Skip to content
2000
Volume 24, Issue 5
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Mitochondrial dysfunction is considered highly related to the development and progression of diseases, including cancer, metabolism disturbance, and neurodegeneration. Traditional pharmacological approach for mitochondrial dysfunction treatment has off-target and dose-dependent side effects, which leads to the emergence of mitochondrial gene therapy by regulating coding or noncoding genes by using nucleic acid sequences such as oligonucleotides, peptide nucleic acids, rRNA, siRNA, etc. To avoid size heterogeneity and potential cytotoxicity of the traditional delivery vehicle like liposome, framework nucleic acids have shown promising potentials. First, special spatial structure like tetrahedron allows entry into cells without transfection reagents. Second, the nature of nucleic acid provides the editability of framework structure, more sites and methods for drug loading and targeted sequences linking, providing efficient transportation and accurate targeting to mitochondria. Third, controllable size leads a possibility to go through biological barrier such as the blood-brain barrier, reaching the central nervous system to reverse mitochondria-related neurodegeneration. In addition, it's biocompatibility and physiological environmental stability open up the possibility of in vivo treatments for mitochondrial dysfunction. Furthermore, we discuss the challenges and opportunities of framework nucleic acids-based delivery systems in mitochondrial dysfunction.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/1389200224666230614115655
2023-05-01
2025-10-24
Loading full text...

Full text loading...

/content/journals/cdm/10.2174/1389200224666230614115655
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test