Control of urinary risk factors of stone formation by Salvadora persica in experimental hyperoxaluria.Methods Find. Exp. Clin. Pharmacol.201032962362910.1358/mf.2010.32.9.154911421225013
    [Google Scholar]
  97. BhattP. KushwahA.S. Rubia cordifolia overview: A new approach to treat cardiac disorders.Int J Drug Dev Res201354754
    [Google Scholar]
  98. DivakarK. PawarA.T. ChandrasekharS.B. DigheS.B. DivakarG. Protective effect of the hydro-alcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats.Food Chem. Toxicol.20104841013101810.1016/j.fct.2010.01.01120079795
    [Google Scholar]
  99. UdupaK.N. ChaturvediG.N. TripathiS.N. Advances in Research in Indian Medicine.VaranasiBanaras Hindu University197016
    [Google Scholar]
  100. AlokS. JainS.K. VermaA. KumarM. SabharwalM. Pathophysiology of kidney, gallbladder and urinary stones treatment with herbal and allopathic medicine: A review.Asian Pac. J. Trop. Dis.20133649650410.1016/S2222‑1808(13)60107‑3
    [Google Scholar]
  101. ConteA. PizáP. García-RajaA. Urinary lithogen risk test: Usefulness in the evaluation of renal lithiasis treatment using crystallization inhibitors (citrate and phytate).Arch. Esp. Urol.1999521949910101897
    [Google Scholar]
  102. McHargT. RodgersA. CharltonK. Influence of cranberry juice on the urinary risk factors for calcium oxalate kidney stone formation.BJU Int.200392776576810.1046/j.1464‑410X.2003.04472.x14616463
    [Google Scholar]
  103. KeßlerT. JansenB. HesseA. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation.Eur. J. Clin. Nutr.200256101020102310.1038/sj.ejcn.160144212373623
    [Google Scholar]
  104. SchulsingerD.A. KirshenbaumA. SheynkinY. Evaluation of a novel nutritional supplement to improve urinary magnesium and citrate excretion.J. Urol.153817549720062006
    [Google Scholar]
  105. SienerR. HesseA. The effect of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects.Eur. Urol.200242328929610.1016/S0302‑2838(02)00316‑012234515
    [Google Scholar]
  106. Hinojosa-GonzalezD.E. Torres-MartinezM. Villegas-De LeonS.U. Galindo-GarzaC. Roblesgil-MedranoA. Alanis-GarzaC. Gonzalez-BonillaE. Barrera-JuarezE. Flores-VillalbaE. Emergent urinary decompression in acute stone-related urinary obstruction: A systematic review and meta-analysis.J. Clin. Urol.2023161193110.1177/20514158211017027
    [Google Scholar]
  107. HadjzadehM.A. KhoeiA. HadjzadehZ. ParizadyM. Ethanolic extract of Nigella sativa L. seeds on ethylene glycol-induced kidney calculi in rats.Urol. J.200742869017701927
    [Google Scholar]
  108. LaikangbamR. Damayanti DeviM. Inhibition of calcium oxalate crystal deposition on kidneys of urolithiatic rats by Hibiscus sabdariffa L. extract.Urol. Res.201240321121810.1007/s00240‑011‑0433‑322057204
    [Google Scholar]
  109. ChauhanC.K. JoshiM.J. VaidyaA.D.B. Growth inhibition of Struvite crystals in the presence of herbal extract Commiphora wightii.J. Mater. Sci. Mater. Med.200920S1Suppl. 1859210.1007/s10856‑008‑3489‑z18568390
    [Google Scholar]
  110. Al-YousofyF. GumaihH. IbrahimH. AlasbahyA. Parsley! mechanism as antiurolithiasis remedy.Am. J. Clin. Exp. Urol.201753556229181438
    [Google Scholar]
  111. TandonC. ChaudharyA. SinglaS.K. in vitro evaluation of Terminalia arjuna on calcium phosphate and calcium oxalate crystallization.Indian J. Pharm. Sci.201072334034510.4103/0250‑474X.7048021188043
    [Google Scholar]
  112. JamshedA. JabeenQ. Pharmacological evaluation of Mentha piperita against urolithiasis: An in vitro and in vivo study.Dose Response20222011559325821107308710.1177/1559325821107308735110977
    [Google Scholar]
  113. JagannathN. ChikkannasettyS. GovindadasD. DevasankaraiahG. Study of antiurolithiatic activity of Asparagus racemosus on albino rats.Indian J. Pharmacol.201244557657910.4103/0253‑7613.10037823112416
    [Google Scholar]
  114. ElwejA. GhorbelI. MarrekchiR. BoudawaraO. JamoussiK. BoudawaraT. ZeghalN. SefiM. Improvement of kidney redox states contributes to the beneficial effects of dietary pomegranate peel against barium chloride-induced nephrotoxicity in adult rats.Arch. Physiol. Biochem.2016122313014010.3109/13813455.2016.115029826835741
    [Google Scholar]
  115. JeongB.C. KimB.S. KimJ.I. KimH.H. Effects of green tea on urinary stone formation: An in vivo and in vitro study.J. Endourol.200620535636110.1089/end.2006.20.35616724910
    [Google Scholar]
  116. PrasongwatanaV. WoottisinS. SriboonlueP. KukongviriyapanV. Uricosuric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone former subjects.J. Ethnopharmacol.2008117349149510.1016/j.jep.2008.02.03618423919
    [Google Scholar]
  117. BhandariP. Pomegranate (Punica granatum L). Ancient seeds for modern cure? Review of potential therapeutic applications.Int. J. Nutr. Pharmacol. Neurol. Dis.20122317118410.4103/2231‑0738.99469
    [Google Scholar]
  118. TugcuV. KemahliE. OzbekE. ArinciY.V. UhriM. ErturkunerP. MetinG. SeckinI. KaracaC. IpekogluN. AltugT. CekmenM.B. TasciA.I. Protective effect of a potent antioxidant, pomegranate juice, in the kidney of rats with nephrolithiasis induced by ethylene glycol.J. Endourol.200822122723273210.1089/end.2008.035719025399
    [Google Scholar]
  119. JurenkaJ.S. Therapeutic applications of pomegranate (Punica granatum L.): A review.Altern. Med. Rev.200813212814418590349
    [Google Scholar]
  120. VanachayangkulP. ChowN. KhanS.R. ButterweckV. Prevention of renal crystal deposition by an extract of Ammi visnaga L. and its constituents khellin and visnagin in hyperoxaluric rats.Urol. Res.201139318919510.1007/s00240‑010‑0333‑y21069311
    [Google Scholar]
  121. MeiouetF. El KabbajS. DaudonM. in vitro study of the litholytic effects of herbal extracts on cystine urinary calculi.Prog. Urol.2011211404710.1016/j.purol.2010.05.00921193144
    [Google Scholar]
  122. AkramM. IdreesM. Progress and prospects in the management of kidney stones and developments in phyto-therapeutic modalities.Int. J. Immunopathol. Pharmacol.201933205873841984822010.1177/205873841984822031046493
    [Google Scholar]
  123. RaiA. GautamA. PanchalS. SoodA. PrasharP. PandeyN.K. MelkaniI. KumarB. Protective effect of ethanolic extract of Terminalia arjuna bark against ethylene glycol induced urolithiasis in male rats: in vitro and in vivo evaluation.Res. J. Pharm. Technol.202013126132613910.5958/0974‑360X.2020.01070.7
    [Google Scholar]
  124. GhalayiniI.F. Al-GhazoM.A. HarfeilM.N.A. Prophylaxis and therapeutic effects of raspberry (Rubus idaeus) on renal stone formation in Balb/c mice.Int. Braz J Urol201137225926710.1590/S1677‑5538201100020001321557843
    [Google Scholar]
  125. KuźmaP. DrużyńskaB. ObiedzińskiM. Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum).Acta Sci. Pol. Technol. Aliment.201413214515410.17306/J.AFS.2014.2.424876310
    [Google Scholar]
  126. JafarS. MehriL. HadiB. JamshidM. The antiurolithiasic and hepatocurative activities of aqueous extracts of Petroselinum sativum on ethylene glycol-induced kidney calculi in rats.Sci. Res. Essays2012715771583
    [Google Scholar]
  127. LjubuncicP. SongH. CoganU. AzaizehH. BomzonA. The effects of aqueous extracts prepared from the leaves of Pistacia lentiscus in experimental liver disease.J. Ethnopharmacol.20051001-219820410.1016/j.jep.2005.03.00616054533
    [Google Scholar]
  128. KudachiJ.S. MaisaleA.B. PatilA.S. HadagaleJ.S. Evaluation of in vitro anti urolithiasis activity of herbal drugs.Wor. J. Biol. Pharm. Heal. Sci.202212207307810.30574/wjbphs.2022.12.2.0168
    [Google Scholar]
  129. ZhangH. LiN. LiK. LiP. Protective effect of Urtica dioica methanol extract against experimentally induced urinary calculi in rats.Mol. Med. Rep.20141063157316210.3892/mmr.2014.261025310585
    [Google Scholar]
  130. SigalaS. DellabellaM. MilaneseG. FornariS. FaccoliS. PalazzoloF. PeroniA. MirabellaG. CunicoS.C. SpanoP. MuzzonigroG. Evidence for the presence of α 1 adrenoceptor subtypes in the human ureter.Neurourol. Urodyn.200524214214810.1002/nau.2009715690361
    [Google Scholar]
  131. MoritaT. WadaI. SaekiH. TsuchidaS. WeissR.M. Ureteral urine transport: Changes in bolus volume, peristaltic frequency, intraluminal pressure and volume of flow resulting from autonomic drugs.J. Urol.1987137113213510.1016/S0022‑5347(17)43904‑83795356
    [Google Scholar]
  132. DavenportK. TimoneyA.G. KeeleyF.X. A comparative in vitro study to determine the beneficial effect of calcium-channel and α 1 -adrenoceptor antagonism on human ureteric activity.BJU Int.200698365165510.1111/j.1464‑410X.2006.06346.x16925767
    [Google Scholar]
  133. HollingsworthJ.M. RogersM.A.M. KaufmanS.R. BradfordT.J. SaintS. WeiJ.T. HollenbeckB.K. Medical therapy to facilitate urinary stone passage: A meta-analysis.Lancet200636895421171117910.1016/S0140‑6736(06)69474‑917011944
    [Google Scholar]
  134. PremingerG.M. TiseliusH.G. AssimosD.G. AlkenP. BuckC. GallucciM. KnollT. LingemanJ.E. NakadaS.Y. PearleM.S. SaricaK. TürkC. WolfJ.S.Jr 2007 guideline for the management of ureteral calculi.J. Urol.200717862418243410.1016/j.juro.2007.09.10717993340
    [Google Scholar]
  135. AhmedA. Investigation of the effect of hydroxycitric acid on urinary calcium oxalate risk factors for kidney stone formation in artificial urine: Theoretical modelling and in vitro crystallisation experiments.Doctoral Thesis Department of Chemistry2020
    [Google Scholar]
  136. Managing patients with renal colic in primary care: Know when to hold them.Bett. Medic.2007201460917
    [Google Scholar]
  137. GolzariS.E.J. SoleimanpourH. RahmaniF. Zamani MehrN. SafariS. HeshmatY. Ebrahimi BakhtavarH. Therapeutic approaches for renal colic in the emergency department: A review article.Anesth. Pain Med.201433e1622210.5812/aapm.1622224701420
    [Google Scholar]
  138. AngA.J.S. SharmaA.A. SharmaA. Nephrolithiasis: Approach to diagnosis and management.Indian J. Pediatr.202087971672510.1007/s12098‑020‑03424‑732794099
    [Google Scholar]
  139. HanH. KentP.S. BetoJ.A. Nutritional management of nephrolithiasis in chronic kidney disease.Seman. Scho.20191925710.1007/978‑3‑030‑15534‑6_20
    [Google Scholar]
  140. LevyF.L. Adams-HuetB. PakC.Y.C. Ambulatory evaluation of nephrolithiasis: An update of a 1980 protocol.Am. J. Med.1995981505910.1016/S0002‑9343(99)80080‑17825619
    [Google Scholar]
  141. CarvalhoM. ErbanoB.O. KuwakiE.Y. PontesH.P. LiuJ.W.T.W. BorosL.H. AsinelliM.O. BaenaC.P. Effect of potassium citrate supplement on stone recurrence before or after lithotripsy: Systematic review and meta-analysis.Urolithiasis201745544945510.1007/s00240‑016‑0950‑127915395
    [Google Scholar]
  142. SaravakosP. KokkinouV. GiannatosE. Cystinuria: Current diagnosis and management.Urology201483469369910.1016/j.urology.2013.10.01324246330
    [Google Scholar]
  143. ModersitzkiF. GoldfarbD.S. GoldsteinR.L. SurR.L. PennistonK.L. Assessment of health-related quality of life in patients with cystinuria on tiopronin therapy.Urolithiasis202048431332010.1007/s00240‑019‑01174‑631834425
    [Google Scholar]
  144. DeBerardinisR.J. CoughlinC.R.II KaplanP. Penicillamine therapy for pediatric cystinuria: Experience from a cohort of American children.J. Urol.200818062620262310.1016/j.juro.2008.08.05718951580
    [Google Scholar]
  145. WilliamsJ.J. RodmanJ.S. PetersonC.M. A randomized double-blind study of acetohydroxamic acid in struvite nephrolithiasis.N. Engl. J. Med.19843111276076410.1056/NEJM1984092031112036472365
    [Google Scholar]
  146. GriffithD.P. KhonsariF. SkurnickJ.H. JamesK.E. A randomized trial of acetohydroxamic acid for the treatment and prevention of infection-induced urinary stones in spinal cord injury patients.J. Urol.1988140231832410.1016/S0022‑5347(17)41592‑83294442
    [Google Scholar]
  147. VigenR. WeidemanR.A. ReillyR.F. Thiazides diuretics in the treatment of nephrolithiasis: Are we using them in an evidence-based fashion?Int. Urol. Nephrol.201143381381910.1007/s11255‑010‑9824‑620737209
    [Google Scholar]
  148. SongY. HernandezN. ShoagJ. GoldfarbD.S. EisnerB.H. Potassium citrate decreases urine calcium excretion in patients with hypocitraturic calcium oxalate nephrolithiasis.Urolithiasis201644214514810.1007/s00240‑015‑0819‑826582172
    [Google Scholar]
  149. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: Current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  150. HenninotA. CollinsJ.C. NussJ.M. The Current State of Peptide Drug Discovery: Back to the Future?J. Med. Chem.20186141382141410.1021/acs.jmedchem.7b0031828737935
    [Google Scholar]
  151. SharmaK. SharmaK.K. SharmaA. JainR. Peptide-based drug discovery: Current status and recent advances.Drug Discov. Today202328210346410.1016/j.drudis.2022.10346436481586
    [Google Scholar]
  152. ChanB.P.H. VincentK. LajoieG.A. GoldbergH.A. GroheB. HunterG.K. On the catalysis of calcium oxalate dihydrate formation by osteopontin peptides.Colloids Surf. B Biointerfaces201296222810.1016/j.colsurfb.2012.03.01522503630
    [Google Scholar]
  153. LieskeJ.C. TobackF.G. Renal cell-urinary crystal interactions.Curr. Opin. Nephrol. Hypertens.20009434935510.1097/00041552‑200007000‑0000510926170
    [Google Scholar]
  154. TomazicB. NancollasG.H. The kinetics of dissolution of calcium oxalate hydrates. II. The dihydrate.Invest. Urol.1980182971017410038
    [Google Scholar]
  155. MaeharaN. TaniguchiK. OkunoA. AndoH. HirotaA. LiZ. WangC.T. AraiS. MiyazakiT. AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke.Cell Rep.2021361110969310.1016/j.celrep.2021.10969334525359
    [Google Scholar]
  156. WangC.T. TezukaT. TakedaN. ArakiK. AraiS. MiyazakiT. High salt exacerbates acute kidney injury by disturbing the activation of CD5L/apoptosis inhibitor of macrophage (AIM) protein.PLoS One20211611e026044910.1371/journal.pone.026044934843572
    [Google Scholar]
  157. AraiS. KitadaK. YamazakiT. TakaiR. ZhangX. TsugawaY. SugisawaR. MatsumotoA. MoriM. YoshiharaY. DoiK. MaeharaN. KusunokiS. TakahataA. NoiriE. SuzukiY. YahagiN. NishiyamaA. GunaratnamL. TakanoT. MiyazakiT. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice.Nat. Med.201622218319310.1038/nm.401226726878
    [Google Scholar]
  158. CochatP. RumsbyG. Primary hyperoxaluria.N. Engl. J. Med.2013369764965810.1056/NEJMra130156423944302
    [Google Scholar]
  159. HumphreysB.D. XuF. SabbisettiV. GrgicI. NainiS.M. WangN. ChenG. XiaoS. PatelD. HendersonJ.M. IchimuraT. MouS. SoeungS. McMahonA.P. KuchrooV.K. BonventreJ.V. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis.J. Clin. Invest.201312394023403510.1172/JCI4536123979159
    [Google Scholar]
  160. JuncadellaI.J. KadlA. SharmaA.K. ShimY.M. Hochreiter-HuffordA. BorishL. RavichandranK.S. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation.Nature2013493743354755110.1038/nature1171423235830
    [Google Scholar]
  161. FarmaneshS. ChungJ. ChandraD. SosaR.D. KarandeP. RimerJ.D. High-throughput platform for design and screening of peptides as inhibitors of calcium oxalate monohydrate crystallization.J. Cryst. Growth2013373131910.1016/j.jcrysgro.2012.09.018
    [Google Scholar]
  162. Cabral-PachecoG.A. Garza-VelozI. Castruita-De la RosaC. Ramirez-AcuñaJ.M. Perez-RomeroB.A. Guerrero-RodriguezJ.F. Martinez-AvilaN. Martinez-FierroM.L. The roles of matrix metalloproteinases and their inhibitors in human diseases.Int. J. Mol. Sci.202021249739973910.3390/ijms2124973933419373
    [Google Scholar]
  163. LiX. ZuoS. WangB. ZhangK. WangY. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides.Molecules20222792675267510.3390/molecules2709267535566025
    [Google Scholar]
  164. SalandJ.M. LieskeJ.C. GroothoffJ.W. FrishbergY. Shasha-LavskyH. MagenD. MoochhalaS.H. SimkovaE. CoenenM. HayesW. HoganJ. Sellier-LeclercA.L. WilleyR. GansnerJ.M. HultonS.A. Efficacy and safety of lumasiran in patients with primary hyperoxaluria type 1: Results from a phase III clinical trial.Kidney Int. Rep.2024972037204610.1016/j.ekir.2024.04.04839081738
    [Google Scholar]
  165. McAteerJ.A. EvanA.P. The acute and long-term adverse effects of shock wave lithotripsy.Semin. Nephrol.200828220021310.1016/j.semnephrol.2008.01.00318359401
    [Google Scholar]
  166. LeightonT.G. ClevelandR.O. Lithotripsy.Proc. Inst. Mech. Eng. H2010224231734210.1243/09544119JEIM58820349822
    [Google Scholar]
  167. DoganH.S. TekgulS. Minimally invasive surgical approaches to kidney stones in children.Curr. Urol. Rep.201213429830610.1007/s11934‑012‑0259‑822717737
    [Google Scholar]
  168. SorensenM.D. BaileyM.R. HsiR.S. CunitzB.W. SimonJ.C. WangY.N. DunmireB.L. PaunM. StarrF. LuW. EvanA.P. HarperJ.D. Focused ultrasonic propulsion of kidney stones: Review and update of preclinical technology.J. Endourol.201327101183118610.1089/end.2013.031523883117
    [Google Scholar]
  169. ChenT.T. SamsonP.C. SorensenM.D. BaileyM.R. Burst wave lithotripsy and acoustic manipulation of stones.Curr. Opin. Urol.202030214915610.1097/MOU.000000000000072731905177
    [Google Scholar]
  170. LiuG.W. ProssnitzA.N. EngD.G. ChengY. SubrahmanyamN. PippinJ.W. LammR.J. NgambenjawongC. GhandehariH. ShanklandS.J. PunS.H. Glomerular disease augments kidney accumulation of synthetic anionic polymers.Biomaterials201817831732510.1016/j.biomaterials.2018.06.00129891232
    [Google Scholar]
  171. LuoS. GramsM.E. Epidemiology research to foster improvement in chronic kidney disease care.Kidney Int.202097347748610.1016/j.kint.2019.11.01032001066
    [Google Scholar]
  172. HoulihanI. KangB. KrishnaV. DeS. Proof-of-concept for a novel nanotechnology-based treatment for urolithiasis.Urolithiasis20245216010.1007/s00240‑024‑01564‑538581591
    [Google Scholar]
  173. ShrutiG. SinghK.S. Nanodrugs: A futuristic approach for treating nephrolithiasis.Biomedical Translational ResearchSingaporeSpringer202220321210.1007/978‑981‑16‑9232‑1_13
    [Google Scholar]
  174. YamunadeviM. Weselye.g. JohnsonM. Phytochemical studies on the terpenoids of medicinally important plant Aerva lanata L. using HPTLC.Asian Pac. J. Trop. Biomed.201112S220S22510.1016/S2221‑1691(11)60159‑7
    [Google Scholar]
  175. RosenJ. HannafordB. SatavaR.M. Surgical robotics: Systems applications and visions.New YorkSpringer Science & Business Media20111610.1007/978‑1‑4419‑1126‑1
    [Google Scholar]
  176. VordosN. GiannakopoulosS. GkikaD.A. NolanJ.W. KalaitzisC. BandekasD.V. KontogoulidouC. MitropoulosA.C. TouloupidisS. Kidney stone nano-structure — Is there an opportunity for nanomedicine development?Biochim. Biophys. Acta, Gen. Subj.2017186161521152910.1016/j.bbagen.2017.01.02628130156
    [Google Scholar]
  177. BiM. LiY. LvF. ShiW. JiangG. The attenuating effect of curcumin-loaded gold nanoparticles and its combination with Pluchea indica root extract on kidney stone induced male wistar rats.J. Cluster Sci.202435132734010.1007/s10876‑023‑02483‑y
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501346592250505050431
Loading
/content/journals/cdt/10.2174/0113894501346592250505050431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test