Skip to content
2000
Volume 9, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

As more and more evidence has become available, the link between gene and emergent disease has been made including cancer, heart disease and parkinsonism. Analyzing the diseases and designing drugs with respect to the gene and protein level obviously help to find the underlying causes of the diseases, and to improve their rate of cure. The development of modern molecular biology, biochemistry, data collection and analysis techniques provides the scientists with a large amount of gene data. To draw a link between genes and their relation to disease outcomes and drug discovery is a big challenge: How to analyze large datasets and extract useful knowledge? Combining bioinformatics with drug discovery is a promising method to tackle this issue. Most techniques of bioinformatics are used in the first two phases of drug discovery to extract interesting information and find important genes and/or proteins for speeding the process of drug discovery, enhancing the accuracy of analysis and reducing the cost. Gene identification is a very fundamental and important technique among them. In this paper, we have reviewed gene identification algorithms and discussed their usage, relationships and challenges in drug discovery and development.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/138920008784892056
2008-07-01
2025-09-01
Loading full text...

Full text loading...

/content/journals/cdm/10.2174/138920008784892056
Loading

  • Article Type:
    Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test