Skip to content
2000
Volume 13, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Methotrexate (MTX) is a key agent for the treatment of acute lymphoblastic leukemia in children and the benefit of high-dose MTX is well established as it significantly increases cure rates and improves patients’ prognosis. However, the determinants of MTX therapeutic effect are not clearly identified, although intracellular polyglutamation is essential. MTX, the monoglutamate form (MTXG1) inhibits the dihydrofolate reductase (DHFR) implicated in the folate cycle. MTXG1 is metabolized to active methotrexate polyglutamates (MTXPG) with sequential gamma-linkage of 2 to 6 glutamyl residues by the folylpolyglutamate synthetase (FPGS). Long chain MTXPG have higher affinity than MTX for the enzymes involved in de novo purine synthesis such as 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (ATIC) and thymidilate synthase (TS), which results in a reinforcement of MTX inhibition. Thus, intracellular formation of MTXPG enhances the cytotoxic and antileukemic effect of MTX. Different pharmacogenetic polymorphisms contribute to interindividual variability in MTX response to treatment. In addition, pharmacokinetic interactions with 6-mercaptopurine (6-MP), frequently co-administered, have been reported. And factors affecting intracellular MTX disposition and 6-MP/MTX interactions, including pharmacogenetic polymorphisms affecting MTX disposition are reviewed.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/138920012800840400
2012-07-01
2025-10-27
Loading full text...

Full text loading...

/content/journals/cdm/10.2174/138920012800840400
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test