Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8863
  • E-ISSN: 2212-3911

Abstract

Background

Paxlovid (nirmatrelvir/ritonavir) is the first oral therapy approved by the US FDA to treat patients with mild-to-moderate COVID-19.

Objective

Our current review focuses on clinical data related to tacrolimus toxicity induced by Paxlovid currently available.

Methods

A number of online databases, including LitCovid, Scopus, Web of Science, Embase, EBSCO host, Google Scholar, Science Direct, and the reference lists were searched to identify articles related to Paxlovid-induced tacrolimus toxicity, using keywords, like drug interactions, Paxlovid, ritonavir, nirmatrelvir, tacrolimus, pharmacokinetic interactions, and CYP3A.

Results

Tacrolimus is a substrate of CYP3A enzymes and ritonavir of Paxlovid has been identified as a potent inhibitor of CYP3A enzymes. Hence, Paxlovid can inhibit the CYP3A-mediated metabolism of tacrolimus, resulting in elevated plasma concentrations of tacrolimus and toxicity.

Conclusion

A number of case reports and case series have been published to highlight the association of Paxlovid and tacrolimus toxicity in transplant recipients with COVID-19 infection. Various recommendations have been proposed to prevent and mitigate the adverse events related to the DDI of Paxlovid and tacrolimus. Transplant physicians should be aware of this DDI and collaborate with clinical pharmacists on this issue.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863331165240821194206
2024-09-04
2025-10-25
Loading full text...

Full text loading...

References

  1. United States Food and Drug Administration Press Announcements2021Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-oral-antiviral-treatment-covid-19
  2. RobertsJ.A. DuncanA. CairnsK.A. Pandora’s box: Paxlovid, prescribing, pharmacists and pandemic.J. Pharm. Pract. Res.20225211410.1002/jppr.1799 35572779
    [Google Scholar]
  3. LambY.N. Nirmatrelvir plus ritonavir: first approval.Drugs202282558559110.1007/s40265‑022‑01692‑5 35305258
    [Google Scholar]
  4. AkinosoglouK. SchinasG. GogosC. Oral antiviral treatment for COVID-19: A comprehensive review on nirmatrelvir/ritonavir.Viruses20221411254010.3390/v14112540 36423149
    [Google Scholar]
  5. RubinR. Paxlovid Is Effective but Underused—Here’s What the Latest Research Says About Rebound and More.JAMA2024331754810.1001/jama.2023.28254
    [Google Scholar]
  6. United States Food and Drug Administration Press Announcements2023Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-oral-antiviral-treatment-covid-19-adults
  7. BlairH.A. Nirmatrelvir plus ritonavir in COVID-19: A profile of its use.Drugs Ther. Perspect.2023392414710.1007/s40267‑022‑00971‑1 36532315
    [Google Scholar]
  8. MarziM. VakilM.K. BahmanyarM. ZarenezhadE. Paxlovid: mechanism of action, synthesis, and in silico study.BioMed Res. Int.2022202211610.1155/2022/7341493 35845944
    [Google Scholar]
  9. MedhiB. NirajN. MahajanS.S. PrakashA. SarmaP. Paxlovid: A promising drug for the challenging treatment of SARS-COV-2 in the pandemic era.Indian J. Pharmacol.202254645245810.4103/ijp.ijp_291_22 36722557
    [Google Scholar]
  10. MobinizadehM.R. AkbarisariA. OlyaeemaneshA. Safety and efficacy of paxlovid in covid-19 treatment: A rapid review.Health Technology Assessment in Action20226114
    [Google Scholar]
  11. WenW. ChenC. TangJ. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis.Ann. Med.202254151652310.1080/07853890.2022.2034936 35118917
    [Google Scholar]
  12. ScaleaJ.R. LeviS.T. AllyW. BraymanK.L. Tacrolimus for the prevention and treatment of rejection of solid organ transplants.Expert Rev. Clin. Immunol.201612333334210.1586/1744666X.2016.1123093 26588770
    [Google Scholar]
  13. HaoG.X. SongL.L. ZhangD.F. SuL.Q. Jacqz-AigrainE. ZhaoW. Off‐label use of tacrolimus in children with glomerular disease: Effectiveness, safety and pharmacokinetics.Br. J. Clin. Pharmacol.202086227428410.1111/bcp.14174 31725919
    [Google Scholar]
  14. PakkirM.N. Pharmacokinetic and pharmacodynamic interactions of sulfonylurea antidiabetics.Eur. J. Med.201868396
    [Google Scholar]
  15. MaideenN.M.P. Tobacco smoking and its drug interactions with comedications involving CYP and UGT enzymes and nicotine.World J. Pharmacol.201982142510.5497/wjp.v8.i2.14
    [Google Scholar]
  16. MaideenN. Clinically important and pharmacologically relevant drug interactions with alcohol.Am J Res Med Sci2019611710.5455/ajrms.20190602042343
    [Google Scholar]
  17. CoatesS. LazarusP. Hydrocodone, Oxycodone, and Morphine Metabolism and Drug–Drug Interactions.J. Pharmacol. Exp. Ther.2023387215016910.1124/jpet.123.001651 37679047
    [Google Scholar]
  18. CossartA.R. CottrellW.N. CampbellS.B. IsbelN.M. StaatzC.E. Characterizing the pharmacokinetics and pharmacodynamics of immunosuppressant medicines and patient outcomes in elderly renal transplant patients.Transl. Androl. Urol.20198S2Suppl. 2S198S21310.21037/tau.2018.10.16 31236338
    [Google Scholar]
  19. DegraeveA.L. MoudioS. HaufroidV. Predictors of tacrolimus pharmacokinetic variability: Current evidences and future perspectives.Expert Opin. Drug Metab. Toxicol.202016976978210.1080/17425255.2020.1803277 32721175
    [Google Scholar]
  20. XieD. GuoJ. DangR. The effect of tacrolimus-induced toxicity on metabolic profiling in target tissues of mice.BMC Pharmacol. Toxicol.20222318710.1186/s40360‑022‑00626‑x 36443830
    [Google Scholar]
  21. Igho-OsagieE. BrzozowskiK. JinH. BrownJ. WilliamsM.G. PuenpatomA. Prevalence of potential drug-drug interactions with ritonavir-containing COVID-19 therapy in the United States: An analysis of the National Health and Nutrition Examination Survey.Clin. Ther.2023455390399.e410.1016/j.clinthera.2023.03.012 37032225
    [Google Scholar]
  22. Igho-OsagieE. PuenpatomA. WilliamsM.G. Prevalence of potential drug-drug interactions with ritonavir-containing COVID-19 therapy.J. Manag. Care Spec. Pharm.202329550951810.18553/jmcp.2023.22366 36989455
    [Google Scholar]
  23. CameronC. ChenW.T. TanW.H. ChenY. LamC. Igho-OsagieE. Prevalence of Potential Drug-Drug Interactions with Ritonavir-Containing Covid-19 Medications among the Adult Patient Population in Australia: Analysis of Pharmaceutical Benefits Scheme 10% Sample (Pbs10) Claims.Int. J. Infect. Dis.2023130S8910.1016/j.ijid.2023.04.221
    [Google Scholar]
  24. LarsenC.S. Assessing the proportion of the Danish population at risk of clinically significant drug-drug interactions with new oral antivirals for early treatment of COVID-19.Int. J. Infect. Dis.202212259960110.1016/j.ijid.2022.06.059 35803465
    [Google Scholar]
  25. KaneA.M. KeenanE.M. LeeK. Nirmatrelvir‐ritonavir treatment of COVID ‐19 in a high‐risk patient population: A retrospective observational study.J. Am. Coll. Clin. Pharm.202361293310.1002/jac5.1729 36718381
    [Google Scholar]
  26. Ramos-EsquivelA. FernándezC. Garro-ZamoraL. ChavesA.V. Viquez-JaikelÁ. High Prevalence of Potential Drug-Drug Interactions Among Patients Treated with Off-label Therapies for COVID-19.J Pharmaceut Care20224447
    [Google Scholar]
  27. MahboobipourA.A. BaniasadiS. Clinically important drug-drug interactions in patients admitted to hospital with COVID-19: drug pairs, risk factors, and management.Drug Metab. Pers. Ther.2020361916 33580642
    [Google Scholar]
  28. Martínez-López-de-CastroN. Samartín-UchaM. Paradela-CarreiroA. Real‐world prevalence and consequences of potential drug‐drug interactions in the first‐wave COVID‐19 treatments.J. Clin. Pharm. Ther.202146372473010.1111/jcpt.13337 33368439
    [Google Scholar]
  29. PrikisM. CameronA. Paxlovid (nirmatelvir/ritonavir) and tacrolimus drug-drug interaction in a kidney transplant patient with SARS-2-CoV infection: A case report.Transplant. Proc.20225461557156010.1016/j.transproceed.2022.04.015 35599203
    [Google Scholar]
  30. Berar YanayN. BognerI. SakerK. TannousE. Paxlovid-Tacrolimus Drug–Drug Interaction in a 23-Year-Old Female Kidney Transplant Patient with COVID-19.Clin. Drug Investig.202242869369510.1007/s40261‑022‑01180‑4 35816278
    [Google Scholar]
  31. YoungC. PapiroT. GreenbergJ.H. Elevated tacrolimus levels after treatment with nirmatrelvir/ritonavir (Paxlovid) for COVID-19 infection in a child with a kidney transplant.Pediatr. Nephrol.20233841387138810.1007/s00467‑022‑05712‑0 35982345
    [Google Scholar]
  32. StawiarskiK. AveryR. StroutS. UmapathiP. Risks of paxlovid in a heart transplant recipient.J. Heart Lung Transplant.2023421303210.1016/j.healun.2022.08.029 36344373
    [Google Scholar]
  33. ZaarurL. PatelA. PasternakB. Drug Interaction Between Tacrolimus and Paxlovid (Nirmatrelvir/Ritonavir) in an Adolescent with Inflammatory Bowel Disease.JPGN Reports202344e35210.1097/PG9.0000000000000352 38034448
    [Google Scholar]
  34. LuoW. HeY. WeiM.G. LuG.B. YiQ. Paxlovid–tacrolimus drug–drug interaction caused severe diarrhea that induced combined diabetic ketoacidosis and a hyperglycemic hyperosmolar state in a kidney transplant patient: A case report.J. Med. Case Reports202317140610.1186/s13256‑023‑04135‑1 37742028
    [Google Scholar]
  35. LindauerK.E. HamelA.G. Case report: Nirmatrelvir/Ritonavir and tacrolimus in a kidney transplant recipient with COVID-19.Am. Fam. Physician20221056569570 35704835
    [Google Scholar]
  36. TsuzawaA. KatadaY. UmemuraK. A case report of a prolonged decrease in tacrolimus clearance due to co-administration of nirmatrelvir/ritonavir in a lung transplant recipient receiving itraconazole prophylaxis.J. Pharm. Health Care Sci.2023911210.1186/s40780‑023‑00280‑3 37004119
    [Google Scholar]
  37. WangA.X. KoffA. HaoD. TuznikN.M. HuangY. Effect of nirmatrelvir/ritonavir on calcineurin inhibitor levels: Early experience in four SARS-CoV-2 infected kidney transplant recipients.Am. J. Transplant.20222282117211910.1111/ajt.16997 35158412
    [Google Scholar]
  38. SalernoD.M. JenningsD.L. LangeN.W. Early clinical experience with nirmatrelvir/ritonavir for the treatment of COVID-19 in solid organ transplant recipients.Am. J. Transplant.20222282083208810.1111/ajt.17027 35278260
    [Google Scholar]
  39. FishbaneS. HirschJ.S. NairV. Special considerations for paxlovid treatment among transplant recipients with SARS-CoV-2 infection.Am. J. Kidney Dis.202279448048210.1053/j.ajkd.2022.01.001 35032591
    [Google Scholar]
  40. TangY. LiY. SongT. Optimizing the use of nirmatrelvir/ritonavir in solid organ transplant recipients with COVID-19: A review of immunosuppressant adjustment strategies.Front. Immunol.202314115034110.3389/fimmu.2023.1150341 37081880
    [Google Scholar]
  41. LemaitreF. Yes We Can (Use Nirmatrelvir/Ritonavir Even in High Immunological Risk Patients Treated with Immunosuppressive Drugs)!Clin. Pharmacokinet.20226181071107310.1007/s40262‑022‑01158‑7 35870084
    [Google Scholar]
  42. GuyonJ. NovionM. FuldaV. A UPLC-MS/MS Method for Plasma Biological Monitoring of Nirmatrelvir and Ritonavir in the Context of SARS-CoV-2 Infection and Application to a Case.J. Am. Soc. Mass Spectrom.202233101975198110.1021/jasms.2c00204 36084269
    [Google Scholar]
  43. LemaitreF. GrégoireM. MonchaudC. Management of drug-drug interactions with nirmatrelvir/ritonavir in patients treated for Covid-19: Guidelines from the French Society of Pharmacology and Therapeutics (SFPT).Therapie202277550952110.1016/j.therap.2022.03.005 35618549
    [Google Scholar]
  44. LemaitreF. BuddeK. Van GelderT. Therapeutic drug monitoring and dosage adjustments of immunosuppressive drugs when combined with nirmatrelvir/ritonavir in patients with COVID-19.Ther. Drug Monit.2023452191199 35944126
    [Google Scholar]
  45. LarkinH.D. Paxlovid drug interaction screening checklist updated.JAMA2022328131290 36194234
    [Google Scholar]
  46. LoC.M. ChenW.H. TsaiM.Y. Drug Interaction Between Co-packaged Nirmatrelvir-ritonavir and Tacrolimus might cause Hyponatremia and Tacrolimus Intoxication in Lung Transplant Recipients.J. Cardiothorac. Surg.202419113210.21203/rs.3.rs‑3226351/v1
    [Google Scholar]
  47. TomidaT. ItoharaK. YamamotoK. A model-based pharmacokinetic assessment of drug–drug interaction between tacrolimus and nirmatrelvir/ritonavir in a kidney transplant patient with COVID-19.Drug Metab. Pharmacokinet.20235310052910.1016/j.dmpk.2023.100529 37924724
    [Google Scholar]
  48. CoyneM. AyeM. Tacrolimus Toxicity in Two Renal Transplant Recipients Treated With Nirmatrelvir/Ritonavir: A Case Series.Annals of Internal Medicine: Clinical Cases202323e221121
    [Google Scholar]
  49. ModiS. KahwashR. KisslingK. Case Report: tacrolimus toxicity in the setting of concurrent Paxlovid use in a heart-transplant recipient.Eur. Heart J. Case Rep.202375ytad19310.1093/ehjcr/ytad193 37252201
    [Google Scholar]
  50. ThenR.F. Shahnaz ShahF.K. WCN23-0117 Paxlovid (Nirmatrelvir/Ritonavir) and cyclosporin in a kidney transplant patient with covid-19 infection.Kidney Int. Rep.202383S456S45710.1016/j.ekir.2023.02.1024
    [Google Scholar]
  51. MichaelS. HeilbronnerR. LloydC.M. LevitinH.W. HeilbronnerR.N. Paxlovid-induced tacrolimus toxicity in the treatment of COVID-19: A case report.Cureus2023152e3548910.7759/cureus.35489 36999105
    [Google Scholar]
  52. MaynardR.D. BatesP. Korpi-SteinerN. Monitoring tacrolimus toxicity following Paxlovid administration in a liver transplant patient.Pract. Lab. Med.202336e0032210.1016/j.plabm.2023.e00322 37649541
    [Google Scholar]
  53. CorderoC.G. de VicenteM.S.T. Elevated Tacrolimus Blood Concentration Due to the Interaction with Nirmatrelvir/Ritonavir During COVID-19 Treatment: A Case Report.Transplant. Proc.20235581826182810.1016/j.transproceed.2023.03.001 37037726
    [Google Scholar]
  54. DeweyK.W. YenB. LazoJ. Nirmatrelvir/ritonavir use with tacrolimus in lung transplant recipients: A single-center case series.Transplantation202310751200120510.1097/TP.0000000000004394 36525555
    [Google Scholar]
  55. SindelarM. McCabeD. CarrollE. Tacrolimus Drug–Drug Interaction with Nirmatrelvir/Ritonavir (Paxlovid™) Managed with Phenytoin.J. Med. Toxicol.2023191454810.1007/s13181‑022‑00922‑2 36536192
    [Google Scholar]
  56. KwonE.J. YunG.A. ParkS. Treatment of acute tacrolimus toxicity with phenytoin after Paxlovid (nirmatrelvir/ritonavir) administration in a kidney transplant recipient.Kidney Res. Clin. Pract.202241676877010.23876/j.krcp.22.218 36474331
    [Google Scholar]
  57. MarzoliniC. KuritzkesD.R. MarraF. Recommendations for the management of drug–drug interactions between the COVID‐19 antiviral nirmatrelvir/ritonavir (Paxlovid) and comedications.Clin. Pharmacol. Ther.202211261191120010.1002/cpt.2646 35567754
    [Google Scholar]
  58. MarzoliniC. KuritzkesD.R. MarraF. Prescribing nirmatrelvir–ritonavir: How to recognize and manage drug–drug interactions.Ann. Intern. Med.2022175574474610.7326/M22‑0281 35226530
    [Google Scholar]
  59. Guy-AlfandaryS. ZhuratS. BerlinM. Managing potential drug interactions of Nirmatrelvir/Ritonavir in COVID‐19 patients: a perspective from an Israeli Cross‐Sector Collaboration.Clin. Pharmacol. Ther.202211261156115810.1002/cpt.2610 35521643
    [Google Scholar]
  60. RossS.B. Bortolussi-CourvalÉ. HanulaR. LeeT.C. Goodwin WilsonM. McDonaldE.G. Drug interactions with nirmatrelvir-ritonavir in older adults using multiple medications.JAMA Netw. Open202257e222018410.1001/jamanetworkopen.2022.20184 35793089
    [Google Scholar]
  61. LangeN.W. SalernoD.M. JenningsD.L. Nirmatrelvir/ritonavir use: Managing clinically significant drug-drug interactions with transplant immunosuppressants.Am. J. Transplant.20222271925192610.1111/ajt.16955 35015924
    [Google Scholar]
/content/journals/cds/10.2174/0115748863331165240821194206
Loading
/content/journals/cds/10.2174/0115748863331165240821194206
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test