Skip to content
2000
image of Applications of Proteomics, Glycomics, and Metabolomics Analyses in Systemic Lupus Erythematosus

Abstract

Systemic Lupus Erythematosus (SLE) is a multifactorial autoimmune disorder influenced by genetic predisposition, immune dysregulation, environmental triggers, and epigenetic modifications. Despite advances in treatment, many patients experience recurrent symptoms and adverse effects. Recent large-scale studies have revealed significant alterations in proteins, glycopeptides, and metabolites in SLE, deepening our understanding of its pathogenesis. Emerging omics technologies, such as proteomics, glycomics, and metabolomics, enable the high-throughput identification of disease-related biomarkers. However, biological processes are typically driven by the interplay among multiple molecular layers. Therefore, integrative multi-omics approaches have become essential for uncovering potential biomarkers and risk factors. This review summarizes the classification of SLE biomarkers and recent advances in diagnostic applications across proteomics, glycomics, and metabolomics, aiming to support the development of more precise diagnostic strategies for SLE.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002430185251015075018
2025-11-04
2025-12-14
Loading full text...

Full text loading...

References

  1. Kaul A. Gordon C. Crow M.K. Touma Z. Urowitz M.B. van Vollenhoven R. Ruiz-Irastorza G. Hughes G. Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2016 2 1 16039 10.1038/nrdp.2016.39 27306639
    [Google Scholar]
  2. Ahmad A. Akhtar J. Ahmad M. Islam A. Badruddeen; Khan, M.I.; Siddiqui, S.; Srivastava, A. Curcumin nanogel preparations: A promising alternative for psoriasis treatment. Curr. Drug Metab. 2024 25 3 179 187 10.2174/0113892002312605240508042634 38757314
    [Google Scholar]
  3. Tsokos G.C. Systemic lupus erythematosus. N. Engl. J. Med. 2011 365 22 2110 2121 10.1056/NEJMra1100359 22129255
    [Google Scholar]
  4. Mok C.C. Lau C.S. Pathogenesis of systemic lupus erythematosus. J. Clin. Pathol. 2003 56 7 481 490 10.1136/jcp.56.7.481 12835292
    [Google Scholar]
  5. Harley J.B. Alarcón-Riquelme M.E. Criswell L.A. Jacob C.O. Kimberly R.P. Moser K.L. Tsao B.P. Vyse T.J. Langefeld C.D. Nath S.K. Guthridge J.M. Cobb B.L. Mirel D.B. Marion M.C. Williams A.H. Divers J. Wang W. Frank S.G. Namjou B. Gabriel S.B. Lee A.T. Gregersen P.K. Behrens T.W. Taylor K.E. Fernando M. Zidovetzki R. Gaffney P.M. Edberg J.C. Rioux J.D. Ojwang J.O. James J.A. Merrill J.T. Gilkeson G.S. Seldin M.F. Yin H. Baechler E.C. Li Q.Z. Wakeland E.K. Bruner G.R. Kaufman K.M. Kelly J.A. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 2008 40 2 204 210 10.1038/ng.81 18204446
    [Google Scholar]
  6. Moulton V.R. Tsokos G.C. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J. Clin. Invest. 2015 125 6 2220 2227 10.1172/JCI78087 25961450
    [Google Scholar]
  7. Pisetsky D.S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 2023 19 8 509 524 10.1038/s41581‑023‑00720‑1 37165096
    [Google Scholar]
  8. Kiriakidou M. Ching C.L. Systemic lupus erythematosus. Ann. Intern. Med. 2020 172 11 ITC81 ITC96 10.7326/AITC202006020 32479157
    [Google Scholar]
  9. Sternhagen E. Bettendorf B. Lenert A. Lenert P.S. The role of clinical features and serum biomarkers in identifying patients with incomplete lupus erythematosus at higher risk of transitioning to systemic lupus erythematosus: Current perspectives. J. Inflamm. Res. 2022 15 1133 1145 10.2147/JIR.S275043 35210816
    [Google Scholar]
  10. Huang X. Luu L.D.W. Jia N. Zhu J. Fu J. Xiao F. Liu C. Li S. Shu G. Hou J. Kang M. Zhang D. Xu Y. Wang Y. Cui X. Lai J. Li J. Tai J. Multi-platform omics analysis reveals molecular signatures for pathogenesis and activity of systemic lupus erythematosus. Front. Immunol. 2022 13 833699 10.3389/fimmu.2022.833699 35514958
    [Google Scholar]
  11. Tektonidou M.G. Ward M.M. Validation of new biomarkers in systemic autoimmune diseases. Nat. Rev. Rheumatol. 2011 7 12 708 717 10.1038/nrrheum.2011.157 22045310
    [Google Scholar]
  12. Zhang Q. Xiang L. Zaman M.H. Dong W. He G. Deng G.M. Predominant role of immunoglobulin G in the pathogenesis of splenomegaly in murine lupus. Front. Immunol. 2020 10 3020 10.3389/fimmu.2019.03020 32082297
    [Google Scholar]
  13. Wu Y. Wang M. Hu C. Zhang S. Zhao J. Wang Q. Xu D. Tian X. Zhao Y. Zeng X. Li M. IgG glycosylation profiling of systemic lupus erythematosus using lectin microarray. Lupus Sci. Med. 2025 12 1 e001413 10.1136/lupus‑2024‑001413 40187773
    [Google Scholar]
  14. Ghodke-Puranik Y. Olferiev M. Crow M.K. Systemic lupus erythematosus genetics: Insights into pathogenesis and implications for therapy. Nat. Rev. Rheumatol. 2024 20 10 635 648 10.1038/s41584‑024‑01152‑2 39232240
    [Google Scholar]
  15. Menni C. Zierer J. Valdes A.M. Spector T.D. Mixing omics: Combining genetics and metabolomics to study rheumatic diseases. Nat. Rev. Rheumatol. 2017 13 3 174 181 10.1038/nrrheum.2017.5 28148918
    [Google Scholar]
  16. Tan W.L.W. Seow W.Q. Zhang A. Rhee S. Wong W.H. Greenleaf W.J. Wu J.C. Current and future perspectives of single-cell multi-omics technologies in cardiovascular research. Nat. Cardiovasc Res. 2023 2 1 20 34 10.1038/s44161‑022‑00205‑7 39196210
    [Google Scholar]
  17. Zhou G. Wei P. Lan J. He Q. Guo F. Guo Y. Gu W. Xu T. Liu S. TMT-based quantitative proteomics analysis and potential serum protein biomarkers for systemic lupus erythematosus. Clin. Chim. Acta 2022 534 43 49 10.1016/j.cca.2022.06.031 35810799
    [Google Scholar]
  18. Kazemipour N. Qazizadeh H. Sepehrimanesh M. Salimi S. Biomarkers identified from serum proteomic analysis for the differential diagnosis of systemic lupus erythematosus. Lupus 2015 24 6 582 587 10.1177/0961203314558860 25391542
    [Google Scholar]
  19. He J. Tang D. Liu D. Hong X. Ma C. Zheng F. Zeng Z. Chen Y. Du J. Kang L. Yin L. Lu Q. Dai Y. Serum proteome and metabolome uncover novel biomarkers for the assessment of disease activity and diagnosing of systemic lupus erythematosus. Clin. Immunol. 2023 251 109330 10.1016/j.clim.2023.109330 37075949
    [Google Scholar]
  20. Fava A. Rao D.A. Mohan C. Zhang T. Rosenberg A. Fenaroli P. Belmont H.M. Izmirly P. Clancy R. Trujillo J.M. Fine D. Arazi A. Berthier C.C. Davidson A. James J.A. Diamond B. Hacohen N. Wofsy D. Raychaudhuri S. Apruzzese W. Buyon J. Petri M. Urine proteomics and renal single cell transcriptomics implicate IL-16 in lupus nephritis. Arthritis Rheumatol. 2022 74 5 829 839 10.1002/art.42023 34783463
    [Google Scholar]
  21. Li Y. Ma C. Liao S. Qi S. Meng S. Cai W. Dai W. Cao R. Dong X. Krämer B.K. Yun C. Hocher B. Hong X. Liu D. Tang D. He J. Yin L. Dai Y. Combined proteomics and single cell RNA-sequencing analysis to identify biomarkers of disease diagnosis and disease exacerbation for systemic lupus erythematosus. Front. Immunol. 2022 13 969509 10.3389/fimmu.2022.969509 36524113
    [Google Scholar]
  22. Wu T. Ding H. Han J. Arriens C. Wei C. Han W. Pedroza C. Jiang S. Anolik J. Petri M. Sanz I. Saxena R. Mohan C. Antibody-array-based proteomic screening of serum markers in systemic lupus erythematosus: A discovery study. J. Proteome Res. 2016 15 7 2102 2114 10.1021/acs.jproteome.5b00905 27211902
    [Google Scholar]
  23. Jung J.Y. Nam J.Y. Ryu K.S. Son I.O. Shin J.H. Baek W.Y. Kim H.A. Suh C.H. Salivary immunoglobulin gamma-3 chain c is a promising noninvasive biomarker for systemic lupus erythematosus. Int. J. Mol. Sci. 2021 22 3 1374 10.3390/ijms22031374 33573068
    [Google Scholar]
  24. Yang S. Zhang Y. Ye Z. Zhang Y. Gan X. Huang Y. Xiang H. Wu Y. Zhang Y. Qin X. Plasma proteomics for risk prediction and identification of novel drug targets in systemic lupus erythematosus. Rheumatology 2025 64 6 4032 4040 10.1093/rheumatology/keaf055 39883569
    [Google Scholar]
  25. Madda R. Lin S.C. Sun W.H. Huang S.L. Differential expressions of plasma proteins in systemic lupus erythematosus patients identified by proteomic analysis. J. Microbiol. Immunol. Infect. 2019 52 5 816 826 10.1016/j.jmii.2018.02.004 30170966
    [Google Scholar]
  26. Kazuoto H. Shuntaro S. Hironari H. Jun K. Hiroyuki F. Akinori H. Katsuya S. Tsutomu T. Yuko K. Urinary biomarkers associated with pathogenic pathways reflecting histologic findings in lupus nephritis. Arthritis Rheumatol. 2025 77 3 298 310 10.1002/art.43017 39317671
    [Google Scholar]
  27. Elbagir S. Mohammed N.E.A. Oke V. Larsson A. Nilsson J. Elshafie A. Elagib E.M. Nur M.A.M. Gunnarsson I. Svenungsson E. Rönnelid J. Anti-histone and anti-nucleosome rather than anti-dsDNA antibodies associate with IFN-induced biomarkers in Sudanese and Swedish SLE patients. Rheumatology 2025 64 3 1170 1178 10.1093/rheumatology/keae134
    [Google Scholar]
  28. Chuang H.C. Chen M.H. Chen Y.M. Yang H.Y. Ciou Y.R. Hsueh C.H. Tsai C.Y. Tan T.H. BPI overexpression suppresses Treg differentiation and induces exosome-mediated inflammation in systemic lupus erythematosus. Theranostics 2021 11 20 9953 9966 10.7150/thno.63743 34815797
    [Google Scholar]
  29. Bruschi M. Moroni G. Sinico R.A. Franceschini F. Fredi M. Vaglio A. Cavagna L. Petretto A. Pratesi F. Migliorini P. Locatelli F. Pazzola G. Pesce G. Bagnasco M. Manfredi A. Ramirez G.A. Esposito P. Murdaca G. Negrini S. Cipriani L. Trezzi B. Emmi G. Cavazzana I. Binda V. Fenaroli P. Pisani I. Garibotto G. Montecucco C. Santoro D. Scolari F. Mosca M. Tincani A. Candiano G. Prunotto M. Volpi S. Verrina E. Angeletti A. Ravelli A. Ghiggeri G.M. Serum IgG2 antibody multicomposition in systemic lupus erythematosus and lupus nephritis (Part 1): Cross-sectional analysis. Rheumatology 2021 60 7 3176 3188 10.1093/rheumatology/keaa767
    [Google Scholar]
  30. Lu X. Wang L. Wang M. Li Y. Zhao Q. Shi Y. Zhang Y. Wang Y. Wang W. Ji L. Hou H. Li D. Association between immunoglobulin G N-glycosylation and lupus nephritis in female patients with systemic lupus erythematosus: A case-control study. Front. Immunol. 2023 14 1257906 10.3389/fimmu.2023.1257906 37809087
    [Google Scholar]
  31. Alves I. Santos-Pereira B. Dalebout H. Santos S. Vicente M.M. Campar A. Thepaut M. Fieschi F. Strahl S. Boyaval F. Vizcaíno R. Silva R. Holst-Bernal S. Vasconcelos C. Santos L. Wuhrer M. Marinho A. Heijs B. Pinho S.S. Protein mannosylation as a diagnostic and prognostic biomarker of lupus nephritis: An unusual glycan neoepitope in systemic lupus erythematosus. Arthritis Rheumatol. 2021 73 11 2069 2077 10.1002/art.41768 33881228
    [Google Scholar]
  32. Pan H. Wang J. Liang Y. Wang C. Tian R. Ye H. Zhang X. Wu Y. Shao M. Zhang R. Xiao Y. Li Z. Zhang G. Zhou H. Wang Y. Wang X. Li Z. Liu W. Liu L. Serum IgG glycan hallmarks of systemic lupus erythematosus. Engineering 2023 26 89 98 10.1016/j.eng.2023.01.006
    [Google Scholar]
  33. Hashii N. Kawasaki N. Itoh S. Nakajima Y. Kawanishi T. Yamaguchi T. Alteration of N‐glycosylation in the kidney in a mouse model of systemic lupus erythematosus: Relative quantification of N‐glycans using an isotope‐tagging method. Immunology 2009 126 3 336 345 10.1111/j.1365‑2567.2008.02898.x 18710403
    [Google Scholar]
  34. Takahashi R. Tsutsumi A. Ohtani K. Muraki Y. Goto D. Matsumoto I. Wakamiya N. Sumida T. Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Ann. Rheum. Dis. 2005 64 2 311 314 10.1136/ard.2003.020172 15647440
    [Google Scholar]
  35. Salem D. Subang R. Kuwana M. Levine J.S. Rauch J. T cells from induced and spontaneous models of SLE recognize a common T cell epitope on β2-glycoprotein I. Cell. Mol. Immunol. 2019 16 8 685 693 10.1038/s41423‑018‑0013‑3
    [Google Scholar]
  36. Li H. Meng D. Jia J. Wei H. PGLYRP2 as a novel biomarker for the activity and lipid metabolism of systemic lupus erythematosus. Lipids Health Dis. 2021 20 1 95 10.1186/s12944‑021‑01515‑8 34461924
    [Google Scholar]
  37. Hu C. Zhang J. Hong S. Li H. Lu L. Xie G. Luo W. Du Y. Xie Z. Han X. Wen C. Oxidative stress-induced aberrant lipid metabolism is an important causal factor for dysfunction of immunocytes from patients with systemic lupus erythematosus. Free Radic. Biol. Med. 2021 163 210 219 10.1016/j.freeradbiomed.2020.12.006 33352222
    [Google Scholar]
  38. Eryavuz Onmaz D. Tezcan D. Yilmaz S. Onmaz M. Unlu A. Altered kynurenine pathway metabolism and association with disease activity in patients with systemic lupus. Amino Acids 2023 55 12 1937 1947 10.1007/s00726‑023‑03353‑7 37925676
    [Google Scholar]
  39. Zhang Y. Gan L. Tang J. Liu D. Chen G. Xu B. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front. Immunol. 2022 13 967371 10.3389/fimmu.2022.967371 36059469
    [Google Scholar]
  40. Kalantari S. Chashmniam S. Nafar M. Zakeri Z. Parvin M. Metabolomics approach reveals urine biomarkers and pathways associated with the pathogenesis of lupus nephritis. Iran. J. Basic Med. Sci. 2019 22 11 1288 1295 10.22038/ijbms.2019.38713.9178 32128093
    [Google Scholar]
  41. He Z. Shao T. Li H. Xie Z. Wen C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog. 2016 8 1 64 10.1186/s13099‑016‑0146‑9 27980687
    [Google Scholar]
  42. Chen B. Cao J. Liu W. Zhang Y. Liu Y. Wang M. Xiao F. Ma J. Wang J. Zhang X. Disturbed gut virome with potent interferonogenic property in systemic lupus erythematosus. Sci. Bull. 2023 68 3 295 304 10.1016/j.scib.2023.01.021 36697300
    [Google Scholar]
  43. Yang P. Xu R. Chen F. Chen S. Khan A. Li L. Zhang X. Wang Y. Xu Z. Shen H. Fungal gut microbiota dysbiosis in systemic lupus erythematosus. Front. Microbiol. 2023 14 1149311 10.3389/fmicb.2023.1149311 37089568
    [Google Scholar]
  44. Roberts D.S. Loo J.A. Tsybin Y.O. Liu X. Wu S. Chamot-Rooke J. Agar J.N. Paša-Tolić L. Smith L.M. Ge Y. Top-down proteomics. Nat. Rev. Methods Primers 2024 4 1 38 10.1038/s43586‑024‑00318‑2 39006170
    [Google Scholar]
  45. Schubert O.T. Röst H.L. Collins B.C. Rosenberger G. Aebersold R. Quantitative proteomics: Challenges and opportunities in basic and applied research. Nat. Protoc. 2017 12 7 1289 1294 10.1038/nprot.2017.040 28569762
    [Google Scholar]
  46. Kummer E. Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 2021 22 5 307 325 10.1038/s41580‑021‑00332‑2 33594280
    [Google Scholar]
  47. Melby J.A. Roberts D.S. Larson E.J. Brown K.A. Bayne E.F. Jin S. Ge Y. Novel strategies to address the challenges in top-down proteomics. J. Am. Soc. Mass Spectrom. 2021 32 6 1278 1294 10.1021/jasms.1c00099 33983025
    [Google Scholar]
  48. Neagu A.N. Jayathirtha M. Baxter E. Donnelly M. Petre B.A. Darie C.C. Applications of tandem mass spectrometry (MS/MS) in protein analysis for biomedical research. Molecules 2022 27 8 2411 10.3390/molecules27082411 35458608
    [Google Scholar]
  49. Zhang S. Xu R. Kang L. Biomarkers for systemic lupus erythematosus: A scoping review. Immun. Inflamm. Dis. 2024 12 10 e70022 10.1002/iid3.70022 39364719
    [Google Scholar]
  50. Sato S. Yashiro M. Asano T. Kobayashi H. Watanabe H. Migita K. Association of anti-triosephosphate isomerase antibodies with aseptic meningitis in patients with neuropsychiatric systemic lupus erythematosus. Clin. Rheumatol. 2017 36 7 1655 1659 10.1007/s10067‑017‑3653‑2 28451873
    [Google Scholar]
  51. Chen X. Sun Y. Zhang T. Shu L. Roepstorff P. Yang F. Quantitative proteomics using isobaric labeling: A practical guide. Genomics Proteomics Bioinform. 2021 19 5 689 706 10.1016/j.gpb.2021.08.012 35007772
    [Google Scholar]
  52. Kitagori K. Oku T. Wakabayashi M. Nakajima T. Nakashima R. Murakami K. Hirayama Y. Ishihama Y. Ohmura K. Morinobu A. Mimori T. Yoshifuji H. Expression of S100A8 protein on B cells is associated with disease activity in patients with systemic lupus erythematosus. Arthritis Res. Ther. 2023 25 1 76 10.1186/s13075‑023‑03057‑z 37165399
    [Google Scholar]
  53. Lundstrøm J. Urban J. Bojar D. Decoding glycomics with a suite of methods for differential expression analysis. Cell. Rep. Methods 2023 3 12 100652 10.1016/j.crmeth.2023.100652 37992708
    [Google Scholar]
  54. Novotny M.V. Alley W.R. Mann B.F. Analytical glycobiology at high sensitivity: Current approaches and directions. Glycoconj. J. 2013 30 2 89 117 10.1007/s10719‑012‑9444‑8 22945852
    [Google Scholar]
  55. Wang X. Liu J. Wang S. Xie Y. Liu Y. Fan J. Li Y. Lu Y. Huang L. Wang Z. Online LC-ESI-MS/MS comparative analysis of N/O-glycopatterns in human colostrum from different ethnic groups in Northwest China. Carbohydr. Polym. 2024 327 121675 10.1016/j.carbpol.2023.121675 38171687
    [Google Scholar]
  56. Walsh C.T. Garneau-Tsodikova S. Gatto G.J. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. 2005 44 45 7342 7372 10.1002/anie.200501023 16267872
    [Google Scholar]
  57. Rojas-Macias M.A. Mariethoz J. Andersson P. Jin C. Venkatakrishnan V. Aoki N.P. Shinmachi D. Ashwood C. Madunic K. Zhang T. Miller R.L. Horlacher O. Struwe W.B. Watanabe Y. Okuda S. Levander F. Kolarich D. Rudd P.M. Wuhrer M. Kettner C. Packer N.H. Aoki-Kinoshita K.F. Lisacek F. Karlsson N.G. Towards a standardized bioinformatics infrastructure for N- and O-glycomics. Nat. Commun. 2019 10 1 3275 10.1038/s41467‑019‑11131‑x 31332201
    [Google Scholar]
  58. He M. Zhou X. Wang X. Glycosylation: Mechanisms, biological functions and clinical implications. Signal Transduct. Target. Ther. 2024 9 1 194 10.1038/s41392‑024‑01886‑1 39098853
    [Google Scholar]
  59. Bagdonaite I. Malaker S.A. Polasky D.A. Riley N.M. Schjoldager K. Vakhrushev S.Y. Halim A. Aoki-Kinoshita K.F. Nesvizhskii A.I. Bertozzi C.R. Wandall H.H. Parker B.L. Thaysen-Andersen M. Scott N.E. Glycoproteomics. Nat. Rev. Methods Primers 2022 2 1 48 10.1038/s43586‑022‑00128‑4
    [Google Scholar]
  60. Subedi G.P. Barb A.W. The structural role of antibody n-glycosylation in receptor interactions. Structure 2015 23 9 1573 1583 10.1016/j.str.2015.06.015 26211613
    [Google Scholar]
  61. Bhargava R. Lehoux S. Maeda K. Tsokos M.G. Krishfield S. Ellezian L. Pollak M. Stillman I.E. Cummings R.D. Tsokos G.C. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight 2021 6 9 e147789 10.1172/jci.insight.147789 33784256
    [Google Scholar]
  62. Raman R. Raguram S. Venkataraman G. Paulson J.C. Sasisekharan R. Glycomics: An integrated systems approach to structure-function relationships of glycans. Nat. Methods 2005 2 11 817 824 10.1038/nmeth807 16278650
    [Google Scholar]
  63. Kamianowska M. Szczepański M. Wasilewska A. Tubular and glomerular biomarkers of acute kidney injury in newborns. Curr. Drug Metab. 2019 20 5 332 349 10.2174/1389200220666190321142417 30907310
    [Google Scholar]
  64. Ma W. Li L. Li Z. Guo J. Zhu Y. Ge L. Wang R. Lv L. Effects of shenmai injection on the pharmacokinetics of dasatinib: An in-depth in vivo analysis utilizing UPLC-MS/MS technique. Curr. Drug Metab. 2025 25 9 670 676 10.2174/0113892002336775250108112738 39901553
    [Google Scholar]
  65. Tran H. McConville M. Loukopoulos P. Metabolomics in the study of spontaneous animal diseases. J. Vet. Diagn. Invest. 2020 32 5 635 647 10.1177/1040638720948505 32807042
    [Google Scholar]
  66. Tlaskalová-Hogenová H. Štěpánková R. Kozáková H. Hudcovic T. Vannucci L. Tučková L. Rossmann P. Hrnčíř T. Kverka M. Zákostelská Z. Klimešová K. Přibylová J. Bártová J. Sanchez D. Fundová P. Borovská D. Šrůtková D. Zídek Z. Schwarzer M. Drastich P. Funda D.P. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011 8 2 110 120 10.1038/cmi.2010.67 21278760
    [Google Scholar]
  67. Liu Y. Yang X. A review on the novel biomarkers of systemic lupus erythematosus discovered via metabolomic profiling. Front. Immunol. 2024 15 1443440 10.3389/fimmu.2024.1443440 39569194
    [Google Scholar]
  68. Wang M. Wang C. Han R.H. Han X. Novel advances in shotgun lipidomics for biology and medicine. Prog. Lipid Res. 2016 61 83 108 10.1016/j.plipres.2015.12.002 26703190
    [Google Scholar]
  69. Han X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 2016 12 11 668 679 10.1038/nrendo.2016.98 27469345
    [Google Scholar]
  70. Kang J. Zhu L. Lu J. Zhang X. Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J. Neuroimmunol. 2015 279 25 32 10.1016/j.jneuroim.2015.01.001 25669996
    [Google Scholar]
  71. Hisada R. Kono M. Potential therapies targeting metabolic pathways in systemic lupus erythematosus. Clin. Immunol. 2024 263 110224 10.1016/j.clim.2024.110224 38648959
    [Google Scholar]
  72. Mujalli A. Farrash W.F. Alghamdi K.S. Obaid A.A. Metabolite alterations in autoimmune diseases: A systematic review of metabolomics studies. Metabolites 2023 13 9 987 10.3390/metabo13090987 37755267
    [Google Scholar]
  73. Li J. Ding H. Meng Y. Li G. Fu Q. Guo Q. Yin Z. Ye Z. Zhou H. Shen N. Taurine metabolism aggravates the progression of lupus by promoting the function of plasmacytoid dendritic cells. Arthritis Rheumatol. 2020 72 12 2106 2117 10.1002/art.41419 32608557
    [Google Scholar]
  74. Choi S.C. Brown J. Gong M. Ge Y. Zadeh M. Li W. Croker B.P. Michailidis G. Garrett T.J. Mohamadzadeh M. Morel L. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci. Transl. Med. 2020 12 551 eaax2220 10.1126/scitranslmed.aax2220 32641487
    [Google Scholar]
  75. Yan R. Jiang H. Gu S. Feng N. Zhang N. Lv L. Liu F. Fecal metabolites were altered, identified as biomarkers and correlated with disease activity in patients with systemic lupus erythematosus in a gc-ms-based metabolomics study. Front. Immunol. 2020 11 2138 10.3389/fimmu.2020.02138 33013903
    [Google Scholar]
  76. Furment M.M. Perl A. Immmunometabolism of systemic lupus erythematosus. Clin. Immunol. 2024 261 109939 10.1016/j.clim.2024.109939 38382658
    [Google Scholar]
  77. Di Meo F. Donato S. Di Pardo A. Maglione V. Filosa S. Crispi S. New therapeutic drugs from bioactive natural molecules: The role of gut microbiota metabolism in neurodegenerative diseases. Curr. Drug Metab. 2018 19 6 478 489 10.2174/1389200219666180404094147 29623833
    [Google Scholar]
  78. Bai X. Liu G. Yang J. Zhu J. Li X. Gut microbiota as the potential mechanism to mediate drug metabolism underhigh-altitude hypoxia. Curr. Drug Metab. 2022 23 1 8 20 10.2174/1389200223666220128141038 35088664
    [Google Scholar]
  79. Zhang L. Qing P. Yang H. Wu Y. Liu Y. Luo Y. Gut Microbiome and metabolites in systemic lupus erythematosus: Link, mechanisms and intervention. Front. Immunol. 2021 12 686501 10.3389/fimmu.2021.686501 34335588
    [Google Scholar]
  80. Hevia A. Milani C. López P. Cuervo A. Arboleya S. Duranti S. Turroni F. González S. Suárez A. Gueimonde M. Ventura M. Sánchez B. Margolles A. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio 2014 5 5 e01548 e14 10.1128/mBio.01548‑14 25271284
    [Google Scholar]
  81. Mu Q. Zhang H. Liao X. Lin K. Liu H. Edwards M.R. Ahmed S.A. Yuan R. Li L. Cecere T.E. Branson D.B. Kirby J.L. Goswami P. Leeth C.M. Read K.A. Oestreich K.J. Vieson M.D. Reilly C.M. Luo X.M. Control of lupus nephritis by changes of gut microbiota. Microbiome 2017 5 1 73 10.1186/s40168‑017‑0300‑8 28697806
    [Google Scholar]
  82. Ghosh S. Malik Y.S. Kobayashi N. Therapeutics and immunoprophylaxis against noroviruses and rotaviruses: The past, present, and future. Curr. Drug Metab. 2018 19 3 170 191 10.2174/1389200218666170912161449 28901254
    [Google Scholar]
  83. Jog N.R. Young K.A. Munroe M.E. Harmon M.T. Guthridge J.M. Kelly J.A. Kamen D.L. Gilkeson G.S. Weisman M.H. Karp D.R. Gaffney P.M. Harley J.B. Wallace D.J. Norris J.M. James J.A. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann. Rheum. Dis. 2019 78 9 1235 1241 10.1136/annrheumdis‑2019‑215361 31217170
    [Google Scholar]
  84. Wang M. Liu Y. Zhao L. Zhang X. Modulating gut microbiota in autoimmune diseases: A cutting-edge strategy from prophylaxis to therapeutics. Sci. Bull. 2022 67 8 771 773 10.1016/j.scib.2021.12.021 36546226
    [Google Scholar]
  85. Karczewski K.J. Snyder M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018 19 5 299 310 10.1038/nrg.2018.4 29479082
    [Google Scholar]
  86. Dörner T. Lipsky P.E. The essential roles of memory B cells in the pathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2024 20 12 770 782 10.1038/s41584‑024‑01179‑5 39511302
    [Google Scholar]
  87. Legge A.C. Hanly J.G. Recent advances in the diagnosis and management of neuropsychiatric lupus. Nat. Rev. Rheumatol. 2024 20 11 712 728 10.1038/s41584‑024‑01163‑z 39358609
    [Google Scholar]
  88. Tang D. Chen Y. He H. Huang J. Chen W. Peng W. Lu Q. Dai Y. Integrated analysis of mRNA, microRNA and protein in systemic lupus erythematosus-specific induced pluripotent stem cells from urine. BMC Genomics 2016 17 1 488 10.1186/s12864‑016‑2809‑9 27402083
    [Google Scholar]
  89. Banchereau R. Hong S. Cantarel B. Baldwin N. Baisch J. Edens M. Cepika A.M. Acs P. Turner J. Anguiano E. Vinod P. Khan S. Obermoser G. Blankenship D. Wakeland E. Nassi L. Gotte A. Punaro M. Liu Y.J. Banchereau J. Rossello-Urgell J. Wright T. Pascual V. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 2016 165 3 551 565 10.1016/j.cell.2016.03.008 27040498
    [Google Scholar]
  90. Karmakar A. Kumar U. Prabhu S. Ravindran V. Nagaraju S.P. Suryakanth V.B. Prabhu M.M. Karmakar S. Molecular profiling and therapeutic tailoring to address disease heterogeneity in systemic lupus erythematosus. Clin. Exp. Med. 2024 24 1 223 10.1007/s10238‑024‑01484‑z 39294397
    [Google Scholar]
  91. Wang T.Y. Wang Y.F. Zhang Y. Shen J.J. Guo M. Yang J. Lau Y.L. Yang W. Identification of regulatory modules that stratify lupus disease mechanism through integrating multi-omics data. Mol. Ther. Nucleic Acids 2020 19 318 329 10.1016/j.omtn.2019.11.019 31877408
    [Google Scholar]
  92. Li Q. Jia C. Pan W. Liu H. Tang C. Weber D. Chen K. Long H. Byrne-Steele M.L. Han J. He N. Xiao R. Zhao M. Che N. Guo Q. Gui G. Li S. Si H. Guo S. Liu H. Wang G. Zhu G. Yang B. Wang Y. Ding Y. Yang X. Akihiko Y. Lu L. Chang C. Chan V. Lau C.S. Qi H. Liu W. Li S. Wu H. Lu Q. Multi-omics study reveals different pathogenesis of the generation of skin lesions in SLE and IDLE patients. J. Autoimmun. 2024 146 103203 10.1016/j.jaut.2024.103203 38643729
    [Google Scholar]
  93. Zhou H. Li X. Zhang Y. Wei F. Liu Z. Zhao Y. Zhuang X. Liu X. Zhou H. Machine learning combined multi-omics analysis to explore key oxidative stress features in systemic lupus erythematosus. Front. Immunol. 2025 16 1567466 10.3389/fimmu.2025.1567466 40625749
    [Google Scholar]
  94. Woodridge L. Chocano E. Ashford P. Robinson G. Waddington K. Rahman A. Orengo C. Jury E. Pineda Torra I. POS0039 Monocyte transcriptomics and targeted proteomics define heterogeneous subgroups in women with systemic lupus erythematosus (SLE) and subclinical atherosclerosis. Ann. Rheum. Dis. 2022 81 234 235 10.1136/annrheumdis‑2022‑eular.4056
    [Google Scholar]
  95. Agrawal M. Allin K.H. Petralia F. Colombel J.F. Jess T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat. Rev. Gastroenterol. Hepatol. 2022 19 6 399 409 10.1038/s41575‑022‑00593‑y 35301463
    [Google Scholar]
  96. Zhao G. Wang X. Lei H. Ruan N. Yuan B. Tang S. Ni N. Zuo Z. Xun L. Luo M. Zhao Q. Qi J. Fu P. Serum HMGB-1 released by ferroptosis and necroptosis as a novel potential biomarker for systemic lupus erythematosus. Int. Immunopharmacol. 2024 140 112886 10.1016/j.intimp.2024.112886 39128419
    [Google Scholar]
  97. Iperi C. Fernández-Ochoa Á. Pers J.O. Barturen G. Alarcón-Riquelme M. Quirantes-Piné R. Borrás-Linares I. Segura-Carretero A. Cornec D. Bordron A. Jamin C. Integration of multi-omics analysis reveals metabolic alterations of B lymphocytes in systemic lupus erythematosus. Clin. Immunol. 2024 264 110243 10.1016/j.clim.2024.110243 38735509
    [Google Scholar]
  98. Cai M. Qin Y. Chen Z. Multi-omics analysis reveals cox5a as a biomarker of disease activity and organ damage of lupus. Ann. Rheum. Dis. 2023 82 1240 10.1136/annrheumdis‑2023‑eular.4250
    [Google Scholar]
  99. Cui M. Wang C. Shen Q. Ren H. Li L. Li S. Song Z. Lin W. Zhang R. Integrative analysis of omics summary data reveals putative mechanisms linked to different cell populations in systemic lupus erythematosus. Genomics 2022 114 4 110435 10.1016/j.ygeno.2022.110435 35878812
    [Google Scholar]
  100. Zhou M. Kang Y. Li J. Li R. Lu L. Omics-based integrated analysis identified IKZF2 as a biomarker associated with lupus nephritis. Sci. Rep. 2022 12 1 9612 10.1038/s41598‑022‑13336‑5 35688845
    [Google Scholar]
  101. Liang Y. Xie S.B. Wu C.H. Hu Y. Zhang Q. Li S. Fan Y.G. Leng R.X. Pan H.F. Xiong H.B. Ye D.Q. Coagulation cascade and complement system in systemic lupus erythematosus. Oncotarget 2018 9 19 14862 14881 10.18632/oncotarget.23206 29599912
    [Google Scholar]
  102. Vielhauer V. Anders H.J. Schlöndorff D. Chemokines and chemokine receptors as therapeutic targets in lupus nephritis. Semin. Nephrol. 2007 27 1 81 97 10.1016/j.semnephrol.2006.09.010 17336691
    [Google Scholar]
  103. Linge P. Fortin P.R. Lood C. Bengtsson A.A. Boilard E. The non-haemostatic role of platelets in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2018 14 4 195 213 10.1038/nrrheum.2018.38 29559714
    [Google Scholar]
  104. Kyttaris V.C. Wang Y. Juang Y.T. Weinstein A. Tsokos G.C. Increased levels of NF-ATc2 differentially regulate CD154 and IL-2 genes in T cells from patients with systemic lupus erythematosus. J. Immunol. 2007 178 3 1960 1966 10.4049/jimmunol.178.3.1960 17237447
    [Google Scholar]
  105. Wang X. Huang W. Schiffer L.E. Mihara M. Akkerman A. Hiromatsu K. Davidson A. Effects of anti-CD154 treatment on B cells in murine systemic lupus erythematosus. Arthritis Rheum. 2003 48 2 495 506 10.1002/art.10929 12571860
    [Google Scholar]
  106. Song W. Tang D. Chen D. Zheng F. Huang S. Xu Y. Yu H. He J. Hong X. Yin L. Liu D. Dai W. Dai Y. Advances in applying of multi-omics approaches in the research of systemic lupus erythematosus. Int. Rev. Immunol. 2020 39 4 163 173 10.1080/08830185.2020.1736058 32138562
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002430185251015075018
Loading
/content/journals/cdm/10.2174/0113892002430185251015075018
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: biomarkers ; glycomics ; metabolomics ; proteomics ; Systemic lupus erythematosus ; multi-omics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test