Skip to content
2000
image of Development and Characterization of Ricinoleic Acid-Loaded Chitosan Nanoparticles for Targeted Hepatoprotective Drug Delivery

Abstract

Introduction

Ricinoleic acid (RA), a fatty acid derived from castor oil (Ricinus communis), exhibits potent antioxidant activity and hepatoprotective properties, primarily attributed to its ability to mitigate oxidative stress. However, its therapeutic application is limited by poor bioavailability due to high metabolism, low intestinal permeability, poor water solubility, rapid urinary and biliary elimination, frequent dosing requirements, and a short half-life. This study aimed to optimize the formulation of ricinoleic acid-loaded chitosan nanoparticles (RA-CSNPs) for improved delivery and bioavailability using the ionic gelation technique.

Method

The formulation was developed using chitosan as the polymer and sodium tripolyphosphate (STPP) as the cross-linking agent. The synthesized nanoparticles were characterized for particle size (PS: 164.15 nm), polydispersity index (PDI: 0.259), zeta potential (ZP: +30.25 mV), and entrapment efficiency (EE: 97.07%) and drug release within 24 hours. Structural and thermal properties were assessed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR).

Results

The drug release profile of the RA-CSNPs showed a cumulative release of 92.12%, demonstrating significant controlled release. Additionally, the antioxidant activity was measured at 84.45%, indicating that RA retained its bioactivity in the nanoparticle formulation.

Discussion

These results highlight the potential of RA-CSNPs as an effective drug-delivery system to overcome the bioavailability challenges of ricinoleic acid. The controlled release and antioxidant activity of the formulation are promising for therapeutic applications in various oxidative stress-related diseases. However, limitations in scaling up nanoparticle production and conducting long-term pharmacokinetic studies need to be addressed in future research.

Conclusion

This study successfully demonstrates the potential of RA-loaded chitosan nanoparticles as a novel and efficient drug delivery system. The formulation provides controlled release, enhancing the bioavailability of ricinoleic acid and offering a promising strategy for improving its therapeutic efficacy in clinical applications.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002422882251122105302
2026-01-02
2026-01-31
Loading full text...

Full text loading...

References

  1. Ramothloa T.P. Mkolo N.M. Motshudi M.C. Mphephu M.M. Makhafola M.A. Naidoo C.M. Phytochemical composition and multifunctional applications of Ricinus communis L.: Insights into therapeutic, pharmacological, and industrial potential. Molecules 2025 30 15 3214 10.3390/molecules30153214 40807390
    [Google Scholar]
  2. Kassem A.A. Abd El-Alim S.H. Salman A.M. Mohammed M.A. Hassan N.S. El-Gengaihi S.E. Improved hepatoprotective activity of Beta vulgaris L. leaf extract loaded self-nanoemulsifying drug delivery system (SNEDDS): in vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2020 46 10 1589 1603 10.1080/03639045.2020.1811303 32811211
    [Google Scholar]
  3. Yeboah A. Ying S. Lu J. Xie Y. Amoanimaa-Dede H. Boateng K.G.A. Chen M. Yin X. Castor oil (Ricinus communis): A review on the chemical composition and physicochemical properties. Food. Sci. Technol 2021 41 Suppl. 2 399 413 10.1590/fst.19620
    [Google Scholar]
  4. Kumar M. A review on phytochemical constituents and pharmacological activities of Ricinus communis L. plant. Int. J. Pharmacogn Phytochem Re 2017 9 4 466 472 10.25258/phyto.v9i2.8116
    [Google Scholar]
  5. Sarthi S. Bhardwaj H. Jangde R.K. Recent progress in nanoemulsion technology for the management of hepatic diseases. Curr. Nanomed. 2024 ••• 15 10.2174/0124681873323497240922153222
    [Google Scholar]
  6. Razak S. Afsar T. Al-Disi D. Almajwal A. Arshad M. Alyousef A.A. Chowdary R.A. GCMS fingerprinting, in vitro pharmacological activities, and in vivo anti-inflammatory and hepatoprotective effect of selected edible herbs from Kashmir valley. J. King Saud Univ. Sci. 2020 32 6 2868 2879 10.1016/j.jksus.2020.07.011
    [Google Scholar]
  7. Babu P.R. Bhuvaneswar C. Sandeep G. Ramaiah C.V. Rajendra W. Hepatoprotective role of Ricinus communis leaf extract against d-galactosamine induced acute hepatitis in albino rats. Biomed. Pharmacother. 2017 88 658 666 10.1016/j.biopha.2017.01.073 28152474
    [Google Scholar]
  8. Santos P.M. Batista D.L.J. Ribeiro L.A.F. Boffo E.F. de Cerqueira M.D. Martins D. de Castro R.D. de Souza-Neta L.C. Pinto E. Zambotti-Villela L. Colepicolo P. Fernandez L.G. Canuto G.A.B. Ribeiro P.R. Identification of antioxidant and antimicrobial compounds from the oilseed crop Ricinus communis using a multiplatform metabolite profiling approach. Ind. Crops Prod. 2018 124 834 844 10.1016/j.indcrop.2018.08.061
    [Google Scholar]
  9. Aladejana E.B. Biological properties of Polyherbal formulations: A review of their antimicrobial, anti-inflammatory, antioxidant, and toxicological activities. Pharmacogn. J. 2023 15 5 933 963 10.5530/pj.2023.15.178
    [Google Scholar]
  10. Venmathi Maran B.A. Iqbal M. Gangadaran P. Ahn B.C. Rao P.V. Shah M.D. Hepatoprotective potential of Malaysian medicinal plants: A review on phytochemicals, oxidative stress, and antioxidant mechanisms. Molecules 2022 27 5 1533 10.3390/molecules27051533 35268634
    [Google Scholar]
  11. Marčetić M. Bufan B. Drobac M. Antić Stanković J. Arsenović Ranin N. Milenković M.T. Božić D.D. Multifaceted biological properties of verbascoside/acteoside: Antimicrobial, cytotoxic, anti-inflammatory, and immunomodulatory effects. Antibiotics 2025 14 7 697 10.3390/antibiotics14070697 40724000
    [Google Scholar]
  12. Liu Y. Sui Y. Liu C. Liu C. Wu M. Li B. Li Y. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym. 2018 188 27 36 10.1016/j.carbpol.2018.01.093 29525166
    [Google Scholar]
  13. Nitbani F.O. Tjitda P.J.P. Wogo H.E. Detha A.I.R. Preparation of ricinoleic acid from castor oil: A review. J. Oleo Sci. 2022 71 6 781 793 10.5650/jos.ess21226 35661063
    [Google Scholar]
  14. Bayer I.S. Controlled drug release from nanoengineered polysaccharides. Pharmaceutics 2023 15 5 1364 10.3390/pharmaceutics15051364 37242606
    [Google Scholar]
  15. Beach M.A. Nayanathara U. Gao Y. Zhang C. Xiong Y. Wang Y. Such G.K. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024 124 9 5505 5616 10.1021/acs.chemrev.3c00705 38626459
    [Google Scholar]
  16. Biswas R. Mondal S. Ansari M.A. Sarkar T. Condiuc I.P. Trifas G. Atanase L.I. Chitosan and its derivatives as nanocarriers for drug delivery. Molecules 2025 30 6 1297 10.3390/molecules30061297 40142072
    [Google Scholar]
  17. Huang Z. Zhao D. Han C. Yang Y. Zhang Z. Zhang H. Liu Q. Wang C. Fisetin loaded oral colon-targeted chitosan/chondroitin sulfate nanoparticles alleviate ulcerative colitis at different stages of severity. Int. J. Biol. Macromol. 2025 322 Pt 2 146580 10.1016/j.ijbiomac.2025.146580 40769349
    [Google Scholar]
  18. Opriș O. Mormile C. Lung I. Stegarescu A. Soran M.L. Soran A. An overview of biopolymers for drug delivery applications. Appl. Sci. 2024 14 4 1383 10.3390/app14041383
    [Google Scholar]
  19. Vozza G. Danish M. Byrne H.J. Frías J.M. Ryan, SM Application of Box Behnken experimental design for the formulation and optimisation of selenomethionine loaded chitosan nanoparticles coated with zein for oral delivery. Int. J. Pharm. 2018 551 1-2 257 269 10.1016/j.ijpharm.2018.08.050
    [Google Scholar]
  20. Zia K.M. Modification of Chitosan Nanoparticles (CSNPs). Chitosan: Green Derivatization and Applications. Singapore Springer 2025 89 113 10.1007/978‑981‑96‑2629‑8_4
    [Google Scholar]
  21. Jayan J.S. Madhavikutty A.S. Kumbhakar P. Achayalingam R. Synthesis methods of chitosan nanoparticles: A review. Fundamentals and Biomedical Applications of Chitosan Nanoparticles. Elsevier 2025 53 94 10.1016/B978‑0‑443‑14088‑4.00004‑6
    [Google Scholar]
  22. Jiang X. Yu Y. Ma S. Li L. Yu M. Han M. Yuan Z. Zhang J. Chitosan nanoparticles loaded with Eucommia ulmoides seed essential oil: Preparation, characterization, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 2024 257 Pt 2 128820 10.1016/j.ijbiomac.2023.128820 38103671
    [Google Scholar]
  23. Des Bouillons-Gamboa R.E. Montes de Oca G. Baudrit J.R.V. Ríos Duarte L.C. Lopretti M. Rentería Urquiza M. Zúñiga-Umaña J.M. Barreiro F. Vázquez P. Synthesis of chitosan nanoparticles (CSNP): Effect of CH-CH-TPP ratio on size and stability of NPs. Front Chem. 2024 12 1469271 10.3389/fchem.2024.1469271 39618968
    [Google Scholar]
  24. Alvarado Tenorio G. Espinosa Neira R. Ávila Orta C.A. Romero Zúñiga G.Y. Ortega Ortiz H. Synthesis and characterization of iodinated chitosan nanoparticles and their effects on cancer cells. Int. J. Biomater. 2024 2024 1 3850286 10.1155/2024/3850286 39376508
    [Google Scholar]
  25. Jha R. Mayanovic R.A. A review of the preparation, characterization, and applications of chitosan nanoparticles in nanomedicine. Nanomaterials 2023 13 8 1302 10.3390/nano13081302 37110887
    [Google Scholar]
  26. Bhatia S. Shah Y.A. Al-Harrasi A. Jawad M. Khan T.S. Koca E. Aydemir L.Y. Tuning the structure and physiochemical properties of sodium alginate and chitosan composite films through sodium tripolyphosphate (STPP) crosslinking. Int. J. Biol. Macromol. 2024 264 Pt 2 130463 10.1016/j.ijbiomac.2024.130463 38423442
    [Google Scholar]
  27. Pedroso‐Santana S. Fleitas‐Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym. Int. 2020 69 5 443 447
    [Google Scholar]
  28. Bhardwaj H. Jangde R.K. Development and characterization of ferulic acid-loaded chitosan nanoparticle embedded- hydrogel for diabetic wound delivery. Eur. J. Pharm. Biopharm. 2024 201 114371 10.1016/j.ejpb.2024.114371 38885910
    [Google Scholar]
  29. Algharib S.A. Dawood A. Zhou K. Chen D. Li C. Meng K. Zhang A. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization. J. Mol. Struct. 2022 1252 132129
    [Google Scholar]
  30. Reja S. A simple, scalable protocol for the synthesis of ricinoleic acid-functionalised superparamagnetic nanoparticles with tunable size, shape, and hydrophobic or hydrophilic properties. Nanoscale Adv. 2025 7 12 3881 3888 10.1039/D5NA00150A 40417165
    [Google Scholar]
  31. de Moura S.C.S.R. Alvim I.D. Ionotropic gelation. Bioactives Encapsulation. New York, NY Humana Press 2025 43 65 10.1007/978‑1‑0716‑4538‑3_3
    [Google Scholar]
  32. de Andrade L.R.M. dos Santos L.F. Pires D.S. Machado É.P. Martines M.A.U. Macedo M.L.R. Cardoso T.F.M. Severino P. Souto E.B. Kassab N.M. A newly validated HPLC-DAD method for the determination of Ricinoleic Acid (RA) in PLGA nanocapsules. Pharmaceuticals 2024 17 9 1220 10.3390/ph17091220 39338382
    [Google Scholar]
  33. Guerrero-Pérez M.O. Patience G.S. Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR. Can. J. Chem. Eng. 2020 98 1 25 33 10.1002/cjce.23664
    [Google Scholar]
  34. Zhou S. Sun W. Zhai Y. Amphiphilic block copolymer NPs obtained by coupling ricinoleic acid/sebacic acids and mPEG: Synthesis, characterization, and controlled release of paclitaxel. J. Biomater. Sci. Polym. Ed. 2018 29 18 2201 2217 10.1080/09205063.2018.1532136 30285542
    [Google Scholar]
  35. Fatahi H. Claverie J. Poncet S. Thermal characterization of phase change materials by differential scanning calorimetry: A review. Appl. Sci. 2022 12 23 12019 10.3390/app122312019
    [Google Scholar]
  36. Foucher A.C. Stach E.A. High pressure Transmission Electron Microscopy (TEM). Springer Handbook of Advanced Catalyst Characterization. Cham Springer 2023 381 407 10.1007/978‑3‑031‑07125‑6_19
    [Google Scholar]
  37. Taleb S.A. Ibrahim B.M.M. Mohammed M.A. Yassen N.N. Hessin A.F. Gad S.A. Darwish A.B. Development and in vitro/in vivo evaluation of a nanosponge formulation loaded with Boswellia carterii oil extracts for the enhanced anti-inflammatory activity for the management of respiratory allergies. J. Pharm. Investig. 2024 54 5 643 665 10.1007/s40005‑024‑00676‑9
    [Google Scholar]
  38. Hu H.C. Zhang W. Xiong P.Y. Song L. Jia B. Liu X.L. Anti-inflammatory and antioxidant activity of astragalus polysaccharide in ulcerative colitis: A systematic review and meta-analysis of animal studies. Front. Pharmacol. 2022 13 1043236 10.3389/fphar.2022.1043236 36532736
    [Google Scholar]
  39. Tummala S.R. Gorrepati N. AI-driven predictive analytics for drug stability studies. J. Pharma Insights Res. 2024 2 2 188 198
    [Google Scholar]
  40. Koc H. Kilicay E. Karahaliloglu Z. Hazer B. Denkbas E.B. Prevention of urinary infection through the incorporation of silver–ricinoleic acid–polystyrene nanoparticles on the catheter surface. J. Biomater. Appl. 2021 36 3 385 405 10.1177/0885328220983552 33530824
    [Google Scholar]
  41. Gheybi E. Asoodeh A. Amani J. Preparation of chitosan nanoparticle containing recombinant CD44v antigen and evaluation of its immunization capacity against breast cancer in BALB/c mice. BMC Cancer 2023 23 1 134 10.1186/s12885‑023‑10614‑x 36759786
    [Google Scholar]
  42. Benettayeb A. Seihoub F.Z. Pal P. Ghosh S. Usman M. Chia C.H. Usman M. Sillanpää M. Chitosan nanoparticles as potential nano-sorbent for removal of toxic environmental pollutants. Nanomaterials 2023 13 3 447 10.3390/nano13030447 36770407
    [Google Scholar]
  43. Garg U. Chauhan S. Nagaich U. Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv. Pharm. Bull. 2019 9 2 195 204 10.15171/apb.2019.023 31380245
    [Google Scholar]
  44. Aibani N. Rai R. Patel P. Cuddihy G. Wasan E.K. Chitosan nanoparticles at the biological interface: Implications for drug delivery. Pharmaceutics 2021 13 10 1686 10.3390/pharmaceutics13101686 34683979
    [Google Scholar]
  45. Matalqah S.M. Aiedeh K. Mhaidat N.M. Alzoubi K.H. Bustanji Y. Hamad I. Chitosan nanoparticles as a novel drug delivery system: A review article. Curr. Drug Targets 2020 21 15 1613 1624 10.2174/1389450121666200711172536 32651965
    [Google Scholar]
  46. Olukman Şahin M. Şanlı O. In vitro 5-fluorouracil release properties investigation from pH sensitive sodium alginate coated and uncoated methyl cellulose/chitosan microspheres. Int. J. Biol. Macromol. 2024 258 Pt 1 128895 10.1016/j.ijbiomac.2023.128895 38141696
    [Google Scholar]
  47. Hoseini B. Jaafari M.R. Golabpour A. Momtazi-Borojeni A.A. Karimi M. Eslami S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci. Rep. 2023 13 1 18012 10.1038/s41598‑023‑43689‑4 37865639
    [Google Scholar]
  48. Wang J.P. Huang Z.R. Zhang C. Ni Y.R. Li B.T. Wang Y. Wu J.F. Methodological advances in liposomal encapsulation efficiency determination: Systematic review and analysis. J. Drug Target. 2025 33 8 1262 1271 10.1080/1061186X.2025.2484773 40126566
    [Google Scholar]
  49. Bamisayea A. Eromoselea C.O. Darea E.O. Manickamc S. Akinloyed O.A. Idowua M.A. Raphaele I.A. Generation, characterization and pharmacokinetic study of ofloxacin-loaded castor oil based nanoemulsion. Acta. Chem. Malaysia 2022 6 1 20 25
    [Google Scholar]
  50. Islam M. Bełkowska L. Konieczny P. Fornal E. Tomaszewska-Gras J. Differential scanning calorimetry for authentication of edible fats and oils - What can we learn from the past to face the current challenges? Yao Wu Shi Pin Fen Xi 2022 30 2 185 201 10.38212/2224‑6614.3402 39666304
    [Google Scholar]
  51. Yang L. Cui B. Chen H. Fan Y. Zhang Y. Song S. Yin Q. Zhao G. Hao Z. Research on microstructural‐mechanical and shearing properties of castor seed during mechanical extraction. J. Texture Stud. 2023 54 6 902 912 10.1111/jtxs.12790 37407436
    [Google Scholar]
  52. Alpaslan D. Ersen Dude T.; Aktas, N. Evaluation of poly(agar-co-glycerol-co-castor oil) organo-hydrogel as a controlled release system carrier support material. Polym. Bull. 2022 79 8 5901 5922 10.1007/s00289‑021‑03777‑9
    [Google Scholar]
  53. Basar M. Khan M.I. Akhtar M.F. Anwar F. Saleem A. Madni A. Ahmad Z. Sharif A. Akhtar B. Shakoor U. Khan A. Olive oil and castor oil-based self-nanoemulsifying drug delivery system of flurbiprofen can relieve peripheral pain and inflammation through reduction of oxidative stress and inflammatory biomarkers: A comprehensive formulation and pharmacological insights. Inflammopharmacology 2025 33 1 353 379 10.1007/s10787‑024‑01632‑7 39776028
    [Google Scholar]
  54. Maghfirah R. Handayani S. Hudiyono S. Synthesis of phenolipid compound from ricinoleic acid with protocatechuic acid and its activity assay as an emulsifier, antioxidant, and BSLT test. AIP Conf Proc 2022 2638 1 070011 070011 10.1063/5.0104220
    [Google Scholar]
  55. Yun H. Duan X. Xiong W. Ding Y. Wu X. Kang J. Pu X. Yang Y. Chen Z. Exploration of the hepatoprotective effect and mechanism of Swertia mussotii Franch in an acute liver injury rat model. Comb. Chem. High Throughput Screen. 2020 22 9 649 656 10.2174/1386207322666191106105725 31692440
    [Google Scholar]
  56. da Rosa Schio R. da Rosa B.C. Gonçalves J.O. Pinto L.A.A. Mallmann E.S. Dotto G.L. Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye. Int. J. Biol. Macromol. 2019 121 373 380 10.1016/j.ijbiomac.2018.09.186 30287377
    [Google Scholar]
  57. Singh S. Sharma S. Sarma S.J. Brar S.K. Roles of process parameters on the ricinoleic acid production from castor oil by Aspergillus flavus BU22S. Fermentation 2023 9 4 318 10.3390/fermentation9040318
    [Google Scholar]
  58. Kilicay E. Erdal E. Karadag Ö.K. Hazer B. Evaluation of the antimicrobial and anticancer potential of a modified silver nanoparticle-impregnated carrier system. J. Microencapsul. 2025 42 2 142 160 10.1080/02652048.2024.2443437 39718365
    [Google Scholar]
  59. Prabakaran R. Marie J.M. Xavier A.J.M. Biobased unsaturated polyesters containing castor oil-derived ricinoleic acid and itaconic acid: Synthesis, in vitro antibacterial, and cytocompatibility studies. ACS Appl. Bio Mater. 2020 3 9 5708 5721 10.1021/acsabm.0c00480 35021802
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002422882251122105302
Loading
/content/journals/cdm/10.2174/0113892002422882251122105302
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test