Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

Prevention and reduction of liver fat accumulation and maintenance of Glomerular Filtration Rate (GFR) have been proposed as important therapeutic goals in patients with Type 2 Diabetes Mellitus (T2DM).

Aim

This study aimed to determine the effect of Low-Volume High-Intensity Interval Training (LV-HIIT) on fatty liver index (FLI) and GFR estimation in patients with T2DM.

Methods

This randomized controlled trial included 80 patients with T2DM and a sedentary lifestyle, randomly divided into HIIT (n=40) and a control group (n=40). Patients with a history of T2DM for at least one year and HbA1C levels between 6.4% and 10% were selected. The intervention group underwent a 4-week LV-HIIT course, comprising 3 sessions per week, while the control group did not receive any intervention. FLI, eGFR, anthropometric measurements, and laboratory variables were assessed in all participants before and after the intervention.

Results

FLI (62.0 at baseline, 53.0 at follow-up) significantly decreased in the LV-HIIT group after the intervention, while eGFR (71.0 at baseline, 73.6 at follow-up) significantly increased (0.001). However, the control group showed a significant reduction only in Fasting Blood Sugar (FBS) (0.05). After the intervention, the LV-HIIT group had significantly lower FBS (129.0 at baseline, 121.0 at follow-up), Alanine Aminotransferase (ALT) (24.0 at baseline, 18.0 at follow-up), and Gamma-Glutamyl Transferase (GGT) (22.0 at baseline, 19.0 at follow-up), as well as higher eGFR, compared to the control group (0.05).

Conclusions

LV-HIIT exercise appears to be a promising and effective training method for improving FLI and eGFR in patients diagnosed with T2DM.

Clinical Trial Registration

IRCT 20200 729048246N1.

Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998320832240805113238
2024-08-12
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cdr/21/10/CDR-21-10-07.html?itemId=/content/journals/cdr/10.2174/0115733998320832240805113238&mimeType=html&fmt=ahah

References

  1. Galicia-GarciaU Benito-VicenteA JebariS Pathophysiology of type 2 diabetes mellitus.Int J Mol Sci20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  2. BellaryS. KyrouI. BrownJ.E. BaileyC.J. Type 2 diabetes mellitus in older adults: Clinical considerations and management.Nat. Rev. Endocrinol.202117953454810.1038/s41574‑021‑00512‑2 34172940
    [Google Scholar]
  3. MaglianoD.J. SacreJ.W. HardingJ.L. GreggE.W. ZimmetP.Z. ShawJ.E. Young-onset type 2 diabetes mellitus — Implications for morbidity and mortality.Nat. Rev. Endocrinol.202016632133110.1038/s41574‑020‑0334‑z 32203408
    [Google Scholar]
  4. ArtasensiA. PedrettiA. VistoliG. FumagalliL. Type 2 diabetes mellitus: A review of multi-target drugs.Molecules2020258198710.3390/molecules25081987 32340373
    [Google Scholar]
  5. FergusonD. FinckB.N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus.Nat. Rev. Endocrinol.202117848449510.1038/s41574‑021‑00507‑z 34131333
    [Google Scholar]
  6. TargherG. CoreyK.E. ByrneC.D. RodenM. The complex link between NAFLD and type 2 diabetes mellitus - Mechanisms and treatments.Nat. Rev. Gastroenterol. Hepatol.202118959961210.1038/s41575‑021‑00448‑y 33972770
    [Google Scholar]
  7. TaheriazamA. EntezariM. FirouzZ.M. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives.Environ. Res.202322811591210.1016/j.envres.2023.115912 37068723
    [Google Scholar]
  8. TokhirovnaE.G. Study of clinical characteristics of patients with type 2 diabetes mellitus in middle and old age.J Sci Med Life2023141619
    [Google Scholar]
  9. EizirikD.L. PasqualiL. CnopM. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure.Nat. Rev. Endocrinol.202016734936210.1038/s41574‑020‑0355‑7 32398822
    [Google Scholar]
  10. ValenteT. ArbexA.K. Glycemic variability, oxidative stress, and impact on complications related to type 2 diabetes mellitus.Curr. Diabetes Rev.2021177e07162018381610.2174/1573399816666200716201550 32674737
    [Google Scholar]
  11. PadhiS. NayakA.K. BeheraA. Type II diabetes mellitus: A review on recent drug based therapeutics.Biomed. Pharmacother.202013111070810.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  12. MantovaniA. TurinoT. LandoM.G. Screening for non-alcoholic fatty liver disease using liver stiffness measurement and its association with chronic kidney disease and cardiovascular complications in patients with type 2 diabetes.Diabetes Metab.202046429630310.1016/j.diabet.2019.11.004 31786361
    [Google Scholar]
  13. WangT.Y. WangR.F. BuZ.Y. Association of metabolic dysfunction-associated fatty liver disease with kidney disease.Nat. Rev. Nephrol.202218425926810.1038/s41581‑021‑00519‑y 35013596
    [Google Scholar]
  14. MuzicaCM SfartiC TrifanA ZenoviaS CuciureanuT NastasaR Nonalcoholic fatty liver disease and type 2 diabetes mellitus: A bidirectional relationship CanJ Gastroenterol Hepatol2020202010.1155/2020/6638306
    [Google Scholar]
  15. LeeC.H. LuiD.T.W. LamK.S.L. Non‐alcoholic fatty liver disease and type 2 diabetes: An update.J. Diabetes Investig.202213693094010.1111/jdi.13756 35080136
    [Google Scholar]
  16. ChenP.C. KaoW.Y. ChengY.L. The correlation between fatty liver disease and chronic kidney disease.J. Formos. Med. Assoc.20201191425010.1016/j.jfma.2019.02.010 30876789
    [Google Scholar]
  17. CiardulloS. MuracaE. PerraS. Screening for non-alcoholic fatty liver disease in type 2 diabetes using non-invasive scores and association with diabetic complications.BMJ Open Diabetes Res. Care202081e00090410.1136/bmjdrc‑2019‑000904 32049637
    [Google Scholar]
  18. LuY.C. ChangC.C. WangC.P. Circulating fatty acid-binding protein 1 (FABP1) and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus.Int. J. Med. Sci.202017218219010.7150/ijms.40417 32038102
    [Google Scholar]
  19. LiangY. ChenH. LiuY. Association of MAFLD with diabetes, chronic kidney disease, and cardiovascular disease: A 4.6-year cohort study in China.J. Clin. Endocrinol. Metab.20221071889710.1210/clinem/dgab641 34508601
    [Google Scholar]
  20. SkowS.L. JhaR.K. A ketogenic diet is effective in improving insulin sensitivity in individuals with type 2 diabetes.Curr. Diabetes Rev.2023196e25042220398510.2174/1573399818666220425093535 35469570
    [Google Scholar]
  21. KapsL. LabenzC. GalleP.R. Weinmann-MenkeJ. KostevK. SchattenbergJ.M. Non‐alcoholic fatty liver disease increases the risk of incident chronic kidney disease.United European Gastroenterol. J.20208894294810.1177/2050640620944098 32698692
    [Google Scholar]
  22. TanaseDM GosavEM CosteaCF CiocoiuM LacatusuCM MaranducaMA The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD).J Diabetes Res20202020
    [Google Scholar]
  23. ByrneC.D. TargherG. NAFLD as a driver of chronic kidney disease.J. Hepatol.202072478580110.1016/j.jhep.2020.01.013 32059982
    [Google Scholar]
  24. CommitteeA.D.A.P.P. Committee: ADAPP. 8. Obesity and weight management for the prevention and treatment of type 2 diabetes: Standards of medical care in diabetes—2022.Diabetes Care202245Suppl. 1S113S12410.2337/dc22‑S008 34964843
    [Google Scholar]
  25. YahayaT.O. SalisuT.F. A review of type 2 diabetes mellitus predisposing genes.Curr. Diabetes Rev.2019161526110.2174/1573399815666181204145806 30514191
    [Google Scholar]
  26. HushmandiK. JamaliJ. SaghariS. RaesiR. The effect of eight weeks of pilates exercises on anthropometric indices and subjective well-being in obese middle-aged women.Open Public Health J.2023161
    [Google Scholar]
  27. SabagA. LittleJ.P. JohnsonN.A. Low‐volume high‐intensity interval training for cardiometabolic health.J. Physiol.202260051013102610.1113/JP281210 33760255
    [Google Scholar]
  28. Jayo-MontoyaJ.A. Maldonado-MartínS. AispuruG.R. Low-volume high-intensity aerobic interval training is an efficient method to improve cardiorespiratory fitness after myocardial infarction: Pilot study from the interfarct project.J. Cardiopulm. Rehabil. Prev.2020401485410.1097/HCR.0000000000000453 31693643
    [Google Scholar]
  29. Jiménez-MaldonadoA. García-SuárezP.C. RenteríaI. Moncada-JiménezJ. PlaisanceE.P. Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes.Biochim. Biophys. Acta Mol. Basis Dis.20201866816582010.1016/j.bbadis.2020.165820 32360396
    [Google Scholar]
  30. ZhuX. JiaoJ. LiangW. WangX. ZhangH. Effect of low-volume interval training on whole-body, abdominal and visceral fat in adults living with overweight and obesity: A systematic review and meta-analysis.Preprints2023
    [Google Scholar]
  31. KhalafiM. SymondsM.E. The impact of high intensity interval training on liver fat content in overweight or obese adults: A meta-analysis.Physiol. Behav.202123611341610.1016/j.physbeh.2021.113416 33823178
    [Google Scholar]
  32. ToyamaK. SugiyamaS. OkaH. SumidaH. OgawaH. Exercise therapy correlates with improving renal function through modifying lipid metabolism in patients with cardiovascular disease and chronic kidney disease.J. Cardiol.201056214214610.1016/j.jjcc.2010.06.007 20696551
    [Google Scholar]
  33. ZhangL. WangY. XiongL. LuoY. HuangZ. YiB. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients: Evidence from a meta-analysis.BMC Nephrol.201920139810.1186/s12882‑019‑1586‑5 31664943
    [Google Scholar]
  34. MoinuddinI. LeeheyD.J. A comparison of aerobic exercise and resistance training in patients with and without chronic kidney disease.Adv. Chronic Kidney Dis.2008151839610.1053/j.ackd.2007.10.004 18155113
    [Google Scholar]
  35. KistlerK.D. BruntE.M. ClarkJ.M. DiehlA.M. SallisJ.F. SchwimmerJ.B. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease.Am. J. Gastroenterol.2011106346046810.1038/ajg.2010.488
    [Google Scholar]
  36. SargeantJ.A. Exercise and insulin sensitivity: interaction with intrahepatic triglyceride and hepatokines.Loughborough University2018
    [Google Scholar]
  37. HensonJ. AnyiamO. VishnubalaD. Type 2 Diabetes Exercise Management for Referred Medical Conditions.Routledge202222325210.4324/9781315102399‑12
    [Google Scholar]
  38. BedogniG. BellentaniS. MiglioliL. The fatty liver index: A simple and accurate predictor of hepatic steatosis in the general population.BMC Gastroenterol.2006613310.1186/1471‑230X‑6‑33 17081293
    [Google Scholar]
  39. AbdelbassetW.K. TantawyS.A. KamelD.M. Effects of high-intensity interval and moderate-intensity continuous aerobic exercise on diabetic obese patients with nonalcoholic fatty liver disease.Medicine20209910e1947110.1097/MD.0000000000019471 32150108
    [Google Scholar]
  40. WinnN.C. LiuY. RectorR.S. ParksE.J. IbdahJ.A. KanaleyJ.A. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity — A randomized trial.Metabolism20187812814010.1016/j.metabol.2017.08.012 28941598
    [Google Scholar]
  41. MitranunW. DeerochanawongC. TanakaH. SuksomD. Continuous vs interval training on glycemic control and macro‐ and microvascular reactivity in type 2 diabetic patients.Scand. J. Med. Sci. Sports2014242e69e7610.1111/sms.12112 24102912
    [Google Scholar]
  42. RamosJ.S. DalleckL.C. BorraniF. Low-volume high-intensity interval training is sufficient to ameliorate the severity of metabolic syndrome.Metab. Syndr. Relat. Disord.201715731932810.1089/met.2017.0042 28846513
    [Google Scholar]
  43. HallsworthK. FattakhovaG. HollingsworthK.G. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss.Gut20116091278128310.1136/gut.2011.242073 21708823
    [Google Scholar]
  44. HamasakiH. Perspectives on interval exercise interventions for non-alcoholic fatty liver disease.Medicines2019638310.3390/medicines6030083 31374827
    [Google Scholar]
  45. RectorR.S. ThyfaultJ.P. MorrisR.T. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats.Am. J. Physiol. Gastrointest. Liver Physiol.20082943G619G62610.1152/ajpgi.00428.2007 18174272
    [Google Scholar]
  46. KiapidouS. LiavaC. KalogirouM. AkriviadisE. SinakosE. Chronic kidney disease in patients with non-alcoholic fatty liver disease: What the Hepatologist should know?Ann. Hepatol.202019213414410.1016/j.aohep.2019.07.013 31606352
    [Google Scholar]
  47. TahaM. AbdeenH. AbdelsamaiaR. High intensity interval versus continuous moderate aerobic training as a prophylaxsis of diabetic nephropathy.Int. J. Diabetes Res.2016511419
    [Google Scholar]
  48. LittleJ.P. GillenJ.B. PercivalM.E. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes.J. Appl. Physiol.201111161554156010.1152/japplphysiol.00921.2011 21868679
    [Google Scholar]
  49. GorbanianB. SaberiY. Changes in Fetuin-B and RBP4 during a course of high-intensity interval training in women with nonalcoholic fatty liver.Majallah-i Danishgah-i Ulum-i Pizishki-i Babul2021231
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998320832240805113238
Loading
/content/journals/cdr/10.2174/0115733998320832240805113238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test