Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

Diabetic Cardiomyopathy (DCM) poses a substantial healthcare challenge, necessitating innovative therapeutic strategies. This review delves into the evolving role of traditional Indian dietary herbs in managing DCM, aiming to shed light on their potential contributions.

Methods

A comprehensive examination of the existing body of literature was conducted, synthesizing data from studies exploring the effects of various Indian dietary herbs on DCM. Molecular mechanisms, clinical outcomes, and safety profiles were scrutinized to establish a holistic perspective on their therapeutic potential.

Results

The review illuminates the multifaceted benefits of Indian dietary herbs in DCM management. These herbs have demonstrated efficacy in mitigating cardiac dysfunction, reducing oxidative stress, and modulating inflammatory responses. Molecular insights highlight their role in the intricate signaling pathways underlying DCM. Furthermore, their safety profiles render them promising candidates for adjunct therapy.

Conclusion

Indian dietary herbs emerge as promising allies in the battle against DCM, offering a holistic approach to the management of this intricate condition. Their cardioprotective effects, coupled with their ability to address the underlying molecular mechanisms, herald a new era in DCM therapy. This review underscores the need for further research to harness the potential of these herbs fully and provides a beacon of hope for individuals affected by DCM.

Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998315714240801193254
2024-08-09
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cdr/21/10/CDR-21-10-06.html?itemId=/content/journals/cdr/10.2174/0115733998315714240801193254&mimeType=html&fmt=ahah

References

  1. CohnJ.N. JohnsonG. ZiescheS. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure.N. Engl. J. Med.1991325530331010.1056/NEJM199108013250502 2057035
    [Google Scholar]
  2. RydénL. ArmstrongP.W. ClelandJ.G.F. Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Results from the ATLAS trial.Eur. Heart J.200021231967197810.1053/euhj.2000.2311 11071803
    [Google Scholar]
  3. BonitoP.D. CuomoS. MoioN. Diastolic dysfunction in patients with non-insulin-dependent diabetes mellitus of short duration.Diabet. Med.199613432132410.1002/(SICI)1096‑9136(199604)13:4<321::AID‑DIA3>3.0.CO;2‑7 9162606
    [Google Scholar]
  4. NicolinoA. LongobardiG. FurgiG. Left ventricular diastolic filling in diabetes mellitus with and without hypertension.Am. J. Hypertens.19958438238910.1016/0895‑7061(95)00022‑H 7619351
    [Google Scholar]
  5. RedfieldM.M. JacobsenS.J. BurnettJ.C.Jr MahoneyD.W. BaileyK.R. RodehefferR.J. Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic.JAMA2003289219420210.1001/jama.289.2.194 12517230
    [Google Scholar]
  6. Di BonitoP. MoioN. CavutoL. Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging.Diabet. Med.200522121720172510.1111/j.1464‑5491.2005.01685.x 16401318
    [Google Scholar]
  7. KondurackaE. CieslikG. Galicka-LatalaD. Myocardial dysfunction and chronic heart failure in patients with long-lasting type 1 diabetes: A 7-year prospective cohort study.Acta Diabetol.201350459760610.1007/s00592‑013‑0455‑0 23358920
    [Google Scholar]
  8. PackerM. AnkerS.D. ButlerJ. Cardiovascular and renal outcomes with empagliflozin in heart failure.N. Engl. J. Med.2020383151413142410.1056/NEJMoa2022190 32865377
    [Google Scholar]
  9. AnkerS.D. ButlerJ. FilippatosG. Empagliflozin in heart failure with a preserved ejection fraction.N. Engl. J. Med.2021385161451146110.1056/NEJMoa2107038 34449189
    [Google Scholar]
  10. DandamudiS. SlusserJ. MahoneyD.W. RedfieldM.M. RodehefferR.J. ChenH.H. The prevalence of diabetic cardiomyopathy: A population-based study in Olmsted County, Minnesota.J. Card. Fail.201420530430910.1016/j.cardfail.2014.02.007 24576788
    [Google Scholar]
  11. RublerS. DlugashJ. YuceogluY.Z. KumralT. BranwoodA.W. GrishmanA. New type of cardiomyopathy associated with diabetic glomerulosclerosis.Am. J. Cardiol.197230659560210.1016/0002‑9149(72)90595‑4 4263660
    [Google Scholar]
  12. AnejaA. TangW.H.W. BansilalS. GarciaM.J. FarkouhM.E. Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic challenges, and therapeutic options.Am. J. Med.2008121974875710.1016/j.amjmed.2008.03.046 18724960
    [Google Scholar]
  13. FangZ.Y. PrinsJ.B. MarwickT.H. Diabetic cardiomyopathy: Evidence, mechanisms, and therapeutic implications.Endocr. Rev.200425454356710.1210/er.2003‑0012 15294881
    [Google Scholar]
  14. InoguchiT. LiP. UmedaF. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells.Diabetes200049111939194510.2337/diabetes.49.11.1939 11078463
    [Google Scholar]
  15. NishikawaT. EdelsteinD. DuX.L. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.Nature2000404677978779010.1038/35008121 10783895
    [Google Scholar]
  16. ShimabukuroM. Cardiac adiposity and global cardiometabolic risk: New concept and clinical implication.Circ. J.2009731273410.1253/circj.CJ‑08‑1012 19057089
    [Google Scholar]
  17. MahabadiA.A. BergM.H. LehmannN. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: The Heinz Nixdorf Recall Study.J. Am. Coll. Cardiol.201361131388139510.1016/j.jacc.2012.11.062 23433560
    [Google Scholar]
  18. NakamuraM. SadoshimaJ. Cardiomyopathy in obesity, insulin resistance and diabetes.J. Physiol.2020598142977299310.1113/JP276747 30869158
    [Google Scholar]
  19. ChokshiA. DrosatosK. CheemaF.H. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure.Circulation2012125232844285310.1161/CIRCULATIONAHA.111.060889 22586279
    [Google Scholar]
  20. ParkT.S. HuY. NohH.L. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy.J. Lipid Res.200849102101211210.1194/jlr.M800147‑JLR200 18515784
    [Google Scholar]
  21. BasuR. OuditG.Y. WangX. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function.Am. J. Physiol. Heart Circ. Physiol.20092976H2096H210810.1152/ajpheart.00452.2009 19801494
    [Google Scholar]
  22. BargerP.M. BrandtJ.M. LeoneT.C. WeinheimerC.J. KellyD.P. Deactivation of peroxisome proliferator–activated receptor-α during cardiac hypertrophic growth.J. Clin. Invest.2000105121723173010.1172/JCI9056 10862787
    [Google Scholar]
  23. JiaG. HillM.A. SowersJ.R. Diabetic cardiomyopathy.Circ. Res.2018122462463810.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  24. TuletaI. FrangogiannisN.G. Diabetic fibrosis.Biochim. Biophys. Acta Mol. Basis Dis.20211867416604410.1016/j.bbadis.2020.166044
    [Google Scholar]
  25. FariaA. PersaudS.J. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential.Pharmacol. Ther.2017172506210.1016/j.pharmthera.2016.11.013 27916650
    [Google Scholar]
  26. TangZ WangP DongC ZhangJ WangX PeiH Oxidative stress signaling mediated pathogenesis of diabetic cardiomyopathy.Oxid Med Cell Longev2022202210.1155/2022/5913374
    [Google Scholar]
  27. GongW. ZhangS. ChenY. Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis.Free Radic. Biol. Med.2022181294210.1016/j.freeradbiomed.2022.01.028 35101564
    [Google Scholar]
  28. ZhengH. ZhuH. LiuX. HuangX. HuangA. HuangY. Mitophagy in diabetic cardiomyopathy: Roles and mechanisms.Front. Cell Dev. Biol.2021975038210.3389/fcell.2021.750382 34646830
    [Google Scholar]
  29. VolpeC.M.O. Villar-DelfinoP.H. dos AnjosP.M.F. Nogueira-MachadoJ.A. Cellular death, reactive oxygen species (ROS) and diabetic complications.Cell Death Dis.20189211910.1038/s41419‑017‑0135‑z 29371661
    [Google Scholar]
  30. PalP.B. SonowalH. ShuklaK. SrivastavaS.K. RamanaK.V. Aldose reductase mediates NLRP3 inflammasome–initiated innate immune response in hyperglycemia-induced Thp1 monocytes and male mice.Endocrinology2017158103661367510.1210/en.2017‑00294 28938395
    [Google Scholar]
  31. LuoB. LiB. WangW. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model.PLoS One201498e10477110.1371/journal.pone.0104771 25136835
    [Google Scholar]
  32. ZengC. WangR. TanH. Role of pyroptosis in cardiovascular diseases and its therapeutic implications.Int. J. Biol. Sci.20191571345135710.7150/ijbs.33568 31337966
    [Google Scholar]
  33. Van den BerghA. VanderperA. VangheluweP. Dyslipidaemia in type II diabetic mice does not aggravate contractile impairment but increases ventricular stiffness.Cardiovasc. Res.200877237137910.1093/cvr/cvm001 18006491
    [Google Scholar]
  34. BelkeD.D. SwansonE.A. DillmannW.H. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart.Diabetes200453123201320810.2337/diabetes.53.12.3201 15561951
    [Google Scholar]
  35. AgasheS. PetakS. Cardiac autonomic neuropathy in diabetes mellitus.Methodist DeBakey Cardiovasc. J.201814425125610.14797/mdcj‑14‑4‑251 30788010
    [Google Scholar]
  36. RamseyM.W. GoodfellowJ. JonesC.J.H. LuddingtonL.A. LewisM.J. HendersonA.H. Endothelial control of arterial distensibility is impaired in chronic heart failure.Circulation199592113212321910.1161/01.CIR.92.11.3212 7586306
    [Google Scholar]
  37. KatzS.D. HryniewiczK. HriljacI. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure.Circulation2005111331031410.1161/01.CIR.0000153349.77489.CF 15655134
    [Google Scholar]
  38. QuagliaroL. PiconiL. AssaloniR. MartinelliL. MotzE. CerielloA. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation.Diabetes200352112795280410.2337/diabetes.52.11.2795 14578299
    [Google Scholar]
  39. NakamuraK. MiyoshiT. YunokiK. ItoH. Postprandial hyperlipidemia as a potential residual risk factor.J. Cardiol.201667433533910.1016/j.jjcc.2015.12.001 26744235
    [Google Scholar]
  40. GroopP.H. ForsblomC. ThomasM.C. Mechanisms of disease: Pathway-selective insulin resistance and microvascular complications of diabetes.Nat. Clin. Pract. Endocrinol. Metab.20051210011010.1038/ncpendmet0046 16929378
    [Google Scholar]
  41. ZaccardiF. WebbD.R. KhuntiK. DaviesM.J. Comment on Nolan et al. Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes 2015; 64: 673–686.Diabetes20156410e35e3610.2337/db15‑0649 26405278
    [Google Scholar]
  42. JinW.L. AzumaK. MitaT. Repetitive hypoglycaemia increases serum adrenaline and induces monocyte adhesion to the endothelium in rat thoracic aorta.Diabetologia20115471921192910.1007/s00125‑011‑2141‑5 21499675
    [Google Scholar]
  43. Razavi NematollahiL. KitabchiA.E. StentzF.B. Proinflammatory cytokines in response to insulin-induced hypoglycemic stress in healthy subjects.Metabolism200958444344810.1016/j.metabol.2008.10.018 19303962
    [Google Scholar]
  44. YoshidaM. NakamuraK. MiyoshiT. YoshidaM. KondoM. AkazawaK. Combination therapy with pemafibrate (K-877) and pitavastatin improves vascular endothelial dysfunction in dahl/salt-sensitive rats fed a high-salt and high-fat diet.Cardiovasc. Diabetol.202019110
    [Google Scholar]
  45. GaedeP. HildebrandtP. HessG. ParvingH.H. PedersenO. Plasma N-terminal pro-brain natriuretic peptide as a major risk marker for cardiovascular disease in patients with type 2 diabetes and microalbuminuria.Diabetologia200548115616310.1007/s00125‑004‑1607‑0 15619076
    [Google Scholar]
  46. BidadkoshA. LambooyS.P.H. HeerspinkH.J. Predictive properties of biomarkers GDF-15, NTproBNP, and hs-TnT for morbidity and mortality in patients with type 2 diabetes with nephropathy.Diabetes Care201740678479210.2337/dc16‑2175 28341782
    [Google Scholar]
  47. McMurrayJ.J.V. UnoH. JarolimP. Predictors of fatal and nonfatal cardiovascular events in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia: An analysis of the Trial to Reduce cardiovascular Events with Aranesp (darbepoetin-alfa) Therapy (TREAT).Am. Heart J.20111624748755.e310.1016/j.ahj.2011.07.016 21982669
    [Google Scholar]
  48. von ScholtenB.J. ReinhardH. HansenT.W. Additive prognostic value of plasma N-terminal pro-brain natriuretic peptide and coronary artery calcification for cardiovascular events and mortality in asymptomatic patients with type 2 diabetes.Cardiovasc. Diabetol.20151415910.1186/s12933‑015‑0225‑0 25990319
    [Google Scholar]
  49. TarnowL. GallM.A. HansenB.V. HovindP. ParvingH.H. Plasma N-terminal pro-B-type natriuretic peptide and mortality in type 2 diabetes.Diabetologia200649102256226210.1007/s00125‑006‑0359‑4 16937127
    [Google Scholar]
  50. BrunoG. LandiA. BaruttaF. N-terminal probrain natriuretic peptide is a stronger predictor of cardiovascular mortality than C-reactive protein and albumin excretion rate in elderly patients with type 2 diabetes: The Casale Monferrato population-based study.Diabetes Care20133692677268210.2337/dc13‑0353 23564918
    [Google Scholar]
  51. WolskE. ClaggettB. PfefferM.A. Role of B‐type natriuretic peptide and N‐terminal prohormone BNP as predictors of cardiovascular morbidity and mortality in patients with a recent coronary event and type 2 diabetes mellitus.J. Am. Heart Assoc.201766e00474310.1161/JAHA.116.004743 28554908
    [Google Scholar]
  52. BelliaC. LombardoM. Della-MorteD. Use of Troponin as a predictor for cardiovascular diseases in patients with type 2 diabetes mellitus.Clin. Chim. Acta2020507546110.1016/j.cca.2020.04.007 32302683
    [Google Scholar]
  53. PaulusW.J. TschöpeC. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation.J. Am. Coll. Cardiol.201362426327110.1016/j.jacc.2013.02.092 23684677
    [Google Scholar]
  54. MoutachakkirM. BaraouA. BoukhiraA. ChellakS. Immunoanalytical characteristics of C-reactive protein and high sensitivity C-reactive protein.Ann Clin Biol201722522910.1684/abc.2017.1232
    [Google Scholar]
  55. LiuP. LiG. ChenY. Chemiluminescent immunoassay for high-sensitivity C-reactive protein.Sheng Wu Gong Cheng Xue Bao201026811501156 21090122
    [Google Scholar]
  56. PanA. WangY. YuanJ.M. KohW.P. High-sensitive C-reactive protein and risk of incident type 2 diabetes: A case–control study nested within the Singapore Chinese health study.BMC Endocr. Disord.2017171810.1186/s12902‑017‑0159‑5 28178951
    [Google Scholar]
  57. BagherniyaM. KhayyatzadehS.S. Heidari BakavoliA. Serum high-sensitive C-reactive protein is associated with dietary intakes in diabetic patients with and without hypertension: A cross-sectional study.Ann. Clin. Biochem.201855442242910.1177/0004563217733286 28882065
    [Google Scholar]
  58. NoordamR. OudtC.H. BosM.M. SmitR.A.J. van HeemstD. High-sensitivity C-reactive protein, low-grade systemic inflammation and type 2 diabetes mellitus: A two-sample Mendelian randomization study.Nutr. Metab. Cardiovasc. Dis.201828879580210.1016/j.numecd.2018.03.008 29753585
    [Google Scholar]
  59. PfütznerA. StandlE. StrotmannH.J. Association of high-sensitive C-reactive protein with advanced stage β-cell dysfunction and insulin resistance in patients with type 2 diabetes mellitus.Clin. Chem. Lab. Med.200644555656010.1515/CCLM.2006.108 16681424
    [Google Scholar]
  60. AryanZ. GhajarA. Faghihi-KashaniS. AfaridehM. NakhjavaniM. EsteghamatiA. Baseline high-sensitivity C-reactive protein predicts macrovascular and microvascular complications of type 2 diabetes: A population-based study.Ann. Nutr. Metab.201872428729510.1159/000488537 29694948
    [Google Scholar]
  61. QiuR. GaoY. HouD. Association between hs-CRP levels and the outcomes of patients with small-artery occlusion.Front. Aging Neurosci.2016819110.3389/fnagi.2016.00191 27555819
    [Google Scholar]
  62. GaoY. LiuJ. WangW. An elevated high-sensitivity C-reactive protein level is associated with unfavorable functional outcomes of Small-artery occlusion in patients without diabetes.Eur. Neurol.2017781-2485510.1159/000477929 28624820
    [Google Scholar]
  63. YangQ.Q. ShaoD. LiJ. YangC.L. FanM.H. CaoF.L. Positive association between serum levels of high-sensitivity C-reactive protein and depression/anxiety in female, but not male, patients with type 2 diabetes mellitus.Biol. Res. Nurs.202022217818710.1177/1099800419894641 31867989
    [Google Scholar]
  64. KoenigW. High-sensitivity C-reactive protein and atherosclerotic disease: From improved risk prediction to risk-guided therapy.Int. J. Cardiol.201316865126513410.1016/j.ijcard.2013.07.113 23978367
    [Google Scholar]
  65. KangS. FanL.Y. ChenM. LiJ. LiuZ.M. Relationship of high-sensitivity C-reactive protein concentrations and systolic heart failure.Curr. Vasc. Pharmacol.2017154390396 28393707
    [Google Scholar]
  66. Al AseriZ. HabibS.S. MarzoukA. Predictive value of high sensitivity C-reactive protein on progression to heart failure occurring after the first myocardial infarction.Vasc. Health Risk Manag.20191522122710.2147/VHRM.S198452 31410012
    [Google Scholar]
  67. DuBrockH.M. AbouEzzeddineO.F. RedfieldM.M. High-sensitivity C-reactive protein in heart failure with preserved ejection fraction.PLoS One2018138e020183610.1371/journal.pone.0201836 30114262
    [Google Scholar]
  68. AraújoJ.P. LourençoP. AzevedoA. Prognostic value of high-sensitivity C-reactive protein in heart failure: A systematic review.J. Card. Fail.200915325626610.1016/j.cardfail.2008.10.030 19327628
    [Google Scholar]
  69. Martínez-MartínezE. López-ÁndresN. Jurado-LópezR. Galectin-3 participates in cardiovascular remodeling associated with obesity.Hypertension201566596196910.1161/HYPERTENSIONAHA.115.06032 26351031
    [Google Scholar]
  70. dos SantosS.N. SheldonH. PereiraJ.X. Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation.Oncotarget2017830494844950110.18632/oncotarget.17718 28533486
    [Google Scholar]
  71. SuthaharN. MeijersW.C. SilljéH.H.W. HoJ.E. LiuF.T. de BoerR.A. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: An update.Theranostics20188359360910.7150/thno.22196 29344292
    [Google Scholar]
  72. SciacchitanoS. LavraL. MorganteA. Galectin-3: one molecule for an alphabet of diseases, from A to Z.Int. J. Mol. Sci.201819237910.3390/ijms19020379 29373564
    [Google Scholar]
  73. DongR. ZhangM. HuQ. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review).Int. J. Mol. Med.2018412599614 29207027
    [Google Scholar]
  74. Martínez-MartínezE. BrugnolaroC. IbarrolaJ. CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) axis in cardiac fibrosis and inflammation: Mechanistic insights and clinical implications.Hypertension201973360261110.1161/HYPERTENSIONAHA.118.11874 30612490
    [Google Scholar]
  75. TanK.C.B. CheungC.L. LeeA.C.H. LamJ.K.Y. WongY. ShiuS.W.M. Galectin-3 is independently associated with progression of nephropathy in type 2 diabetes mellitus.Diabetologia20186151212121910.1007/s00125‑018‑4552‑z 29417184
    [Google Scholar]
  76. TanK.C.B. CheungC.L. LeeA.C.H. LamJ.K.Y. WongY. ShiuS.W.M. Galectin‐3 and risk of cardiovascular events and all‐cause mortality in type 2 diabetes.Diabetes Metab. Res. Rev.2019352e309310.1002/dmrr.3093 30378236
    [Google Scholar]
  77. ZhongX. QianX. ChenG. SongX. The role of galectin‐3 in heart failure and cardiovascular disease.Clin. Exp. Pharmacol. Physiol.201946319720310.1111/1440‑1681.13048 30372548
    [Google Scholar]
  78. PuglieseG. IacobiniC. RicciC. FantauzziC.B. MeniniS. Galectin-3 in diabetic patients.Clinical Chemistry and Laboratory Medicine (CCLM)201452101413142310.1515/cclm‑2014‑018724940712
    [Google Scholar]
  79. de BoerR.A. EdelmannF. Cohen-SolalA. MamasM.A. MaiselA. PieskeB. Galectin‐3 in heart failure with preserved ejection fraction.Eur. J. Heart Fail.201315101095110110.1093/eurjhf/hft077 23650131
    [Google Scholar]
  80. JabagiH. MielniczukL.M. LiuP.P. RuelM. SunL.Y. Biomarkers in the diagnosis, management, and prognostication of perioperative right ventricular failure in cardiac surgery—are we there yet?J. Clin. Med.20198455910.3390/jcm8040559 31027170
    [Google Scholar]
  81. OikonomouE. KarlisD. TsalamadrisS. Galectin-3 and arterial stiffness in patients with heart failure: A pilot study.Curr. Vasc. Pharmacol.201917439640010.2174/1570161116666180703094919 29968538
    [Google Scholar]
  82. TrippelT.D. MendeM. DüngenH.D. The diagnostic and prognostic value of galectin‐3 in patients at risk for heart failure with preserved ejection fraction: results from the DIAST‐CHF study.ESC Heart Fail.20218282984110.1002/ehf2.13174 33566456
    [Google Scholar]
  83. GocerH. GündayM. ÜnalM. Plasma galectin-3 as a biomarker for clinical staging of heart failure: A cross-sectional evaluation of 100 cases.Clin. Ter.20191704e267e271 31304514
    [Google Scholar]
  84. ChenY.S. GiW.T. LiaoT.Y. Using the galectin-3 test to predict mortality in heart failure patients: A systematic review and meta-analysis.Biomarkers Med.201610332934210.2217/bmm.15.121 26860036
    [Google Scholar]
  85. MuellerT. GegenhuberA. LeitnerI. PoelzW. HaltmayerM. DieplingerB. Diagnostic and prognostic accuracy of galectin-3 and soluble ST2 for acute heart failure.Clin. Chim. Acta201646315816410.1016/j.cca.2016.10.034 27983996
    [Google Scholar]
  86. SrivatsanV. GeorgeM. ShanmugamE. Utility of galectin-3 as a prognostic biomarker in heart failure: where do we stand?Eur. J. Prev. Cardiol.20152291096111010.1177/2047487314552797 25268020
    [Google Scholar]
  87. BastaG. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications.Atherosclerosis2008196192110.1016/j.atherosclerosis.2007.07.025 17826783
    [Google Scholar]
  88. FiorentinoT. PriolettaA. ZuoP. FolliF. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases.Curr. Pharm. Des.201319325695570310.2174/1381612811319320005 23448484
    [Google Scholar]
  89. RautS.K. SinghG.B. RastogiB. miR-30c and miR-181a synergistically modulate p53–p21 pathway in diabetes induced cardiac hypertrophy.Mol. Cell. Biochem.20164171-219120310.1007/s11010‑016‑2729‑7 27221738
    [Google Scholar]
  90. JellisC. WrightJ. KennedyD. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy.Circ. Cardiovasc. Imaging20114669370210.1161/CIRCIMAGING.111.963587 21946703
    [Google Scholar]
  91. JankowskaE.A. AnderssonT. Kaiser‐AlbersC. BozkurtB. ChioncelO. CoatsA.J.S. Optimizing outcomes in heart failure: 2022 and beyond.ESC Hear Fail2023
    [Google Scholar]
  92. AguilarD. BozkurtB. RamasubbuK. DeswalA. Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes.J. Am. Coll. Cardiol.200954542242810.1016/j.jacc.2009.04.049 19628117
    [Google Scholar]
  93. CastagnoD. Baird-GunningJ. JhundP.S. Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: Evidence from a 37,229 patient meta-analysis.Am. Heart J.20111625938948.e210.1016/j.ahj.2011.07.030 22093212
    [Google Scholar]
  94. BoussageonR Bejan-AngoulvantT Saadatian-ElahiM Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials.BMJ2011343jul26 1d416910.1136/bmj.d416921791495
    [Google Scholar]
  95. TianJ ZhaoY LiuY LiuY ChenK LyuS Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: current status and perspective.Oxid Med Cell Longev2017201710.1155/2017/8214541
    [Google Scholar]
  96. FarazandehM. MahmoudabadyM. AsghariA.A. NiazmandS. Diabetic cardiomyopathy was attenuated by cinnamon treatment through the inhibition of fibro‐inflammatory response and ventricular hypertrophy in diabetic rats.J. Food Biochem.2022468e1420610.1111/jfbc.14206 35474577
    [Google Scholar]
  97. CzompaA. GyongyosiA. SzokeK. Effects of Momordica charantia (Bitter Melon) on ischemic diabetic myocardium.Molecules201722348810.3390/molecules22030488 28335529
    [Google Scholar]
  98. BafadamS. MahmoudabadyM. NiazmandS. RezaeeS.A. SoukhtanlooM. Cardioprotective effects of Fenugreek (Trigonella foenum-graceum) seed extract in streptozotocin induced diabetic rats.J. Cardiovasc. Thorac. Res.2021131283610.34172/jcvtr.2021.01 33815699
    [Google Scholar]
  99. MinQ. BaiY. ZhangY. YuW. ZhangM. LiuD. Hawthorn leaf flavonoids protect against diabetes-induced cardiomyopathy in rats via PKC-α signaling pathway.In: Evid. Based Complement. Alternat. Med.20172017p. 207195210.1155/2017/2071952
    [Google Scholar]
  100. AbdiT. MahmoudabadyM. MarzouniH.Z. NiazmandS. KhazaeiM. Ginger (Zingiber Officinale Roscoe) extract protects the heart against inflammation and fibrosis in diabetic rats.Can. J. Diabetes202145322022710.1016/j.jcjd.2020.08.102 33162372
    [Google Scholar]
  101. Abdel-MageidA.D. Abou-SalemM.E.S. SalaamN.M.H.A. El-GarhyH.A.S. The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats.Phytomedicine20184312613410.1016/j.phymed.2018.04.039 29747745
    [Google Scholar]
  102. WuX. HuangL. ZhouX. LiuJ. Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice.Biochem. Biophys. Res. Commun.20205301152110.1016/j.bbrc.2020.05.053 32828278
    [Google Scholar]
  103. ChanS.W. TomlinsonB. Effects of bilberry supplementation on metabolic and cardiovascular disease risk.Molecules2020257165310.3390/molecules25071653 32260262
    [Google Scholar]
  104. KumarV. BhandariU. TripathiC. KhannaG. Ameliorative effect of ethanolic Gymnema sylvestre extract on diabetic cardiomyopathy against streptozotocin-induced diabetes in Wistar rats.Int J Green Pharm201371610.4103/0973‑8258.111595
    [Google Scholar]
  105. KhaliqF. ParveenA. SinghS. GondalR. HussainM.E. FahimM. Improvement in myocardial function by Terminalia arjuna in streptozotocin-induced diabetic rats: Possible mechanisms.J. Cardiovasc. Pharmacol. Ther.201318548148910.1177/1074248413488831 23676315
    [Google Scholar]
  106. WangD. ZhangL. HuangJ. Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine.Trends Food Sci. Technol.2021117344510.1016/j.tifs.2020.11.024
    [Google Scholar]
  107. Nasimi Doost AzgomiR. KarimiA. Moini JazaniA. The favorable impacts of cardamom on related complications of diabetes: A comprehensive literature systematic review.Diabetes Metab. Syndr.202418210294710.1016/j.dsx.2024.102947 38325073
    [Google Scholar]
  108. Ali QutbM. Effect of cloves (syzygium aromaticum) on serum biomarkers of some common complications and oxidative stress on alloxan-induced diabetic rats.J Spec Educ Res2023202373125
    [Google Scholar]
  109. GopalR. AmbihaR. SivasubramanianN. Effect of curry leaves in lowering blood pressure among hypertensive Indian patients.Bioinformation202319101020102410.6026/973206300191020 37969660
    [Google Scholar]
  110. BaderA.A.S.A. Black cumin (Nigella sativa) to treat bronchial asthma, ischemia, and cardiovascular diseases. In: Biochemistry, Nutrition, and Therapeutics of Black Cumin Seed.Elsevier202323123610.1016/B978‑0‑323‑90788‑0.00018‑4
    [Google Scholar]
  111. El- WakfAM El-SawiMR El-NigomyHM Fennel seeds extract prevents fructose-induced cardiac dysfunction in a rat model of metabolic syndrome via targeting abdominal obesity, hyperuricemia and NF-κβ inflammatory pathway.Tissue Cell20248810238510.1016/j.tice.2024.102385 38678740
    [Google Scholar]
  112. JiangC. LiD. ChenL. Quercetin ameliorated cardiac injury via reducing inflammatory actions and the glycerophospholipid metabolism dysregulation in a diabetic cardiomyopathy mouse model.Food Funct.202213147847785610.1039/D2FO00912A 35770736
    [Google Scholar]
  113. DashJ.R. PattnaikG. GhoshG. RathG. KarB. Protective effect of epicatechin in diabetic-induced peripheral neuropathy: A review.J. Appl. Pharm. Sci.20231315663
    [Google Scholar]
  114. FangW. WangC. HeY. ZhouY. PengX. LiuS. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation.Acta Pharmacol. Sin.2018391597310.1038/aps.2017.50 28770830
    [Google Scholar]
  115. XiaoC. ChenM.Y. HanY.P. LiuL.J. YanJ.L. QianL.B. The protection of luteolin against diabetic cardiomyopathy in rats is related to reversing JNK-suppressed autophagy.Food Funct.20231462740274910.1039/D2FO03871D 36852907
    [Google Scholar]
  116. AlshehriA.S. El-KottA.F. EleawaS.M. Kaempferol protects against streptozotocin-induced diabetic cardiomyopathy in rats by a hypoglycemic effect and upregulating SIRT1.J. Physiol. Pharmacol.2021723 34810287
    [Google Scholar]
  117. Liao H han, Zhu J xiu, Feng H, Ni J, Zhang N, Chen S. Myricetin possesses potential protective effects on diabetic cardiomyopathy through inhibiting IκBα/NFκB and enhancing Nrf2/HO-1.Oxid Med Cell Longev20172017
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998315714240801193254
Loading
/content/journals/cdr/10.2174/0115733998315714240801193254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test