Full text loading...
Ricinoleic acid (RA), a fatty acid derived from castor oil (Ricinus communis), exhibits potent antioxidant activity and hepatoprotective properties, primarily attributed to its ability to mitigate oxidative stress. However, its therapeutic application is limited by poor bioavailability due to high metabolism, low intestinal permeability, poor water solubility, rapid urinary and biliary elimination, frequent dosing requirements, and a short half-life. This study aimed to optimize the formulation of ricinoleic acid-loaded chitosan nanoparticles (RA-CSNPs) for improved delivery and bioavailability using the ionic gelation technique.
The formulation was developed using chitosan as the polymer and sodium tripolyphosphate (STPP) as the cross-linking agent. The synthesized nanoparticles were characterized for particle size (PS: 164.15 nm), polydispersity index (PDI: 0.259), zeta potential (ZP: +30.25 mV), and entrapment efficiency (EE: 97.07%) and drug release within 24 hours. Structural and thermal properties were assessed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR).
The in vitro drug release profile of the RA-CSNPs showed a cumulative release of 92.12%, demonstrating significant controlled release. Additionally, the antioxidant activity was measured at 84.45%, indicating that RA retained its bioactivity in the nanoparticle formulation.
These results highlight the potential of RA-CSNPs as an effective drug-delivery system to overcome the bioavailability challenges of ricinoleic acid. The controlled release and antioxidant activity of the formulation are promising for therapeutic applications in various oxidative stress-related diseases. However, limitations in scaling up nanoparticle production and conducting long-term pharmacokinetic studies need to be addressed in future research.
This study successfully demonstrates the potential of RA-loaded chitosan nanoparticles as a novel and efficient drug delivery system. The formulation provides controlled release, enhancing the bioavailability of ricinoleic acid and offering a promising strategy for improving its therapeutic efficacy in clinical applications.
Article metrics loading...
Full text loading...
References
Data & Media loading...