Skip to content
2000
image of Mechanistic Potentials of Natural Herbal Medicines (NHMs) in Promoting Bone Regeneration: A Comprehensive Review

Abstract

Bone healing remains a major clinical challenge, especially in conditions such as osteoporosis, delayed unions, and critical-sized defects, where conventional therapies often prove inadequate. Current approaches, including growth factor therapies, autografts, and allografts, are limited by complications such as immunological reactions, donor-site morbidity, high cost, and poor long-term outcomes. In recent years, Natural Herbal Medicines (NHMs) have emerged as promising alternatives owing to their osteogenic, antioxidant, and anti-inflammatory properties. Phytoconstituents such as flavonoids, saponins, polyphenols, alkaloids, and minerals exert significant regulatory effects on key signaling pathways, including BMP/Smad, Wnt/β-catenin, MAPK, and RANK/RANKL/OPG, thereby restoring bone microarchitecture, suppressing osteoclastogenesis, and promoting osteoblast differentiation and mineralization. This review focuses on five medicinal plants with strong evidence in bone regeneration: Cissus quadrangularis, Dalbergia sissoo, Moringa oleifera, Withania somnifera, and Terminalia arjuna. Preclinical and clinical studies demonstrate their ability to enhance bone mineral density, collagen deposition, angiogenesis, and callus formation, while reducing oxidative stress and inflammation. Furthermore, synergistic effects have been reported in polyherbal formulations, and recent advances in biomaterials and nanotechnology-based carriers, such as scaffolds, hydrogels, and nanoparticles, offer targeted and sustained delivery, thereby improving therapeutic efficacy. Despite these promising findings, major barriers remain, including poor solubility, variability in phytochemical composition, lack of standardization, and limited large-scale clinical trials. Future research must integrate toxicological profiling, pharmacokinetic studies, and regulatory harmonization to ensure safe and effective translation of these therapies. Overall, NHMs represent an affordable, biocompatible, and culturally relevant adjunct or alternative to conventional bone-healing strategies, with the potential to revolutionize orthopedic regeneration when integrated with modern delivery platforms.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002439149251202115833
2026-02-13
2026-02-19
Loading full text...

Full text loading...

References

  1. Kandil F.E. Nassar M.I. A tannin anti-cancer promotor from Terminalia arjuna. Phytochemistry 1998 47 8 1567 1568
    [Google Scholar]
  2. World Health Organization WHO Guidelines on Good Agricultural and Collection Practices [GACP] for Medicinal Plants; World Health Organization: Geneva 2025
    [Google Scholar]
  3. Abdalla H.A. Ali M. Amar M.H. Chen L. Wang Q.F. Characterization of phytochemical and nutrient compounds from the leaves and seeds of Moringa oleifera and Moringa peregrina. Horticulturae 2022 8 11 1081 10.3390/horticulturae8111081
    [Google Scholar]
  4. Amini A.R. Laurencin C.T. Nukavarapu S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012 40 5 363 408 10.1615/CritRevBiomedEng.v40.i5.10
    [Google Scholar]
  5. Anand U. Jacobo-Herrera N. Altemimi A. Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019 9 11 258 10.3390/metabo9110258
    [Google Scholar]
  6. Anzano A. Ammar M. Papaianni M. Grauso L. Sabbah M. Capparelli R. Lanzotti V. Moringa oleifera Lam.: A phytochemical and pharmacological overview. Horticulturae 2021 7 10 409 10.3390/horticulturae7100409
    [Google Scholar]
  7. Arbabzadegan N. Moghadamnia A.A. Kazemi S. Nozari F. Moudi E. Haghanifar S. Effect of equisetum arvense extract on bone mineral density in Wistar rats via digital radiography. Caspian J. Intern. Med. 2019 10 2 176 182 10.22088/CJIM.10.2.176 31363396
    [Google Scholar]
  8. Bafna P.S. Patil P.H. Maru S.K. Mutha R.E. Cissus quadrangularis L: A comprehensive multidisciplinary review. J. Ethnopharmacol. 2021 279 114355 10.1016/j.jep.2021.114355 34181958
    [Google Scholar]
  9. Bakr N.M. Balbola G.A. Gawad Mohamed N.A. Ahmed N.A. Sapri A.M. Mously E.A. Felemban D. Elsayed S.A. Hassan S. The effectiveness of Moringa oleifera in the preservation of periodontium after radiation therapy: An experimental animal study. Heliyon 2024 10 6 e27495 10.1016/j.heliyon.2024.e27495 38510057
    [Google Scholar]
  10. Balaji Ganesh S. Anees F.F. Kaarthikeyan G. Martin T.M. Kumar M.S.K. Sheefaa M.I. Zebrafish caudal fin model to investigate the role of Cissus quadrangularis, bioceramics, and tendon extracellular matrix scaffolds in bone regeneration. J. Oral Biol. Craniofac. Res. 2025 15 4 809 815 10.1016/j.jobcr.2025.05.009 40535904
    [Google Scholar]
  11. Baldini N. Torreggiani E. Roncuzzi L. Perut F. Zini N. Avnet S. Exosome-like nanovesicles isolated from Citrus limon L. exert antioxidative effect. Curr. Pharm. Biotechnol. 2018 19 11 877 885 10.2174/1389201019666181017115755 30332948
    [Google Scholar]
  12. Balick M.J. Cox P.A. Plants, People, and Culture: The Science of Ethnobotany. New York Garland Science 2020 10.1201/9781003049074
    [Google Scholar]
  13. Bashir A. Nabi M. Tabassum N. Afzal S. Ayoub M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Front. Pharmacol. 2023 14 1049334 10.3389/fphar.2023.1049334 37063285
    [Google Scholar]
  14. Bauer T.W. Muschler G.F. Bone graft materials: An overview of the basic science. Clin. Orthop. Relat. Res. 2000 371 10 27
    [Google Scholar]
  15. Bent S. Herbal medicine in the United States: Review of efficacy, safety, and regulation: Grand rounds at University of California, San Francisco Medical Center. J. Gen. Intern. Med. 2008 23 6 854 859 10.1007/s11606‑008‑0632‑y 18415652
    [Google Scholar]
  16. Bertolucci V. Ninomiya A.F. Longato G.B. Kaneko L.O. Nonose N. Scariot P.P. Messias L.H. Bioactive compounds from propolis on bone homeostasis: A narrative review. Antioxidants 2025 14 1 81 10.3390/antiox14010081
    [Google Scholar]
  17. Bharath M. Laxmi E. Rama Tulasi K. Dalbergia sissoo DC. - An important medicinal plant. Int. J. Res. Pharm. Chem. 2013 3 2 384 388
    [Google Scholar]
  18. Bhusnure O.G. Suryawanshi S. Vijayendra Swamy S.M. Gholve S.B. Girm P.S. Birajdar M.J. Standardization and quality evaluation of herbal drugs. J. Drug Deliv. Ther. 2019 9 3-s 1058 1063 10.22270/jddt.v9i3‑s.2941
    [Google Scholar]
  19. Bijauliya R.K. Kannojia P. Mishra P. Pathak G.K. Isolation and structure elucidation of quercetin like structure from Dalbergia sissoo (Fabaceae). J. Drug Deliv. Ther. 2020 10 6 11
    [Google Scholar]
  20. Bose S. Sarkar N. Natural medicinal compounds in bone tissue engineering. Trends Biotechnol. 2019 38 4 404 417 10.1016/j.tibtech.2019.11.005
    [Google Scholar]
  21. Suckering. Available from: https://www.britannica.com/science/suckering
  22. Buenzli P.R. Jeon J. Pivonka P. Smith D.W. Cummings P.T. Investigation of bone resorption within a cortical basic multicellular unit using a lattice-based computational model. Bone 2012 50 1 378 389 10.1016/j.bone.2011.10.021 22100414
    [Google Scholar]
  23. Buenzli P.R. Pivonka P. Smith D.W. Bone refilling in cortical basic multicellular units: Insights into tetracycline double labelling from a computational model. Biomech. Model. Mechanobiol. 2014 13 1 185 203 10.1007/s10237‑013‑0495‑y 23632774
    [Google Scholar]
  24. Chalo D.M. Franke K. Nchiozem-Ngnitedem V.A. Kakudidi E. Origa-Oryem H. Namukobe J. Kloss F. Yenesew A. Wessjohann L.A. Prenylated isoflavanones with antimicrobial potential from the root bark of Dalbergia melanoxylon. Metabolites 2023 13 6 678 10.3390/metabo13060678 37367838
    [Google Scholar]
  25. Che Ahmad Tantowi N.A. Lau S.F. Mohamed S. Mohamed S. Ficus deltoidea prevented bone loss in preclinical osteoporosis/osteoarthritis model by suppressing inflammation. Calcif. Tissue Int. 2018 103 4 388 399 10.1007/s00223‑018‑0433‑1 29808374
    [Google Scholar]
  26. Chen B. Li X. Liu D. Wang H. Xie P. Liu Z. Hou G. Chang B. Du S. Canonical Wnt signaling is required for Panax notoginseng saponin-mediated attenuation of the RANKL/OPG ratio in bone marrow stromal cells during osteogenic differentiation. Phytomedicine 2012 19 11 1029 1034 10.1016/j.phymed.2012.06.002 22818895
    [Google Scholar]
  27. Chen H. Weng Z. Kalinowska M. Xiong L. Wang L. Song H. Xiao J. Wang F. Shen X. Anti-osteoporosis effect of bioactives in edible medicinal plants: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2024 65 5 4310 4326 10.1080/10408398.2024.2386449 39093554
    [Google Scholar]
  28. Chen S.H. Wang X.L. Xie X.H. Zheng L.Z. Yao D. Wang D.P. Leng Y. Zhang G. Qin L. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: An in vitro efficacy study. Acta Biomater. 2012 8 8 3128 3137 10.1016/j.actbio.2012.04.030 22543006
    [Google Scholar]
  29. Cheng B. Li J. Du J. Lv X. Weng L. Ling C. Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-κB and MAPKs pathways. Food Chem. Toxicol. 2012 50 5 1610 1615 10.1016/j.fct.2012.02.019 22386813
    [Google Scholar]
  30. Choudhary D. Kushwaha P. Gautam J. Kumar P. Verma A. Kumar A. Maurya S.W. Siddiqui I.R. Mishra P.R. Maurya R. Trivedi R. Fast and long acting neoflavonoids dalbergin isolated from Dalbergia sissoo heartwood is osteoprotective in ovariectomized model of osteoporosis: Osteoprotective effect of Dalbergin. Biomed. Pharmacother. 2016 83 942 957 10.1016/j.biopha.2016.08.010 27522257
    [Google Scholar]
  31. Chutani K. Rai N. Sardar A. Yadav A. Rai D. Raj A. Maji B. Verma S. Tripathi A.K. Dhaniya G. Hingorani L. Mishra P.R. Trivedi R. Fortified Withaferin A accelerates the transition from fibrovascular to bone remodeling phase during endochondral bone formation to promote ossification. Front. Endocrinol. 2025 16 1540237 10.3389/fendo.2025.1540237 40352455
    [Google Scholar]
  32. Della Corte A. Giorgio I. Scerrato D. A review of recent developments in mathematical modeling of bone remodeling. Proc. Inst. Mech. Eng. H 2020 234 3 273 281 10.1177/0954411919857599 31203749
    [Google Scholar]
  33. Cui L. Li T. Liu Y. Zhou L. Li P. Xu B. Huang L. Chen Y. Liu Y. Tian X. Jee W.S.S. Wu T. Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PLoS One 2012 7 4 e34647 10.1371/journal.pone.0034647 22493705
    [Google Scholar]
  34. Deepak V. Kayastha P. McNamara L.M. Estrogen deficiency attenuates fluid flow‐induced [Ca 2+] i oscillations and mechanoresponsiveness of MLO‐Y4 osteocytes. FASEB J. 2017 31 7 3027 3039 10.1096/fj.201601280R 28363954
    [Google Scholar]
  35. Dimitriou R. Jones E. McGonagle D. Bone regeneration: Current concepts and future directions. BMC Med. 2011 9 66 10.1186/1741‑7015‑9‑66
    [Google Scholar]
  36. Dixit P. Chillara R. Khedgikar V. Gautam J. Kushwaha P. Kumar A. Singh D. Trivedi R. Maurya R. Constituents of Dalbergia sissoo Roxb. leaves with osteogenic activity. Bioorg. Med. Chem. Lett. 2012 22 2 890 897 10.1016/j.bmcl.2011.12.036 22212722
    [Google Scholar]
  37. Einhorn T.A. Gerstenfeld L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015 11 45 54 10.1038/nrrheum.2014.164
    [Google Scholar]
  38. El-Sherbiny G.M. Alluqmani A.J. Elsehemy I.A. Kalaba M.H. Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Sci. Rep. 2024 14 1 30485 10.1038/s41598‑024‑80700‑y 39681592
    [Google Scholar]
  39. Epsley S. Tadros S. Farid A. Kargilis D. Mehta S. Rajapakse C.S. The effect of inflammation on bone. Front. Physiol. 2021 11 511799 10.3389/fphys.2020.511799 33584321
    [Google Scholar]
  40. Eriksen E.F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 2010 11 4 219 227 10.1007/s11154‑010‑9153‑1 21188536
    [Google Scholar]
  41. Farag S.F. Ahmed A.S. Terashima K. Takaya Y. Niwa M. Isoflavonoid glycosides from Dalbergia sissoo. Phytochemistry 2001 57 8 1263 1268 10.1016/S0031‑9422(01)00195‑9 11454356
    [Google Scholar]
  42. Gaurav H. Yadav D. Maurya A. Yadav H. Yadav R. Shukla A.C. Sharma M. Gupta V.K. Palazon J. Biodiversity, biochemical profiling, and pharmaco-commercial applications of Withania somnifera: A review. Molecules 2023 28 3 1208.Jan 26 10.3390/molecules28031208
    [Google Scholar]
  43. Gautam J. Kumar P. Kushwaha P. Khedgikar V. Choudhary D. Singh D. Maurya R. Trivedi R. Neoflavonoid dalbergiphenol from heartwood of Dalbergia sissoo acts as bone savior in an estrogen withdrawal model for osteoporosis. Menopause 2015 22 11 1246 1255 10.1097/GME.0000000000000453 25850356
    [Google Scholar]
  44. Gayathri S. Christy A.J. Sagadevan S. Enhanced antibacterial and anticancer performance of Cissus Quadrangularis extract - Mediated ZnO nanoparticles via green hydrothermal process. Inorg. Chem. Commun. 2025 179 114826 10.1016/j.inoche.2025.114826
    [Google Scholar]
  45. George T.T. Obilana A.O. Oyenihi A.B. Rautenbach F.G. Moringa oleifera through the years: A bibliometric analysis of scientific research (2000-2020). S. Afr. J. Bot. 2021 141 12 24 10.1016/j.sajb.2021.04.025
    [Google Scholar]
  46. Gerstenfeld L.C. Cullinane D.M. Barnes G.L. Graves D.T. Einhorn T.A. Fracture healing as a post‐natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 2003 88 5 873 884 10.1002/jcb.10435
    [Google Scholar]
  47. Guo Y. Li C. Guo H. Wang P. Zhang X. Combining systemic inflammation biomarkers with traditional prognostic factors to predict surgical site infections in elderly hip fracture patients: A risk factor analysis and dynamic nomogram development. J. Orthop. Surg. Res. 2025 20 1 43 10.1186/s13018‑024‑05446‑9 39800738
    [Google Scholar]
  48. Gupta K. Biharee A. Bhatia N. Patil U.K. Thareja S. A comprehensive insight into the ethnopharmacology, phytochemistry and therapeutic profile of Moringa oleifera Lam. Phytochem. Rev. 2024 2024 1 47 10.1007/s11101‑024‑10051‑z
    [Google Scholar]
  49. Habib M.K. Al-Moalem M.H. Effect of Moringa leaves and seeds on osteoporosis in rats. J. Food. Dairy Sci 2018 129 135
    [Google Scholar]
  50. Hak D.J. Fitzpatrick D. Bishop J.A. Marsh J.L. Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 2014 45 Suppl. 2 S3 S7 10.1016/j.injury.2014.04.002
    [Google Scholar]
  51. He P. Zhong Q. Ge Y. Guo Z. Tian J. Zhou Y. Ding S. Li H. Zhou C. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection. Mater. Sci. Eng. C 2018 90 549 556 10.1016/j.msec.2018.04.014 29853124
    [Google Scholar]
  52. He X. Chen X. Yang Y. Xie Y. Liu Y. Medicinal plants for epileptic seizures: Phytoconstituents, pharmacology and mechanisms revisited. J. Ethnopharmacol. 2024 320 117386 10.1016/j.jep.2023.117386 37956914
    [Google Scholar]
  53. Hu X.H. Yang X.Y. Lian J. Chen Y. Zheng C.Y. Tao S.Y. Liu N.N. Liu Q. Jiang G.J. Moringa oleifera leaf attenuate osteoporosis in ovariectomized rats by modulating gut microbiota composition and MAPK signaling pathway. Biomed. Pharmacother. 2023 161 114434 10.1016/j.biopha.2023.114434
    [Google Scholar]
  54. Hu X. Li B. Wu F. Liu X. Liu M. Wang C. Shi Y. Ye L. GPX7 Facilitates BMSCs Osteoblastogenesis via ER Stress and mTOR Pathway. J. Cell. Mol. Med. 2021 25 22 10454 10465 10.1111/jcmm.16974 34626080
    [Google Scholar]
  55. Huang D. Li Z. Chen B. Fang G. Sun X. Li F. Xu H. Chen Y. Ding W. Naringin protects against steroid induced avascular necrosis of the femoral head through upregulation of PPARγ and activation of the Notch signaling pathway. Mol. Med. Rep. 2017 17 2 3328 3335 10.3892/mmr.2017.8247 29257271
    [Google Scholar]
  56. Ikeda K. Horie-Inoue K. Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J. Steroid Biochem. Mol. Biol. 2019 191 105375 10.1016/j.jsbmb.2019.105375 31067490
    [Google Scholar]
  57. Isyaka S.M. Umar A. A review of the botanical, ethnomedicinal uses, and phytochemistry of Dalbergia (Fabaceae) species. Eur. J. Med. Plants 2025 36 1 59 71 10.9734/ejmp/2025/v36i11238
    [Google Scholar]
  58. Jiang S. Li H. Zhang L. Mu W. Zhang Y. Chen T. Wu J. Tang H. Zheng S. Liu Y. Wu Y. Luo X. Xie Y. Ren J. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025 53 D1 D1670 D1676 10.1093/nar/gkae973 39470721
    [Google Scholar]
  59. Kakadia N. Kanaki N. Anti-osteoporotic effect of Terminalia arjuna (Roxb.) Wight & Arn. in bilateral ovariectomized induced post-menopausal osteoporosis in experimental rats. J. Complement. Integr. Med. 2023 20 2 395 403 10.1515/jcim‑2021‑0068 34798688
    [Google Scholar]
  60. Kang H. Kim S. Lee J.Y. Kim B. Inhibitory effects of ginsenoside compound K on lipopolysaccharide-stimulated inflammatory responses in macrophages by regulating sirtuin 1 and histone deacetylase 4. Nutrients 2023 15 7 1626 10.3390/nu15071626
    [Google Scholar]
  61. Karimi S.M. Bayat M. Rahimi R. Plant-derived natural medicines for the management of osteoporosis: A comprehensive review of clinical trials. J. Tradit. Complement. Med. 2024 14 1 1 18 10.1016/j.jtcme.2023.08.001 38223808
    [Google Scholar]
  62. Khalid M.U. Sultan M.T. Baig I. Abbas A. Noman A.M. Zinedine A. Bartkiene E. Rocha J.M. A comprehensive review on the bioactivity and pharmacological attributes of Withania somnifera. Nat. Prod. Res. 2025 1 15 10.1080/14786419.2025.2499070 40336483
    [Google Scholar]
  63. Khedgikar V. Kushwaha P. Ahmad N. Gautam J. Kumar P. Maurya R. Trivedi R. Ethanolic extract of Dalbergia sissoo promotes rapid regeneration of cortical bone in drill-hole defect model of rat. Biomed. Pharmacother. 2017 86 16 22 10.1016/j.biopha.2016.11.140 27936389
    [Google Scholar]
  64. Kokkiripati P.K. Kamsala R.V. Bashyam L. Manthapuram N. Bitla P. Peddada V. Raghavendra A.S. Tetali S.D. Stem-bark of Terminalia arjuna attenuates human monocytic (THP-1) and aortic endothelial cell activation. J. Ethnopharmacol. 2013 146 2 456 464 10.1016/j.jep.2012.12.050 23353898
    [Google Scholar]
  65. Koons G.L. Diba M. Mikos A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020 5 584 603 10.1038/s41578‑020‑0204‑2
    [Google Scholar]
  66. Kusolrat P. Kupittayanant S. Effects of Moringa oleifera Lam. seed oil on lipid profiles and bone biomarkers in ovariectomized rats. Prog. Appl. Sci. Tech. 2018 8 1 173 178
    [Google Scholar]
  67. Lee C.S. Hwang H.S. Kim S. Fan J. Aghaloo T. Lee M. Inspired by nature: Facile design of nanoclay-organic hydrogel bone sealant with multifunctional properties for robust bone regeneration. Adv. Funct. Mater. 2020 30 43 2003717 10.1002/adfm.202003717 33122980
    [Google Scholar]
  68. Li F. Yang Y. Zhu P. Chen W. Qi D. Shi X. Zhang C. Yang Z. Li P. Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells. Fitoterapia 2012 83 8 1443 1450 10.1016/j.fitote.2012.08.008 22951288
    [Google Scholar]
  69. Li X. Jiang J. Yang Z. Jin S. Lu X. Qian Y. Galangin suppresses RANKL‐induced osteoclastogenesis via inhibiting MAPK and NF‐κB signalling pathways. J. Cell. Mol. Med. 2021 25 11 4988 5000 10.1111/jcmm.16430 33939240
    [Google Scholar]
  70. Liu M. Ding H. Wang H. Wang M. Wu X. Gan L. Cheng L. Li X. Moringa oleifera leaf extracts protect BMSC osteogenic induction following peroxidative damage by activating the PI3K/Akt/Foxo1 pathway. J. Orthop. Surg. Res. 2021 16 1 150 10.1186/s13018‑021‑02284‑x 33610167
    [Google Scholar]
  71. Liu R. Liu J. Huang Q. Liu S. Jiang Y. Moringa oleifera: A systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J. Pharm. Pharmacol. 2022 74 3 296 320 10.1093/jpp/rgab131 34718669
    [Google Scholar]
  72. Aguilera-Barreiro M.A. Rivera-Márquez J.A. Trujillo-Arriaga H.M. Tamayo y Orozco J.A. Barreira-Mercado E. Rodríguez-García M.E. Intake of dehydrated nopal (Opuntia ficus indica) improves bone mineral density and calciuria in adult Mexican women. Food Nutr. Res. 2013 57 1 19106 10.3402/fnr.v57i0.19106 23704856
    [Google Scholar]
  73. Navya H.M. Chidre P. Yernale N.G. Mangalagouda S. Basavarajaiah S.M. Eco-friendly synthesis of iron oxide nanoparticles (IONPs) from aqueous extract of Cissus quadrangularis L. (Veld grape): Characterization and pharmaceutical evaluation. J. Mol. Struct. 2025 1332 141685 10.1016/j.molstruc.2025.141685
    [Google Scholar]
  74. Ma Z.F. Ahmad J. Zhang H. Khan I. Muhammad S. Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. S. Afr. J. Bot. 2020 129 40 46 10.1016/j.sajb.2018.12.002
    [Google Scholar]
  75. Mahajan S.G. Mali R.G. Mehta A.A. Protective effect of ethanolic extract of seeds of Moringa oleifera Lam. against inflammation associated with development of arthritis in rats. J. Immunotoxicol. 2007 4 1 39 47 10.1080/15476910601115184 18958711
    [Google Scholar]
  76. Mahendran N. Anand B. Rajarajan M. Muthuvel A. Mohana V. Green synthesis, characterization and antimicrobial activities of silver nanoparticles using Cissus quadarangularis leaf extract. Mater. Today Proc. 2022 49 2620 2623 10.1016/j.matpr.2021.08.043
    [Google Scholar]
  77. Mandal S. Patra A. Samanta A. Roy S. Mandal A. Mahapatra T.D. Pradhan S. Das K. Nandi D.K. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac. J. Trop. Biomed. 2013 3 12 960 966 10.1016/S2221‑1691(13)60186‑0 24093787
    [Google Scholar]
  78. Marsell R. Einhorn T.A. The biology of fracture healing. Injury 2011 42 6 551 555 10.1016/j.injury.2011.03.031 21489527
    [Google Scholar]
  79. Raut A.A. Agashe S.V. Wajahat A. Sarada C.V. Vaidya A.D. Vaidya R.A. A clinical study of a standardized extract of leaves of Dalbergia sissoo (Roxb ex DC) in postmenopausal osteoporosis. J Midlife Health 2019 10 1 37 42 10.4103/jmh.JMH_22_19
    [Google Scholar]
  80. Mehrotra R. Rawat S. Kulshreshtha D.K. Patnaik G.K. Dhawan B.N. In vitro studies on the effect of certain natural products against hepatitis B virus. Indian J. Med. Res. 1990 92 APR 133 138 [PMID: 2370093
    [Google Scholar]
  81. Mo H. Zhang N. Li H. Li F. Pu R. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. Braz. J. Med. Biol. Res. 2019 52 12 e8754 10.1590/1414‑431x20198754 31826180
    [Google Scholar]
  82. Muhammad H.I. Asmawi M.Z. Khan N.A.K. A review on promising phytochemical, nutritional and glycemic control studies on Moringa oleifera Lam. in tropical and sub-tropical regions. Asian Pac. J. Trop. Biomed. 2016 6 10 896 902 10.1016/j.apjtb.2016.08.006
    [Google Scholar]
  83. Mukherjee P.K. Harwansh R.K. Bahadur S. Banerjee S. Kar A. Chanda J. Biswas S. Ahmmed S.M. Katiyar C.K. Development of ayurveda – Tradition to trend. J. Ethnopharmacol. 2017 197 10 24 10.1016/j.jep.2016.09.024 27633405
    [Google Scholar]
  84. Muthusami S. Gopalakrishnan V. Stanley J.A. Krishnamoorthy S. Ilangovan R. Gopalakrishnan V.K. Srinivasan N. Cissus quadrangularis prevented the ovariectomy induced oxidative stress in the femur of adult albino rats. Biomed. Pharmacother. 2016 81 416 423 10.1016/j.biopha.2016.04.021 27261621
    [Google Scholar]
  85. Occhiuto F. Pasquale R.D. Guglielmo G. Palumbo D.R. Zangla G. Samperi S. Renzo A. Circosta C. Effects of phytoestrogenic isoflavones from red clover (Trifolium pratense L.) on experimental osteoporosis. Phytother. Res. 2007 21 2 130 134 10.1002/ptr.2037 17117453
    [Google Scholar]
  86. Owais M. Sharad K.S. Shehbaz A. Saleemuddin M. Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 2005 12 3 229 235 10.1016/j.phymed.2003.07.012 15830846
    [Google Scholar]
  87. Pandya D. Mankad A. Pandya H. A review on Withania somnifera (L.) dunal- as an important ayurveda plant. Int. Assoc Biol. Comput. Digest 2022 1 1 138 144 10.56588/iabcd.v1i1.28
    [Google Scholar]
  88. Pankaj D. Shishir P. Amol D. Safety and efficacy of a standard-ized extract from leaves of Dalbergia sissoo in healing of long bone fracture: A pilot clinical study. J. Complement Med. Alt Healthcare J. 2018 5 1 10.19080/JCMAH.2018.05.555654
    [Google Scholar]
  89. Parashar M.S. Kumar K. Kumar K.A. Study on osteopotential activity of Terminalia arjuna bark extract using UMR 106 cells. J. Pharmacogn. Phytochem. 2020 9 2 1690 1693
    [Google Scholar]
  90. Parisuthiman D. Singhatanadgit W. Dechatiwongse T. Koontongkaew S. Cissus quadrangularis extract enhances biomineralization through up-regulation of MAPK-dependent alkaline phosphatase activity in osteoblasts. In Vitro Cell. Dev. Biol. Anim. 2009 45 3-4 194 200 10.1007/s11626‑008‑9158‑1 19057968
    [Google Scholar]
  91. Peterson M.C. Riggs M.M. Predicting nonlinear changes in bone mineral density over time using a multiscale systems pharmacology model. CPT Pharmacometrics Syst. Pharmacol. 2012 1 11 1 8 10.1038/psp.2012.15 23835796
    [Google Scholar]
  92. Peterson M.C. Riggs M.M. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 2010 46 1 49 63 10.1016/j.bone.2009.08.053 19732857
    [Google Scholar]
  93. Pingali U. Nutalapati C. Wang Y. Ashwagandha and shatavari extracts dose-dependently reduce menopause symptoms, vascular dysfunction, and bone resorption in postmenopausal women: A randomized, double-blind, placebo-controlled study. J. Menopausal Med. 2025 31 1 21 34 10.6118/jmm.24025 40347163
    [Google Scholar]
  94. Zhan X. Zeng X. Zhang Y. Feng Q. Zhao F. Jiang Z. Sun C. Puerarin promotes the viability and differentiation of MC3T3 E1 cells by miR 204 regulated Runx2 upregulation. Mol. Med. Rep. 2017 16 6262 6268 10.3892/mmr.2017.7386
    [Google Scholar]
  95. Qayoom I. Teotia A.K. Meena M. Singh P. Mishra A. Singh S. Kumar A. Enhanced bone mineralization using hydroxyapatite-based ceramic bone substitute incorporating Withania somnifera extracts. Biomed. Mater. 2020 15 5 055015 10.1088/1748‑605X/ab8835 32272467
    [Google Scholar]
  96. Ribaudo G. Povolo C. Zagotto G. Moringa oleifera Lam.: A Rich Source of Phytoactives for the Health of Human Being. Stud Nat. Prod Chem. 2019 62 179 210 10.1016/B978‑0‑444‑64185‑4.00005‑8
    [Google Scholar]
  97. Ghosh S. Saha S. Tinospora cordifolia: One plant, many roles. Anc. Sci. Life 2012 31 4 151 159 10.4103/0257‑7941.107344 23661861
    [Google Scholar]
  98. Salekzamani Y. Shakouri S.K. Dolatkhah N. Saleh P. Hashemian M. The effect of ginger and curcumin co-supplementation in postmenopausal women with osteoporosis: A randomised, triple-blind, placebo-controlled clinical trial. J. Herb. Med. 2023 42 100746 10.1016/j.hermed.2023.100746
    [Google Scholar]
  99. Sankhalkar S. Vernekar V. Quantitative and Qualitative analysis of Phenolic and Flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacognosy Res. 2016 8 1 16 21 10.4103/0974‑8490.171095 26941531
    [Google Scholar]
  100. Saroya, AS Contemporary Phytomedicines. Boca Raton CRC Press 2017 10.1201/9781315367071
    [Google Scholar]
  101. Sharma A. Chibber S.S. Chawla H.M. Isocaviunin 7-gentiobioside, a new isoflavone glycoside from Dalbergia sissoo. Phytochemistry 1980 19 4 715 10.1016/0031‑9422(80)87054‑3
    [Google Scholar]
  102. Sharma S. Sharma D. Agarwal N. Diminishing effect of Terminalia arjuna bark on the lipid and oxidative stress status of high fat high cholesterol fed rats and development of certain dietary recipes containing the tree bark for human consumption. Res. Pharm. 2012 2 4 22 30
    [Google Scholar]
  103. Shen C.L. Yeh J.K. Cao J.J. Wang J.-S. Green tea and bone metabolism. Nutrition Res 2009 29 7 437 456 10.1016/j.nutres.2009.06.008
    [Google Scholar]
  104. Shi S. Wang F. Huang Y. Chen B. Pei C. Huang D. Wang X. Wang Y. Kou S. Li W. Ma T. Wu Y. Wang Z. Epimedium for osteoporosis based on western and eastern medicine: An updated systematic review and meta-analysis. Front. Pharmacol. 2022 13 782096 10.3389/fphar.2022.782096 35431937
    [Google Scholar]
  105. Shirwaikar A. Khan S. Malini S. Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat. J. Ethnopharmacol. 2003 89 2-3 245 250 10.1016/j.jep.2003.08.004 14611887
    [Google Scholar]
  106. Abdelmonem M.A. Almaz F. Elsharkawy R. The anti-osteoporotic effect of Moringa oleifera leaves extract on glucocorticoids-induced jawbone osteoporosis in Albino rats. Brazil Dent. Sci. 2021 24 4 Suppl 1 10.4322/bds.2021.e2876
    [Google Scholar]
  107. Soliman T. Ali Z.H. Zayed M. Sabry D. Abubakr N. The anti-osteoporotic effect of Moringa oleifera leaves extract on glucocorticoids-induced jawbone osteoporosis in Albino rats. Braz. Dent. Sci. 2021 24 4 Suppl 1 10.4322/bds.2021.e2876
    [Google Scholar]
  108. Song M. Jia F. Cao Z. Zhang H. Liu M. Gao L. Ginsenoside Rg3 attenuates aluminum-induced osteoporosis through regulation of oxidative stress and bone metabolism in rats. Biol. Trace Elem. Res. 2020 198 2 557 566 10.1007/s12011‑020‑02089‑9 32173789
    [Google Scholar]
  109. Kumar A. Sharma P. Verma R. Efficacy and advancement of Terminalia arjuna in Indian herbal drug research: A review. Trends Appl. Sci. Res. 2019 14 4 233 242 10.3923/tasr.2019.233.242
    [Google Scholar]
  110. Steeve K.T. Marc P. Sandrine T. Dominique H. Yannick F. IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004 15 1 49 60 10.1016/j.cytogfr.2003.10.005 14746813
    [Google Scholar]
  111. Tasadduq R. Gordon J. Al-Ghanim K.A. Lian J.B. Van Wijnen A.J. Stein J.L. Stein G.S. Shakoori A.R. Ethanol extract of Cissus quadrangularis enhances osteoblast differentiation and mineralization of murine pre-osteoblastic MC3T3-E1 cells. J. Cell. Physiol. 2017 232 3 540 547 10.1002/jcp.25449 27264191
    [Google Scholar]
  112. Thakur A. Jain, Vandana Phytochemical studies on Cissus quadrangularis linn. Pharmacognosy Res. 2009 1 4 213 215
    [Google Scholar]
  113. Tiwari M. Gupta P.S. Sharma N. Ethnopharmacological, Phytochemical and Pharmacological review of Plant Cissus quadrangularis L. Res. J. Pharmacog Phytochem 2018 10 1 81 10.5958/0975‑4385.2018.00014.6
    [Google Scholar]
  114. Toor R.H. Tasadduq R. Adhikari A. Chaudhary M.I. Lian J.B. Stein J.L. Stein G.S. Shakoori A.R. Ethyl acetate and n‐butanol fraction of Cissus quadrangularis promotes the mineralization potential of murine pre‐osteoblast cell line MC3T3‐E1 (sub‐clone 4). J. Cell. Physiol. 2019 234 7 10300 10314 10.1002/jcp.27707 30443977
    [Google Scholar]
  115. Tripathi V.K. Pandey V.B. Udupa K.N. Ru¨cker G. Arjunolitin, a triterpene glycoside fromTerminalia arjuna. Phytochemistry 1992 31 1 349 351 10.1016/0031‑9422(91)83075‑V
    [Google Scholar]
  116. Rathee S. Sen D. Pandey V. Jain S.K. Advances in understanding and managing Alzheimer’s disease: From pathophysiology to innovative therapeutic strategies. Curr. Drug Targets 2024 25 11 752 774 10.2174/0113894501320096240627071400 39039673
    [Google Scholar]
  117. Sen D. Rathee S. Pandey V. Jain S.K. Patil U.K. Comprehensive insights into pathophysiology of Alzheimer’s disease: Herbal approaches for mitigating neurodegeneration. Curr. Alzheimer Res. 2025 21 9 625 648 10.2174/0115672050309057240404075003 38623983
    [Google Scholar]
  118. Rathee S. Patil U.K. Jain S.K. Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review. J. Explor. Res. Pharmacol. 2024 9 1 51 64 10.14218/JERP.2023.00050
    [Google Scholar]
  119. Sahu A. Rathee S. Jain S.K. Patil U.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in-depth analysis. Curr. Rheumatol. Rev. 2024 20 5 469 487 10.2174/0115733971280984240101115203 38284718
    [Google Scholar]
  120. Singhai H. Rathee S. Jain S.K. Patil U.K. The potential of natural products in the management of cardiovascular disease. Curr. Pharm. Des. 2024 30 8 624 638 10.2174/0113816128295053240207090928 38477208
    [Google Scholar]
  121. Yadav D.K. Rathee S. Sharma V. Patil U.K. A comprehensive review on insect repellent agents: Medicinal plants and synthetic compounds. Antiinflamm. Antiallergy Agents Med. Chem. 2024 [PMID: 39415571
    [Google Scholar]
  122. Rathee S. Dayaramani R. Innovative microneedle-based therapies for the treatment of diabetic wound healing. AAPS PharmSciTech 2025 26 6 187 10.1208/s12249‑025‑03187‑4 40629232
    [Google Scholar]
  123. Rathee S. Pandey V. Soni S. Sen D. Jain S.K. Comprehending Alzheimer’s disease: Molecular mechanisms and treatment strategies. Curr. Alzheimer Res. 2025 22 6 414 441 10.2174/0115672050368798250626075628 40621760
    [Google Scholar]
  124. Pandey V. Sen D. Rathee S. Soni S. Mishra S. Jain S.K. Patil U.K. Unlocking toll-like receptors: Targeting therapeutics for respiratory tract infections and inflammatory disorders. Recent Adv. Inflamm. Allergy Drug Discov. 2024 10.2174/0127722708329138240926073013
    [Google Scholar]
  125. Singhai H. Raikwar S. Rathee S. Jain S.K. Emerging combinatorial drug delivery strategies for breast cancer: A comprehensive review. Curr. Drug Targets 2025 26 5 331 349 10.2174/0113894501352081241211090911 39791149
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002439149251202115833
Loading
/content/journals/cdm/10.2174/0113892002439149251202115833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test