Skip to content
2000
image of Exploring Microbiome-Based Therapy: Bacterial Flavonoid Synthesis as a Novel Approach to PCOS Treatment

Abstract

Background

PCOS is a common endocrine disorder characterized by metabolic irregularities, hormonal imbalance, and ovarian dysfunction. Traditional therapies, including dietary changes, herbal remedies, and lifestyle modifications, offer limited efficacy in addressing the complex pathophysiology of PCOS.

Method

A literature review was conducted using PubMed, Google Scholar, and ScienceDirect to identify studies on gut microbiota and microbiome-based management strategies for PCOS.

Result

Emerging evidence highlights the role of gut bacteria in regulating hormonal and metabolic functions, sparking interest in microbiota-targeted therapies. Microbial flavonoid synthesis by species such as and may positively influence endocrine and metabolic pathways relevant to PCOS.

Discussion

Modulating the gut microbiome, particularly through microbial flavonoid production, represents a promising therapeutic avenue. However, most evidence remains preclinical, with limited clinical validation. Key gaps include mechanistic understanding, safety evaluation, and translational research. Integrating microbiome-targeted interventions with conventional therapies could enhance metabolic and hormonal regulation, offering improved outcomes for women with PCOS.

Conclusion

Microbiome-based medicinal approaches, including microbial flavonoid production, may offer novel strategies for PCOS management. Rigorous preclinical studies and well-designed clinical trials are essential to establish their efficacy, safety, and therapeutic potential.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002424403251122104355
2026-01-22
2026-01-31
Loading full text...

Full text loading...

References

  1. Lizneva D. Suturina L. Walker W. Brakta S. Gavrilova-Jordan L. Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016 106 1 6 15 10.1016/j.fertnstert.2016.05.003 27233760
    [Google Scholar]
  2. Wolf W.M. Wattick R.A. Kinkade O.N. Olfert M.D. Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity. Int. J. Environ. Res. Public Health 2018 15 11 2589 10.3390/ijerph15112589 30463276
    [Google Scholar]
  3. Okoroh E.M. Hooper W.C. Atrash H.K. Yusuf H.R. Boulet S.L. Prevalence of polycystic ovary syndrome among the privately insured, United States, 2003-2008. Am. J. Obstet. Gynecol. 2012 207 4 299.e1 299.e7 10.1016/j.ajog.2012.07.023 22921097
    [Google Scholar]
  4. Teede H.J. Misso M.L. Costello M.F. Dokras A. Laven J. Moran L. Piltonen T. Norman R.J. Erratum. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2019 34 2 388 388 10.1093/humrep/dey363 30521039
    [Google Scholar]
  5. Shukla A. Rasquin L.I. Anastasopoulou C. Polycystic ovarian syndrome. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  6. Swarup S. Ahmed I. Grigorova Y. Metabolic syndrome. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  7. Hayden M.R. Overview and new insights into the metabolic syndrome: Risk factors and emerging variables in the development of type 2 diabetes and cerebrocardiovascular disease. Medicina 2023 59 3 561 10.3390/medicina59030561 36984562
    [Google Scholar]
  8. Dewani D. Karwade P. Mahajan K.S. The invisible struggle: The psychosocial aspects of polycystic ovary syndrome. Cureus 2023 15 12 e51321 10.7759/cureus.51321 38288169
    [Google Scholar]
  9. Shahid R. Iahtisham-Ul-Haq Mahnoor AwanK.A. IqbalM.J. MunirH. SaeedI. Diet and lifestyle modifications for effective management of polycystic ovarian syndrome (PCOS). J. Food Biochem. 2022 46 7 e14117 10.1111/jfbc.14117 35199348
    [Google Scholar]
  10. Azziz R. Diagnosis of polycystic ovarian syndrome: The rotterdam criteria are premature. J. Clin. Endocrinol. Metab. 2006 91 3 781 785 10.1210/jc.2005‑2153 16418211
    [Google Scholar]
  11. Gleicher N. Darmon S. Patrizio P. Barad D.H. Reconsidering the polycystic ovary syndrome (PCOS). Biomedicines 2022 10 7 1505 10.3390/biomedicines10071505 35884809
    [Google Scholar]
  12. Jabeen A. Yamini V. Rahman Amberina A. Dinesh Eshwar M. Vadakedath S. Begum G.S. Kandi V. Polycystic ovarian syndrome: Prevalence, predisposing factors, and awareness among adolescent and young girls of South India. Cureus 2022 14 8 e27943 10.7759/cureus.27943 36120281
    [Google Scholar]
  13. Khan M.J. Ullah A. Basit S. Genetic basis of polycystic ovary syndrome (PCOS): Current perspectives. Appl. Clin. Genet. 2019 12 249 260 10.2147/TACG.S200341 31920361
    [Google Scholar]
  14. Kshetrimayum C. Sharma A. Mishra V.V. Kumar S. Polycystic ovarian syndrome: Environmental/occupational, lifestyle factors; an overview. J. Turk. Ger. Gynecol. Assoc. 2019 20 4 255 263 10.4274/jtgga.galenos.2019.2018.0142 30821135
    [Google Scholar]
  15. Purwar A. Nagpure S. Insulin resistance in polycystic ovarian syndrome. Cureus 2022 14 10 e30351 10.7759/cureus.30351 36407241
    [Google Scholar]
  16. El-Seadawy M. Antral follicle responsiveness to follicle stimulating hormone administration assessed by the follicular output rate (FORT) may predict in vitro fertilization-embryo transfer outcome. Obstet. Gynecol. Reprod. Sci. 2024 8 2 01 7 10.31579/2578‑8965/202
    [Google Scholar]
  17. Ajmal N. Khan S.Z. Shaikh, R Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019 3 100060 10.1016/j.eurox.2019.100060 31403134
    [Google Scholar]
  18. Barber T.M. Hanson P. Weickert M.O. Franks S. Obesity and polycystic ovary syndrome: Implications for pathogenesis and novel management strategies. Clin. Med. Insights Reprod. Health 2019 13 1179558119874042 10.1177/1179558119874042 31523137
    [Google Scholar]
  19. Parveen S. Khan S. Ahsan H. Manger P.T. Gupta B. Alam R. Fat mass and Obesity Associated (FTO) gene and polycystic ovary syndrome: Insight into pathogenesis and association with insulin resistance. Hum. Nutr. Metab. 2022 30 200174 10.1016/j.hnm.2022.200174
    [Google Scholar]
  20. Dludla P.V. Mabhida S.E. Ziqubu K. Nkambule B.B. Mazibuko-Mbeje S.E. Hanser S. Basson A.K. Pheiffer C. Kengne A.P. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J. Diabetes 2023 14 3 130 146 10.4239/wjd.v14.i3.130 37035220
    [Google Scholar]
  21. Ruiz N. Silhavy T.J. How Escherichia coli became the flagship bacterium of molecular biology. J. Bacteriol. 2022 204 9 e0023022 10.1128/jb.00230‑22 35916528
    [Google Scholar]
  22. Johnson J.E. Daley D. Tarta C. Stanciu P. Risk of endometrial cancer in patients with polycystic ovarian syndrome: A meta analysis. Oncol. Lett. 2023 25 4 168 10.3892/ol.2023.13754 36960190
    [Google Scholar]
  23. Shetty C. Rizvi S.M.H.A. Sharaf J. Williams K.A.D. Tariq M. Acharekar M.V. Guerrero Saldivia S.E. Unnikrishnan S.N. Chavarria Y.Y. Akindele A.O. Jalkh A.P.C. Eastmond A.K. Hamid P. Risk of gynecological cancers in women with polycystic ovary syndrome and the pathophysiology of association. Cureus 2023 15 4 e37266 10.7759/cureus.37266 37162768
    [Google Scholar]
  24. Moini A. Eslami B. Familial associations between polycystic ovarian syndrome and common diseases. J. Assist. Reprod. Genet. 2009 26 2-3 123 127 10.1007/s10815‑009‑9297‑7 19205868
    [Google Scholar]
  25. Li Y. Lin H. Pan P. Yang D. Zhang Q. Impact of central obesity on women with polycystic ovary syndrome undergoing in vitro fertilization. Biores. Open Access 2018 7 1 116 122 10.1089/biores.2017.0040 30083428
    [Google Scholar]
  26. Mahmoud M.I. Habeeb F. Kasim K. Reproductive and biochemical changes in obese and non obese polycystic ovary syndrome women. Alex. J. Med. 2015 51 1 5 9 10.1016/j.ajme.2014.03.002
    [Google Scholar]
  27. Pavli P. Triantafyllidou O. Kapantais E. Vlahos N.F. Valsamakis G. Infertility improvement after medical weight loss in women and men: A review of the literature. Int. J. Mol. Sci. 2024 25 3 1909 10.3390/ijms25031909 38339186
    [Google Scholar]
  28. Chudzicka-Strugała I. Gołębiewska I. Banaszewska B. Brudecki G. Zwoździak B. The role of individually selected diets in obese women with PCOS—A review. Nutrients 2022 14 21 4555 10.3390/nu14214555 36364814
    [Google Scholar]
  29. Butt M.S. Saleem J. Zakar R. Aiman S. Khan M.Z. Fischer F. Benefits of physical activity on reproductive health functions among polycystic ovarian syndrome women: A systematic review. BMC Public Health 2023 23 1 882 10.1186/s12889‑023‑15730‑8 37173672
    [Google Scholar]
  30. Sabag A. Patten R.K. Moreno-Asso A. Colombo G.E. Dafauce Bouzo X. Moran L.J. Harrison C. Kazemi M. Mousa A. Tay C.T. Hirschberg A.L. Redman L.M. Teede H.J. Exercise in the management of polycystic ovary syndrome: A position statement from Exercise and Sports Science Australia. J. Sci. Med. Sport 2024 27 10 668 677 10.1016/j.jsams.2024.05.015 38960811
    [Google Scholar]
  31. Alesi S. Forslund M. Melin J. Romualdi D. Peña A. Tay C.T. Witchel S.F. Teede H. Mousa A. Efficacy and safety of anti-androgens in the management of polycystic ovary syndrome: A systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine 2023 63 102162 10.1016/j.eclinm.2023.102162 37583655
    [Google Scholar]
  32. Cooney L.G. Dokras A. Beyond fertility: Polycystic ovary syndrome and long-term health. Fertil. Steril. 2018 110 5 794 809 10.1016/j.fertnstert.2018.08.021 30316414
    [Google Scholar]
  33. Attia G.M. Almouteri M.M. Alnakhli F.T. Role of metformin in polycystic ovary syndrome (PCOS): Related infertility. Cureus 2023 15 8 e44493 10.7759/cureus.44493 37791160
    [Google Scholar]
  34. Palomba S. Santagni S. Falbo A. La Sala G.B. Complications and challenges associated with polycystic ovary syndrome: Current perspectives. Int. J. Womens Health 2015 7 745 763 10.2147/IJWH.S70314 26261426
    [Google Scholar]
  35. Pavone M.E. Bulun S.E. The use of aromatase inhibitors for ovulation induction and superovulation. J. Clin. Endocrinol. Metab. 2013 98 5 1838 1844 10.1210/jc.2013‑1328 23585659
    [Google Scholar]
  36. Kalampokas T. Pandian Z. Keay S.D. Bhattacharya S. Glucocorticoid supplementation during ovarian stimulation for IVF or ICSI. Cochrane Libr. 2017 2017 5 CD004752 10.1002/14651858.CD004752.pub2 28349525
    [Google Scholar]
  37. Xia Y. Cho S. Howard R.S. Maggio K.L. Topical eflornithine hydrochloride improves the effectiveness of standard laser hair removal for treating pseudofolliculitis barbae: A randomized, double-blinded, placebo-controlled trial. J. Am. Acad. Dermatol. 2012 67 4 694 699 10.1016/j.jaad.2011.10.029 22226431
    [Google Scholar]
  38. Dumesic D.A. Oberfield S.E. Stener-Victorin E. Marshall J.C. Laven J.S. Legro R.S. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev. 2015 36 5 487 525 10.1210/er.2015‑1018 26426951
    [Google Scholar]
  39. Witchel S.F. Oberfield S.E. Peña A.S. Polycystic ovary syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls. J. Endocr. Soc. 2019 3 8 1545 1573 10.1210/js.2019‑00078 31384717
    [Google Scholar]
  40. Kansal A. Singhal P. Insulin resistance in polycystic ovarian syndrome. Int. J. Contemp Med. 2017 5 1 99 10.5958/2321‑1032.2017.00020.1
    [Google Scholar]
  41. Amini L. Tehranian N. Movahedin M. Ramezani Tehrani F. Soltanghoraee H. Polycystic ovary morphology (PCOM) in estradiol valerate treated mouse model. Int. J. Women’s Health Reprod. Sci. 2016 4 1 13 17 10.15296/ijwhr.2016.04
    [Google Scholar]
  42. Pund H.S. Khairnar V.S. A literature review on treatment of polycystic ovary syndrome (PCOS) using herbal drugs and home remedies for PCOS. Int. Res. J. Modern Eng. Technol Sci. 2024 06 03 3303 3311 10.56726/IRJMETS50726
    [Google Scholar]
  43. Jayasena C.N. Franks S. The management of patients with polycystic ovary syndrome. Nat. Rev. Endocrinol. 2014 10 10 624 636 10.1038/nrendo.2014.102 25022814
    [Google Scholar]
  44. Liao B. Qiao J. Pang Y. Central regulation of PCOS: Abnormal neuronal-reproductive-metabolic circuits in PCOS pathophysiology. Front. Endocrinol. 2021 12 667422 10.3389/fendo.2021.667422 34122341
    [Google Scholar]
  45. Uenoyama Y. Inoue N. Maeda K. Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J. Reprod. Dev. 2018 64 6 469 476 10.1262/jrd.2018‑110 30298825
    [Google Scholar]
  46. Zhang C. Bosch M.A. Qiu J. Rønnekleiv O.K. Kelly M.J. 17β-Estradiol increases persistent Na(+) current and excitability of AVPV/PeN Kiss1 neurons in female mice. Mol. Endocrinol. 2015 29 4 518 527 10.1210/me.2014‑1392 25734516
    [Google Scholar]
  47. Xie Q. Kang Y. Zhang C. Xie Y. Wang C. Liu J. Yu C. Zhao H. Huang D. The role of kisspeptin in the control of the hypothalamic-pituitary-gonadal axis and reproduction. Front. Endocrinol. 2022 13 925206 10.3389/fendo.2022.925206 35837314
    [Google Scholar]
  48. Starrett J.R. Moenter S.M. Hypothalamic kisspeptin neurons as potential mediators of estradiol negative and positive feedback. Peptides 2023 163 170963 10.1016/j.peptides.2023.170963 36740189
    [Google Scholar]
  49. Esparza L.A. Schafer D. Ho B.S. Thackray V.G. Kauffman A.S. Hyperactive L.H. Hyperactive LH pulses and elevated kisspeptin and nkb gene expression in the arcuate nucleus of a PCOS mouse model. Endocrinology 2020 161 4 bqaa018 10.1210/endocr/bqaa018 32031594
    [Google Scholar]
  50. Patel B. Koysombat K. Mills E.G. Tsoutsouki J. Comninos A.N. Abbara A. Dhillo W.S. The emerging therapeutic potential of kisspeptin and neurokinin B. Endocr. Rev. 2024 45 1 30 68 10.1210/endrev/bnad023 37467734
    [Google Scholar]
  51. Butt M.S. Saleem J. Aiman S. Zakar R. Sadique I. Fischer F. Serum anti-Müllerian hormone as a predictor of polycystic ovarian syndrome among women of reproductive age. BMC Womens Health 2022 22 1 199 10.1186/s12905‑022‑01782‑2 35643521
    [Google Scholar]
  52. Rodriguez Paris V. Bertoldo M.J. The mechanism of androgen actions in PCOS etiology. Med. Sci. 2019 7 9 89 10.3390/medsci7090089 31466345
    [Google Scholar]
  53. Wang K. Li Y. Chen Y. Androgen excess: A hallmark of polycystic ovary syndrome. Front. Endocrinol. 2023 14 1273542 10.3389/fendo.2023.1273542 38152131
    [Google Scholar]
  54. Balan A.I. Halațiu V.B. Scridon A. Oxidative stress, inflammation, and mitochondrial dysfunction: A link between obesity and atrial fibrillation. Antioxidants 2024 13 1 117 10.3390/antiox13010117 38247541
    [Google Scholar]
  55. Bianchetti G. De Maio F. Abeltino A. Serantoni C. Riente A. Santarelli G. Sanguinetti M. Delogu G. Martinoli R. Barbaresi S. Spirito M.D. Maulucci G. Unraveling the gut microbiome–diet connection: Exploring the impact of digital precision and personalized nutrition on microbiota composition and host physiology. Nutrients 2023 15 18 3931 10.3390/nu15183931 37764715
    [Google Scholar]
  56. Lindheim L. Bashir M. Münzker J. Trummer C. Zachhuber V. Leber B. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): A pilot study. PLoS One 2017 12 1 e0168390 10.1371/journal.pone.0168390 28045919
    [Google Scholar]
  57. Senthilkumar H. Arumugam M. Gut microbiota: A hidden player in polycystic ovary syndrome. J. Transl. Med. 2025 23 1 443 10.1186/s12967‑025‑06315‑7 40234859
    [Google Scholar]
  58. Liu R. Zhang C. Shi Y. Zhang F. Li L. Wang X. Ling Y. Fu H. Dong W. Shen J. Reeves A. Greenberg A.S. Zhao L. Peng Y. Ding X. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front. Microbiol. 2017 8 324 10.3389/fmicb.2017.00324 28293234
    [Google Scholar]
  59. Torres P.J. Siakowska M. Banaszewska B. Pawelczyk L. Duleba A.J. Kelley S.T. Thackray V.G. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J. Clin. Endocrinol. Metab. 2018 103 4 1502 1511 10.1210/jc.2017‑02153 29370410
    [Google Scholar]
  60. Insenser M. Murri M. del Campo R. Martínez-García M.Á. Fernández-Durán E. Escobar-Morreale H.F. Gut microbiota and the polycystic ovary syndrome: Influence of sex, sex hormones, and obesity. J. Clin. Endocrinol. Metab. 2018 103 7 2552 2562 10.1210/jc.2017‑02799 29897462
    [Google Scholar]
  61. Liu S. Cheng L. Li S. Characteristics of gut microbiota in patients with polycystic ovary syndrome and its association with metabolic abnormalities: A review. Int. J. Womens Health 2025 17 2165 2174 10.2147/IJWH.S522708 40698041
    [Google Scholar]
  62. Wang L. Zhou J. Gober H.J. Leung W.T. Huang Z. Pan X. Li C. Zhang N. Wang L. Alterations in the intestinal microbiome associated with PCOS affect the clinical phenotype. Biomed. Pharmacother. 2021 133 110958 10.1016/j.biopha.2020.110958 33171400
    [Google Scholar]
  63. Thackray V.G. Sex, microbes, and polycystic ovary syndrome. Trends Endocrinol. Metab. 2019 30 1 54 65 10.1016/j.tem.2018.11.001 30503354
    [Google Scholar]
  64. Jayanti S.E.R. Widyaningsih V. Budihastuti U.R. Correlations between obesity, polycystic ovary syndrome, and sleep apnea: A meta-analysis. J. Matern Child Health. 2022 7 4 432 445 10.26911/thejmch.2022.07.04.07
    [Google Scholar]
  65. Zhou L. Ni Z. Cheng W. Yu J. Sun S. Zhai D. Yu C. Cai Z. Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocr. Connect. 2020 9 1 63 73 10.1530/EC‑19‑0522 31972546
    [Google Scholar]
  66. Qi X. Yun C. Sun L. Xia J. Wu Q. Wang Y. Wang L. Zhang Y. Liang X. Wang L. Gonzalez F.J. Patterson A.D. Liu H. Mu L. Zhou Z. Zhao Y. Li R. Liu P. Zhong C. Pang Y. Jiang C. Qiao J. Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nat. Med. 2019 25 8 1225 1233 10.1038/s41591‑019‑0509‑0 31332392
    [Google Scholar]
  67. Tremellen K. Pearce K. Dysbiosis of Gut Microbiota (DOGMA) – A novel theory for the development of Polycystic Ovarian Syndrome. Med. Hypotheses 2012 79 1 104 112 10.1016/j.mehy.2012.04.016 22543078
    [Google Scholar]
  68. Sun L. Hu W. Liu Q. Hao Q. Sun B. Zhang Q. Mao S. Qiao J. Yan X. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J. Proteome Res. 2012 11 5 2937 2946 10.1021/pr3000317 22428626
    [Google Scholar]
  69. Zhang D. Zhang L. Yue F. Zheng Y. Russell R. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. Eur. J. Endocrinol. 2015 172 1 29 36 10.1530/EJE‑14‑0589 25336505
    [Google Scholar]
  70. Yurtdaş G. Akdevelioğlu Y. A new approach to polycystic ovary syndrome: The gut microbiota. J. Am. Coll. Nutr. 2020 39 4 371 382 10.1080/07315724.2019.1657515 31513473
    [Google Scholar]
  71. Sun Y. Gao S. Ye C. Zhao W. Gut microbiota dysbiosis in polycystic ovary syndrome: Mechanisms of progression and clinical applications. Front. Cell. Infect. Microbiol. 2023 13 1142041 10.3389/fcimb.2023.1142041 36909735
    [Google Scholar]
  72. Muhleisen A.L. Herbst-Kralovetz M.M. Menopause and the vaginal microbiome. Maturitas 2016 91 42 50 10.1016/j.maturitas.2016.05.015 27451320
    [Google Scholar]
  73. Stumpf R.M. Wilson B.A. Rivera A. Yildirim S. Yeoman C.J. Polk J.D. White B.A. Leigh S.R. The primate vaginal microbi-ome: Comparative context and implications for human health and disease. Am J. Phys. Anthropol. 2013 152 S57 119 134 (Suppl. 57) 10.1002/ajpa.22395 24166771
    [Google Scholar]
  74. Gajer P. Brotman R.M. Bai G. Sakamoto J. Schütte U.M.E. Zhong X. Koenig S.S.K. Fu L. Ma Z.S. Zhou X. Abdo Z. Forney L.J. Ravel J. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 2012 4 132 132ra52 10.1126/scitranslmed.3003605 22553250
    [Google Scholar]
  75. Chen C. Song X. Wei W. Zhong H. Dai J. Lan Z. Li F. Yu X. Feng Q. Wang Z. Xie H. Chen X. Zeng C. Wen B. Zeng L. Du H. Tang H. Xu C. Xia Y. Xia H. Yang H. Wang J. Wang J. Madsen L. Brix S. Kristiansen K. Xu X. Li J. Wu R. Jia H. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017 8 1 875 10.1038/s41467‑017‑00901‑0 29042534
    [Google Scholar]
  76. Anahtar M.N. Gootenberg D.B. Mitchell C.M. Kwon D.S. Cervicovaginal microbiota and reproductive health: The virtue of simplicity. Cell Host Microbe 2018 23 2 159 168 10.1016/j.chom.2018.01.013 29447695
    [Google Scholar]
  77. Lakshmi J.N. Babu A.N. Kiran S.S.M. Nori L.P. Hassan N. Ashames A. Bhandare R.R. Shaik A.B. Herbs as a source for the treatment of polycystic ovarian syndrome: A systematic review. BioTech 2023 12 1 4 10.3390/biotech12010004 36648830
    [Google Scholar]
  78. Ghagane S. Toragall M. Akbar A.A. Hiremath M. Effect of Aloe vera (Barbadensis Mill) on letrozole induced polycystic ovarian syndrome in swiss albino mice. J. Hum. Reprod. Sci. 2022 15 2 126 132 10.4103/jhrs.jhrs_22_22 35928465
    [Google Scholar]
  79. Very-high dehydroepiandrosterone sulfate levels with normal levels of testosterone in a teenage girl explained by a combination of polycystic ovarian syndrome and a 17-beta-hydroxysteroid dehydrogenase deficiency. Endocr. Pract. 2025 31 9 S109 10.1016/j.eprac.2025.05.299
    [Google Scholar]
  80. Eijaz S. Salim A. Waqar M.A. A new herbal combination and trigonella foenum graceum improve insulin resistance, insulin signaling genes, adipokines level and body weight in type 2 diabetic rat model. Pak. J. Zool. 2024 56 6 10.17582/journal.pjz/20220712170720
    [Google Scholar]
  81. Vasudha B. Chandrashekhar R. Jeripothula J. Bhavani N. Ram B. Protective and therapeutic effect of protocatechuic acid in assessment of letrozole–induced polycystic ovary syndrome in rats. Asian Pac. J. Reprod. 2020 9 5 230 10.4103/2305‑0500.294665
    [Google Scholar]
  82. Manouchehri A. Abbaszadeh S. Ahmadi M. Nejad F.K. Bahmani M. Dastyar N. Polycystic ovaries and herbal remedies: A systematic review. JBRA Assist. Reprod. 2022 27 1 85 91 10.5935/1518‑0557.20220024 35916457
    [Google Scholar]
  83. Arentz S. Abbott J.A. Smith C.A. Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; A review of the laboratory evidence for effects with corroborative clinical findings. BMC Complement. Altern. Med. 2014 14 1 511 10.1186/1472‑6882‑14‑511 25524718
    [Google Scholar]
  84. Azin F. Khazali H. Phytotherapy of polycystic ovary syndrome: A review. Int. J. Reprod. Biomed. 2022 20 1 13 20 10.18502/ijrm.v20i1.10404 35308325
    [Google Scholar]
  85. Zhou P. Feng P. Liao B. Fu L. Shan H. Cao C. Luo R. Peng T. Liu F. Li R. Role of polyphenols in remodeling the host gut microbiota in polycystic ovary syndrome. J. Ovarian Res. 2024 17 1 69 10.1186/s13048‑024‑01354‑y 38539230
    [Google Scholar]
  86. Pourteymour Fard Tabrizi F. Hajizadeh-Sharafabad F. Vaezi M. Jafari-Vayghan H. Alizadeh M. Maleki V. Quercetin and polycystic ovary syndrome, current evidence and future directions: A systematic review. J. Ovarian Res. 2020 13 1 11 10.1186/s13048‑020‑0616‑z 32005271
    [Google Scholar]
  87. Tariq H. Asif S. Andleeb A. Hano C. Abbasi B.H. Flavonoid production: Current trends in plant metabolic engineering and de novo microbial production. Metabolites 2023 13 1 124 10.3390/metabo13010124 36677049
    [Google Scholar]
  88. Marín L. Gutiérrez-del-Río I. Entrialgo-Cadierno R. Villar C.J. Lombó F. De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS One 2018 13 11 e0207278 10.1371/journal.pone.0207278
    [Google Scholar]
  89. Metris A. Walker A.W. Showering A. Doolan A. McBain A.J. Ampatzoglou A. Murphy B. O’Neill C. Shortt C. Darby E.M. Aldis G. Hillebrand G.G. Brown H.L. Browne H.P. Tiesman J.P. Leng J. Lahti L. Jakubovics N.S. Hasselwander O. Finn R.D. Klamert S. Korcsmaros T. Hall L.J. Assessing the safety of microbiome perturbations. Microb. Genom. 2025 11 5 001405 10.1099/mgen.0.001405 40371892
    [Google Scholar]
  90. Hu L. Luo Y. Yang J. Cheng C. Botanical flavonoids: Efficacy, absorption, metabolism and advanced pharmaceutical technology for improving bioavailability. Molecules 2025 30 5 1184 10.3390/molecules30051184 40076406
    [Google Scholar]
  91. Mohos V. Fliszár-Nyúl E. Ungvári O. Kuffa K. Needs P.W. Kroon P.A. Telbisz Á. Özvegy-Laczka C. Poór M. Inhibitory effects of quercetin and its main methyl, sulfate, and glucuronic acid conjugates on cytochrome P450 enzymes, and on OATP, BCRP and MRP2 transporters. Nutrients 2020 12 8 2306 10.3390/nu12082306 32751996
    [Google Scholar]
  92. Zhang J. Zhang H. Xin X. Zhu Y. Ye Y. Li D. Efficacy of flavonoids on animal models of polycystic ovary syndrome: A systematic review and meta-analysis. Nutrients 2022 14 19 4128 10.3390/nu14194128 36235780
    [Google Scholar]
  93. Aggarwal N. Kitano S. Puah G.R.Y. Kittelmann S. Hwang I.Y. Chang M.W. Microbiome and human health: Current understanding, engineering, and enabling technologies. Chem. Rev. 2023 123 1 31 72 10.1021/acs.chemrev.2c00431 36317983
    [Google Scholar]
  94. Brittain N.Y. Finbloom J.A. Bioinspired approaches to encapsulate and deliver bacterial live biotherapeutic products. Adv. Drug Deliv. Rev. 2025 225 115663 10.1016/j.addr.2025.115663 40774507
    [Google Scholar]
  95. Chagas M.D.S.S. Behrens M.D. Moragas-Tellis C.J. Penedo G.X.M. Silva A.R. Gonçalves-de-Albuquerque C.F. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid. Med. Cell. Longev. 2022 2022 9966750 10.1155/2022/9966750 36111166
    [Google Scholar]
  96. Al-Khayri J.M. Sahana G.R. Nagella P. Joseph B.V. Alessa F.M. Al-Mssallem M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022 27 9 2901 10.3390/molecules27092901 35566252
    [Google Scholar]
  97. Basavaraju M. Gunashree B.S. Escherichia coli: An overview of main characteristics. Escherichia coli. IntechOpen 2022 21 10.5772/intechopen.105508
    [Google Scholar]
  98. Kumar S. Gupta R. Risk factors for antimicrobial resistance in Escherichia coli isolates from poultry in Haryana. Indian J. Anim. Res. 2019 53 7 918 925 10.18805/ijar.B‑3602
    [Google Scholar]
  99. Yu A.C.S. Loo J.F.C. Yu S. Kong S.K. Chan T.F. Monitoring bacterial growth using tunable resistive pulse sensing with a pore-based technique. Appl. Microbiol. Biotechnol. 2014 98 2 855 862 10.1007/s00253‑013‑5377‑9 24287933
    [Google Scholar]
  100. Ergezen E. Appel M. Shah P. Kresh J.Y. Lec R.M. Wootton D.M. Real-time monitoring of adhesion and aggregation of platelets using thickness shear mode (TSM) sensor. Biosens. Bioelectron. 2007 23 4 575 582 10.1016/j.bios.2007.05.009 17913487
    [Google Scholar]
  101. Xue Y. Zhu M.J. Unraveling enterohemorrhagic Escherichia coli infection: The promising role of dietary compounds and probiotics in bacterial elimination and host innate immunity boosting. Crit. Rev. Food Sci. Nutr. 2023 63 11 1551 1563 10.1080/10408398.2021.1965538 34404306
    [Google Scholar]
  102. Martinson J.N.V. Walk S.T. Escherichia coli residency in the gut of healthy human adults. Ecosal Plus 2020 9 1 10.1128/ecosalplus.ESP‑0003‑2020 32978935
    [Google Scholar]
  103. Shkoporov A.N. Turkington C.J. Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat. Rev. Microbiol. 2022 20 12 737 749 10.1038/s41579‑022‑00755‑4 35773472
    [Google Scholar]
  104. Foster-Nyarko E. Pallen M.J. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol. Rev. 2022 46 3 fuac008 10.1093/femsre/fuac008 35134909
    [Google Scholar]
  105. Yang D. Prabowo C.P.S. Eun H. Park S.Y. Cho I.J. Jiao S. Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem. 2021 65 2 225 246 10.1042/EBC20200172 33956149
    [Google Scholar]
  106. Das M. Patra P. Ghosh A. Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renew. Sustain. Energy Rev. 2020 119 109562 10.1016/j.rser.2019.109562
    [Google Scholar]
  107. Mori H. Kataoka M. Yang X. Past, present, and future of genome modification in Escherichia coli. Microorganisms 2022 10 9 1835 10.3390/microorganisms10091835 36144436
    [Google Scholar]
  108. Lou H. Hu L. Lu H. Wei T. Chen Q. Metabolic engineering of microbial cell factories for biosynthesis of flavonoids: A review. Molecules 2021 26 15 4522 10.3390/molecules26154522 34361675
    [Google Scholar]
  109. Gomes D. Rodrigues L.R. Rodrigues J.L. Perspectives on the design of microbial cell factories to produce prenylflavonoids. Int. J. Food Microbiol. 2022 367 109588 10.1016/j.ijfoodmicro.2022.109588 35245724
    [Google Scholar]
  110. Hussain M.H. Mohsin M.Z. Zaman W.Q. Yu J. Zhao X. Wei Y. Zhuang Y. Mohsin A. Guo M. Multiscale engineering of microbial cell factories: A step forward towards sustainable natural products industry. Synth. Syst. Biotechnol. 2022 7 1 586 601 10.1016/j.synbio.2021.12.012 35155840
    [Google Scholar]
  111. Wu J. Li H. Zhou J. Metabolic engineering of microorganisms for the production of carotenoids, flavonoids, and functional polysaccharides. Current Developments in Biotechnology and Bioengineering. Elsevier 2022 281 306 10.1016/B978‑0‑323‑88504‑1.00013‑3
    [Google Scholar]
  112. Ku Y.S. Ng M.S. Cheng S.S. Lo A.W.Y. Xiao Z. Shin T.S. Chung G. Lam H.M. Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients 2020 12 6 1717 10.3390/nu12061717 32521660
    [Google Scholar]
  113. Tohge T. de Souza L.P. Fernie A.R. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J. Exp. Bot. 2017 68 15 4013 4028 10.1093/jxb/erx177 28922752
    [Google Scholar]
  114. Barros J. Dixon R.A. Plant phenylalanine/tyrosine ammonia-lyases. Trends Plant Sci. 2020 25 1 66 79 10.1016/j.tplants.2019.09.011 31679994
    [Google Scholar]
  115. Isogai S. Tominaga M. Kondo A. Ishii J. Plant flavonoid production in bacteria and yeasts. Front. Chem. Eng. 2022 4 880694 10.3389/fceng.2022.880694
    [Google Scholar]
  116. Suen E.T.T. Editorial: Celebrating our tenth Anniversary of JFDA. Yao Wu Shi Pin Fen Xi 2020 10 4 10.38212/2224‑6614.2737
    [Google Scholar]
  117. Singh M. Ramadoss P. Kumar P. Ashok S.B. Association of endotrophin levels with metabolic parameters in polycystic ovarian syndrome (PCOS) patients. Res. J. Biotechnol. 2024 19 10 128 134 10.25303/1910rjbt1280134
    [Google Scholar]
  118. Kandari S. Time lapse selected elective single embryo transfer in hyaluronon enriched transfer medium in pcos improves live birth rates compared to use of conventional embryo transfer media. A possible alternative to freeze-all cycles in PCOS. Fertil. Steril. 2019 112 3 e47 e48 10.1016/j.fertnstert.2019.07.252
    [Google Scholar]
  119. Byun E.B. Sung N.Y. Park J.N. Yang M.S. Park S.H. Byun E.H. Gamma-irradiated resveratrol negatively regulates LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages. Int. Immunopharmacol. 2015 25 2 249 259 10.1016/j.intimp.2015.02.015 25701505
    [Google Scholar]
  120. Herman R. Jensterle Sever M. Janež A. Dolžan V. Interplay between oxidative stress and chronic inflammation in PCOS: The role of genetic variability in PCOS risk and treatment responses. Polycystic Ovarian Syndrome. IntechOpen 2020 10.5772/intechopen.88698
    [Google Scholar]
  121. Wang J. Yin T. Liu S. Dysregulation of immune response in PCOS organ system. Front. Immunol. 2023 14 1169232 10.3389/fimmu.2023.1169232 37215125
    [Google Scholar]
  122. Romero-Rodríguez A. Robledo-Casados I. Sánchez S. An overview on transcriptional regulators in Streptomyces. Biochim. Biophys. Acta. Gene Regul. Mech. 2015 1849 8 1017 1039 10.1016/j.bbagrm.2015.06.007 26093238
    [Google Scholar]
  123. Lacey H.J. Rutledge P.J. Recently discovered secondary metabolites from Streptomyces species. Molecules 2022 27 3 887 10.3390/molecules27030887 35164153
    [Google Scholar]
  124. Chouhan S. Sharma K. Zha J. Guleria S. Koffas M.A.G. Recent advances in the recombinant biosynthesis of polyphenols. Front. Microbiol. 2017 8 2259 10.3389/fmicb.2017.02259 29201020
    [Google Scholar]
  125. Wang Y. Chen J. He G. Yin L. Liao Y. Unlocking the potential of flavonoid biosynthesis through integrated metabolic engineering. Front. Plant. Sci. 2025 16 1597007 10.3389/fpls.2025.1597007 40510168
    [Google Scholar]
  126. Liu W. Feng Y. Yu S. Fan Z. Li X. Li J. Yin H. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 2021 22 23 12824 10.3390/ijms222312824 34884627
    [Google Scholar]
  127. Schwarze C.M. Petersen M. Phenylalanine ammonia‐lyases and 4‐coumaric acid coenzyme A ligases in Chara braunii, Marchantia polymorpha, and Physcomitrium patens as extant model organisms for plant terrestrialization. Plant J. 2024 119 6 2797 2815 10.1111/tpj.16950 39052447
    [Google Scholar]
  128. Tong Y. Lyu Y. Xu S. Zhang L. Zhou J. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Crit. Rev. Biotechnol. 2021 41 8 1194 1208 10.1080/07388551.2021.1922350 33980085
    [Google Scholar]
  129. Martín J.F. Liras P. Comparative molecular mechanisms of biosynthesis of naringenin and related chalcones in actinobacteria and plants: Relevance for the obtention of potent bioactive metabolites. Antibiotics 2022 11 1 82 10.3390/antibiotics11010082 35052959
    [Google Scholar]
  130. Imran M. Saeed F. Hussain G. Imran A. Mehmood Z. Gondal T.A. El-Ghorab A. Ahmad I. Pezzani R. Arshad M.U. Bacha U. Shariarti M.A. Rauf A. Muhammad N. Shah Z.A. Zengin G. Islam S. Myricetin: A comprehensive review on its biological potentials. Food Sci. Nutr. 2021 9 10 5854 5868 10.1002/fsn3.2513 34646551
    [Google Scholar]
  131. Hanáková Z. Hošek J. Kutil Z. Temml V. Landa P. Vaněk T. Schuster D. Dall’Acqua S. Cvačka J. Polanský O. Šmejkal K. Anti-inflammatory activity of natural geranylated flavonoids: Cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J. Nat. Prod. 2017 80 4 999 1006 10.1021/acs.jnatprod.6b01011 28322565
    [Google Scholar]
  132. Mazurakova A. Koklesova L. Csizmár S.H. Samec M. Brockmueller A. Šudomová M. Biringer K. Kudela E. Pec M. Samuel S.M. Kassayova M. Hassan S.T.S. Smejkal K. Shakibaei M. Büsselberg D. Saso L. Kubatka P. Golubnitschaja O. Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells – A potential contribution to the predictive, preventive, and personalized medicine. J. Adv. Res. 2024 55 103 118 10.1016/j.jare.2023.02.015 36871616
    [Google Scholar]
  133. Acosta-Martinez M. Cabail M.Z. The PI3K/Akt pathway in meta-inflammation. Int. J. Mol. Sci. 2022 23 23 15330 10.3390/ijms232315330 36499659
    [Google Scholar]
  134. Świderska E. Strycharz J. Wróblewski A. Szemraj J. Drzewoski J. Śliwińska A. Role of PI3K/AKT Pathway in Insulin-Mediated Glucose Uptake. Glucose Transport. IntechOpen 2020 10.5772/intechopen.80402
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002424403251122104355
Loading
/content/journals/cdm/10.2174/0113892002424403251122104355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test