Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8863
  • E-ISSN: 2212-3911

Abstract

The blood-brain barrier (BBB) is based on the unique pattern of the microvasculature of the central nervous system (CNS), which controls the transport of molecules between the CNS and the blood. The blood-brain barrier is mainly composed of endothelial cells, pericytes, and basement membrane, as well as the astrocytes and immune cells as perivascular macrophages and microglial cells. The dysfunction of this barrier can cause serious neuronal disorders due to the transport of hazardous molecules and immune cells to the CNS. Mitochondria plays a major role in cellular homeostasis in terms of health and disease. This review evaluated the published data about the effect of the drugs on the cells of BBB. Only seven articles were found that considered the effect of drugs on the barrier endothelial cells and mitochondria different assays. Further studies are recommended to evaluate the impact of used medications on BBB cell bioenergetics. Also, the effect of the newly studied pharmaceutical agents on the BBB bioenergetics should be included within their safety profile studies.

Loading

Article metrics loading...

/content/journals/cds/10.2174/0115748863324146240905113112
2024-08-27
2025-09-01
Loading full text...

Full text loading...

References

  1. ProfaciC.P. MunjiR.N. PulidoR.S. DanemanR. The blood–brain barrier in health and disease: Important unanswered questions.J. Exp. Med.20202174e2019006210.1084/jem.20190062 32211826
    [Google Scholar]
  2. KnoxE.G. AburtoM.R. ClarkeG. CryanJ.F. O’DriscollC.M. The blood-brain barrier in aging and neurodegeneration.Mol. Psychiatry20222762659267310.1038/s41380‑022‑01511‑z 35361905
    [Google Scholar]
  3. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  4. GastfriendB.D. PalecekS.P. ShustaE.V. Modeling the blood–brain barrier: Beyond the endothelial cells.Curr. Opin. Biomed. Eng.2018561210.1016/j.cobme.2017.11.002 29915815
    [Google Scholar]
  5. WekslerB.B. SubileauE.A. PerrièreN. Blood‐brain barrier‐specific properties of a human adult brain endothelial cell line.FASEB J.200519131872187410.1096/fj.04‑3458fje 16141364
    [Google Scholar]
  6. ArmulikA. GenovéG. MäeM. Pericytes regulate the blood–brain barrier.Nature2010468732355756110.1038/nature09522 20944627
    [Google Scholar]
  7. LiuS. AgalliuD. YuC. FisherM. The role of pericytes in blood-brain barrier function and stroke.Curr. Pharm. Des.201218253653366210.2174/138161212802002706 22574979
    [Google Scholar]
  8. SheproD. MorelN.M.L. Pericyte physiology.FASEB J.19937111031103810.1096/fasebj.7.11.8370472 8370472
    [Google Scholar]
  9. AylooS. LazoC.G. SunS. ZhangW. CuiB. GuC. Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier.Neuron20221101016411655.e610.1016/j.neuron.2022.02.017 35294899
    [Google Scholar]
  10. AlahmariA. Blood-brain barrier overview: Structural and functional correlation.Neural Plast.20212021656458510.1155/2021/6564585
    [Google Scholar]
  11. HeithoffB.P. GeorgeK.K. PharesA.N. ZuidhoekI.A. Munoz-BallesterC. RobelS. Astrocytes are necessary for blood–brain barrier maintenance in the adult mouse brain.Glia202169243647210.1002/glia.23908 32955153
    [Google Scholar]
  12. MapundaJ.A. TibarH. RegraguiW. EngelhardtB. How does the immune system enter the brain?Front. Immunol.20221380565710.3389/fimmu.2022.805657 35273596
    [Google Scholar]
  13. LenzsérG. KisB. BariF. BusijaD.W. Diazoxide preconditioning attenuates global cerebral ischemia-induced blood–brain barrier permeability.Brain Res.200510511-2728010.1016/j.brainres.2005.05.064 16004973
    [Google Scholar]
  14. MandaK.R. BanerjeeA. BanksW.A. ErcalN. Highly active antiretroviral therapy drug combination induces oxidative stress and mitochondrial dysfunction in immortalized human blood–brain barrier endothelial cells.Free Radic. Biol. Med.201150780181010.1016/j.freeradbiomed.2010.12.029 21193030
    [Google Scholar]
  15. ElmorsyE. SmithP.A. Bioenergetic disruption of human micro-vascular endothelial cells by antipsychotics.Biochem. Biophys. Res. Commun.2015460385786210.1016/j.bbrc.2015.03.122 25824037
    [Google Scholar]
  16. QieX. WenD. GuoH. Endoplasmic reticulum stress mediates methamphetamine-induced blood–brain barrier damage.Front. Pharmacol.2017863910.3389/fphar.2017.00639 28959203
    [Google Scholar]
  17. ElmorsyE. Al-GhafariA. AlmutairiF.M. AggourA.M. CarterW.G. Antidepressants are cytotoxic to rat primary blood brain barrier endothelial cells at high therapeutic concentrations.Toxicol. In Vitro20174415416310.1016/j.tiv.2017.07.011 28712878
    [Google Scholar]
  18. AlelwaniW. ElmorsyE. KattanS.W. Carbamazepine induces a bioenergetics disruption to microvascular endothelial cells from the blood-brain barrier.Toxicol. Lett.202033318419110.1016/j.toxlet.2020.08.006 32805338
    [Google Scholar]
  19. TanQ. YuD. SongL. Atorvastatin disrupts primary human brain microvascular endothelial cell functions via prenylation‐dependent mitochondrial inhibition and oxidative stress.Fundam. Clin. Pharmacol.202135234135010.1111/fcp.12615 33047339
    [Google Scholar]
  20. JavadovS. KozlovA.V. CamaraA.K.S. Mitochondria in health and diseases.Cells202095117710.3390/cells9051177 32397376
    [Google Scholar]
  21. NathS. VilladsenJ. Oxidative phosphorylation revisited.Biotechnol. Bioeng.2015112342943710.1002/bit.25492 25384602
    [Google Scholar]
  22. Hernansanz-AgustínP. EnríquezJ.A. Generation of reactive oxygen species by mitochondria.Antioxidants202110341510.3390/antiox10030415 33803273
    [Google Scholar]
  23. OldendorfW.H. CornfordM.E. BrownW.J. The large apparent work capability of the blood‐brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat.Ann. Neurol.19771540941710.1002/ana.410010502 617259
    [Google Scholar]
  24. OlufunmilayoE.O. Gerke-DuncanM.B. HolsingerR.M.D. Oxidative stress and antioxidants in neurodegenerative disorders.Antioxidants202312251710.3390/antiox12020517 36830075
    [Google Scholar]
  25. VringerE. TaitS.W.G. Mitochondria and cell death-associated inflammation.Cell Death Differ.202330230431210.1038/s41418‑022‑01094‑w 36447047
    [Google Scholar]
  26. LyuY. WangT. HuangS. ZhangZ. Mitochondrial damage-associated molecular patterns and metabolism in the regulation of innate immunity.J. Innate Immun.202315166567910.1159/000533602 37666239
    [Google Scholar]
  27. HuangD. ChenS. XiongD. Mitochondrial Dynamics: Working with the Cytoskeleton and Intracellular Organelles to Mediate Mechanotransduction.Aging Dis.20231451511153210.14336/AD.2023.0201 37196113
    [Google Scholar]
  28. HäckerG. HaimoviciA. Sub-lethal signals in the mitochondrial apoptosis apparatus: pernicious by-product or physiological event?Cell Death Differ.202330225025710.1038/s41418‑022‑01058‑0 36131076
    [Google Scholar]
  29. HeiligR. DiluccaM. BoucherD. Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD.Life Sci. Alliance202036e20200073510.26508/lsa.202000735 32345661
    [Google Scholar]
/content/journals/cds/10.2174/0115748863324146240905113112
Loading
/content/journals/cds/10.2174/0115748863324146240905113112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test