Skip to content
2000
Volume 22, Issue 13
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background: α-mangostin, a typical xanthone, often exists in Garcinia mangostana L. (Clusiaceae). α-mangostin was found to have a wide range of pharmacological properties. However, its specific metabolic route in vivo remains unclear, while these metabolites may accumulate to exert pharmacological effects, too. Objective: This study aimed to clarify the metabolic pathways of α-mangostin after oral administration to the rats. Methods: Here, an UHPLC-Q-Exactive Orbitrap MS was used for the detection of potential metabolites formed in vivo. A new strategy for the identification of unknown metabolites based on typical fragmentation routes was implemented. Results: A total of 42 metabolites were detected, and their structures were tentatively identified in this study. The results showed that major in vivo metabolic pathways of α-mangostin in rats included methylation, demethylation, methoxylation, hydrogenation, dehydrogenation, hydroxylation, dehydroxylation, glucuronidation, and sulfation. Conclusions: This study is significant to expand our knowledge of the in vivo metabolism of α-mangostin and to understand the mechanism of action of α-mangostin in rats in vivo.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/1389200222666211126093124
2021-11-01
2025-09-30
Loading full text...

Full text loading...

/content/journals/cdm/10.2174/1389200222666211126093124
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test