Skip to content
2000
image of Molecular Pathways Involved in Drug-Induced Hepatotoxicity: A Mini Review

Abstract

Drug-induced hepatotoxicity (DIH) poses a significant clinical challenge due to its unpredictable nature and diverse manifestations. The liver, with its central role in metabolism and close association with the gastrointestinal tract, is particularly susceptible to drug-induced toxicity. DIH encompasses a spectrum of liver injuries, including hepatocellular, cholestatic, and mixed patterns, which may increase the risk of other liver diseases. This review examines diverse examples and molecular mechanisms underlying DIH, highlighting the influence of genetic predisposition, drug interactions, and pre-existing liver conditions. Given the complexity and variability of hepatotoxic responses to numerous medications, understanding these mechanisms is crucial for improving the diagnosis and management of DIH.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002416903251006113913
2025-11-14
2025-11-29
Loading full text...

Full text loading...

References

  1. Fisher K. Vuppalanchi R. Saxena R. Drug-induced liver injury. Arch. Pathol. Lab. Med. 2015 139 7 876 887 10.5858/arpa.2014‑0214‑RA 26125428
    [Google Scholar]
  2. Garcia-Cortes M. Robles-Diaz M. Stephens C. Ortega-Alonso A. Lucena M.I. Andrade R.J. Drug induced liver injury: an update. Arch. Toxicol. 2020 94 10 3381 3407 10.1007/s00204‑020‑02885‑1 32852569
    [Google Scholar]
  3. Reuben A. Tillman H. Fontana R.J. Davern T. McGuire B. Stravitz R.T. Durkalski V. Larson A.M. Liou I. Fix O. Schilsky M. McCashland T. Hay J.E. Murray N. Shaikh O.S. Ganger D. Zaman A. Han S.B. Chung R.T. Smith A. Brown R. Crippin J. Harrison M.E. Koch D. Munoz S. Reddy K.R. Rossaro L. Satyanarayana R. Hassanein T. Hanje A.J. Olson J. Subramanian R. Karvellas C. Hameed B. Sherker A.H. Robuck P. Lee W.M. Outcomes in adults with acute liver failure between 1998 and 2013: An observational cohort study. Ann. Intern. Med. 2016 164 11 724 732 10.7326/M15‑2211 27043883
    [Google Scholar]
  4. Kullak-Ublick G.A. Andrade R.J. Merz M. End P. Benesic A. Gerbes A.L. Aithal G.P. Drug-induced liver injury: Recent advances in diagnosis and risk assessment. Gut 2017 66 6 1154 1164 10.1136/gutjnl‑2016‑313369 28341748
    [Google Scholar]
  5. Chalasani N. Bonkovsky H.L. Fontana R. Lee W. Stolz A. Talwalkar J. Reddy K.R. Watkins P.B. Navarro V. Barnhart H. Gu J. Serrano J. Features and outcomes of 899 patients with drug-induced liver injury: The DILIN prospective study. Gastroenterology 2015 148 7 1340 52.e7 [United States Drug Induced Liver Injury Network.]. 10.1053/j.gastro.2015.03.006 25754159
    [Google Scholar]
  6. Katarey D. Verma S. Drug-induced liver injury. Clin. Med. 2016 16 6 s104 s109 10.7861/clinmedicine.16‑6‑s104 27956449
    [Google Scholar]
  7. Andrade R.J. Chalasani N. Björnsson E.S. Suzuki A. Kullak-Ublick G.A. Watkins P.B. Devarbhavi H. Merz M. Lucena M.I. Kaplowitz N. Aithal G.P. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019 5 1 58 10.1038/s41572‑019‑0105‑0 31439850
    [Google Scholar]
  8. Chen M. Suzuki A. Borlak J. Andrade R.J. Lucena M.I. Drug-induced liver injury: Interactions between drug properties and host factors. J. Hepatol. 2015 63 2 503 514 10.1016/j.jhep.2015.04.016 25912521
    [Google Scholar]
  9. Zhou Y. Yang L. Liao Z. He X. Zhou Y. Guo H. Epidemiology of drug-induced liver injury in China. Eur. J. Gastroenterol. Hepatol. 2013 25 7 825 829 10.1097/MEG.0b013e32835f6889 23510965
    [Google Scholar]
  10. Bansal D.L. Dhiman D.A. Chronicity of hepatotoxicity: A review. EAS Journal of Medicine and Surgery 2022 4 1 6 14 10.36349/easjms.2022.v04i01.002
    [Google Scholar]
  11. Allison R. Guraka A. Shawa I.T. Tripathi G. Moritz W. Kermanizadeh A. Drug induced liver injury – A 2023 update. J. Toxicol. Environ. Health B Crit. Rev. 2023 26 8 442 467 10.1080/10937404.2023.2261848 37786264
    [Google Scholar]
  12. Skat-Rørdam J. Lykkesfeldt J. Gluud L.L. Tveden-Nyborg P. Mechanisms of drug induced liver injury. Cell. Mol. Life Sci. 2025 82 1 213 10.1007/s00018‑025‑05744‑3 40418327
    [Google Scholar]
  13. Arumugam M.K. Gopal T. Kalari Kandy R.R. Boopathy L.K. Perumal S.K. Ganesan M. Rasineni K. Donohue T.M. Osna N.A. Kharbanda K.K. Mitochondrial dysfunction-associated mechanisms in the development of chronic liver diseases. Biology 2023 12 10 1311 10.3390/biology12101311 37887021
    [Google Scholar]
  14. Cai S.Y. Boyer J.L. The role of bile acids in cholestatic liver injury. Ann. Transl. Med. 2021 9 8 737 10.21037/atm‑20‑5110 33987435
    [Google Scholar]
  15. Endlicher R. Drahota, Z.; Štefková, K.; Červinková, Z.; Kučera, O. The mitochondrial permeability transition pore—current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state. Cells 2023 12 9 1273 10.3390/cells12091273 37174672
    [Google Scholar]
  16. Baev A.Y. Vinokurov A.Y. Potapova E.V. Dunaev A.V. Angelova P.R. Abramov A.Y. Mitochondrial permeability transition, cell death and neurodegeneration. Cells 2024 13 7 648 10.3390/cells13070648 38607087
    [Google Scholar]
  17. Sabini E. Arboit L. Khan M.P. Lanzolla G. Schipani E. Oxidative phosphorylation in bone cells. Bone Rep. 2023 18 101688 10.1016/j.bonr.2023.101688 37275785
    [Google Scholar]
  18. Shang H. Liu X. Pan J. Cheng H. Ma Z. Xiao C. Gao Y. Exploring the mechanism and phytochemicals in Psoraleae Fructus-induced hepatotoxicity based on RNA-seq, in vitro screening and molecular docking. Sci. Rep. 2024 14 1 1696 10.1038/s41598‑023‑50454‑0 38242895
    [Google Scholar]
  19. Beerkens A.P.M. Boreel D.F. Nathan J.A. Neuzil J. Cheng G. Kalyanaraman B. Hardy M. Adema G.J. Heskamp S. Span P.N. Bussink J. Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging. Cancer Metab. 2024 12 1 13 10.1186/s40170‑024‑00342‑6 38702787
    [Google Scholar]
  20. Oudaert I. Van der Vreken A. Ates G. Faict S. Vlummens P. Satilmis H. Fan R. Maes A. De Bruyne E. De Veirman K. Massie A. Vanderkerken K. Menu E. Inhibition of oxidative phosphorylation and glycolysis reduces viability in multiple myeloma by affecting mTOR-Mediated protein synthesis. Blood 2022 140 Suppl. 1 7078 7079 10.1182/blood‑2022‑167025
    [Google Scholar]
  21. Beigi T. Safi A. Satvati M. Kalantari-Hesari A. Ahmadi R. Meshkibaf M.H. Protective role of ellagic acid and taurine against fluoxetine induced hepatotoxic effects on biochemical and oxidative stress parameters, histopathological changes, and gene expressions of IL-1β, NF-κB, and TNF-α in male Wistar rats. Life Sci. 2022 304 120679 10.1016/j.lfs.2022.120679 35662648
    [Google Scholar]
  22. Coffin C.S. Fraser H.F. Panaccione R. Ghosh S. Liver diseases associated with anti-tumor necrosis factor-alpha (TNF-α) use for inflammatory bowel disease. Inflamm. Bowel Dis. 2011 17 1 479 484 10.1002/ibd.21336 20848520
    [Google Scholar]
  23. Tang K.T. Dufour J.F. Chen P.H. Hernaez R. Hutfless S. Antitumour necrosis factor-α agents and development of new-onset cirrhosis or non-alcoholic fatty liver disease: A retrospective cohort. BMJ Open Gastroenterol. 2020 7 1 e000349 10.1136/bmjgast‑2019‑000349 32377366
    [Google Scholar]
  24. Ndayisaba A. Jellinger K. Berger T. Wenning G.K. TNFα inhibitors as targets for protective therapies in MSA: a viewpoint. J. Neuroinflammation 2019 16 1 80 10.1186/s12974‑019‑1477‑5 30975183
    [Google Scholar]
  25. Iorga A. Dara L. Kaplowitz N. Drug-induced liver injury: Cascade of events leading to cell death, apoptosis or necrosis. Int. J. Mol. Sci. 2017 18 5 1018 10.3390/ijms18051018 28486401
    [Google Scholar]
  26. Yue J. López J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020 21 7 2346 10.3390/ijms21072346 32231094
    [Google Scholar]
  27. Latham B.D. Geffert R.M. Jackson K.D. Kinase inhibitors FDA approved 2018–2023: Drug targets, metabolic pathways, and drug-induced toxicities. Drug Metab. Dispos. 2024 52 6 479 492 10.1124/dmd.123.001430 38286637
    [Google Scholar]
  28. Shaker M.E. Gomaa H.A.M. Hazem S.H. Abdelgawad M.A. El-Mesery M. Shaaban A.A. Corrigendum: Mitigation of acetaminophen-induced liver toxicity by the novel phosphatidylinositol 3-kinase inhibitor alpelisib. Front. Pharmacol. 2023 14 1281416 10.3389/fphar.2023.1281416 37745058
    [Google Scholar]
  29. Li J. Gong C. Zhou H. Liu J. Xia X. Ha W. Jiang Y. Liu Q. Xiong H. Kinase inhibitors and kinase-targeted cancer therapies: Recent advances and future perspectives. Int. J. Mol. Sci. 2024 25 10 5489 10.3390/ijms25105489 38791529
    [Google Scholar]
  30. Mihajlovic M. Vinken M. Mitochondria as the target of hepatotoxicity and drug-induced liver injury: Molecular mechanisms and detection methods. Int. J. Mol. Sci. 2022 23 6 3315 10.3390/ijms23063315 35328737
    [Google Scholar]
  31. Fromenty B. Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis. Liver Res. 2019 3 3-4 157 169 10.1016/j.livres.2019.06.001
    [Google Scholar]
  32. Pollitt R.J. Disorders of mitochondrial long-chain fatty acid oxidation. J. Inherit. Metab. Dis. 1995 18 4 473 490 10.1007/BF00710058 7494405
    [Google Scholar]
  33. Saudubray J.M. Martin D. De Lonlay P. Touati G. Poggi-Travert F. Bonnet D. Jouvet P. Boutron M. Slama A. Vianey-Saban C. Bonnefont J.P. Rabier D. Kamoun P. Brivet M. Recognition and management of fatty acid oxidation defects: A series of 107 patients. J. Inherit. Metab. Dis. 1999 22 4 487 502 10.1023/A:1005556207210 10407781
    [Google Scholar]
  34. Bessone F. Dirchwolf M. Rodil M.A. Razori M.V. Roma M.G. Review article: Drug-induced liver injury in the context of nonalcoholic fatty liver disease – A physiopathological and clinical integrated view. Aliment. Pharmacol. Ther. 2018 48 9 892 913 10.1111/apt.14952 30194708
    [Google Scholar]
  35. Massart J. Borgne-Sanchez A. Fromenty B. Drug-induced mitochondrial toxicity. Mitochondrial Biology and Experimental Therapeutics. Oliveira P. Cham Springer 2018 269 295 10.1007/978‑3‑319‑73344‑9_1
    [Google Scholar]
  36. Njoku D. Drug-induced hepatotoxicity: Metabolic, genetic and immunological basis. Int. J. Mol. Sci. 2014 15 4 6990 7003 10.3390/ijms15046990 24758937
    [Google Scholar]
  37. Villanueva-Paz M. Morán L. López-Alcántara N. Freixo C. Andrade R.J. Lucena M.I. Cubero F.J. Oxidative stress in drug-induced liver injury (DILI): From mechanisms to biomarkers for use in clinical practice. Antioxidants 2021 10 3 390 10.3390/antiox10030390 33807700
    [Google Scholar]
  38. Uetrecht J. Idiosyncratic drug reactions: Current understanding. Annu. Rev. Pharmacol. Toxicol. 2007 47 1 513 539 10.1146/annurev.pharmtox.47.120505.105150 16879083
    [Google Scholar]
  39. Mak A. Kato R. Weston K. Hayes A. Uetrecht J. Editor’s highlight: An impaired immune tolerance animal model distinguishes the potential of troglitazone/pioglitazone and tolcapone/entacapone to cause IDILI. Toxicol. Sci. 2018 161 2 412 420 10.1093/toxsci/kfx219 29087505
    [Google Scholar]
  40. Bonito B. Cartucho J. Silva M.F. Ferreira Maia I. Ginga M.R. A rare case of methyldopa-induced hepatitis. Cureus 2025 17 5 e84873 10.7759/cureus.84873 40575235
    [Google Scholar]
  41. Likic-Ladjevic I. Petronijević M.; Vrzić-Petronijević S.; Beleslin, A.; Dugalić S. A rare case of alpha-methyldopa-induced hepatitis in pregnancy. Srp. Arh. Celok. Lek. 2024 152 1-2 85 87 10.2298/SARH231107004L
    [Google Scholar]
  42. Björnsson E.S. Medina-Caliz I. Andrade R.J. Lucena M.I. Setting up criteria for drug-induced autoimmune-like hepatitis through a systematic analysis of published reports. Hepatol. Commun. 2022 6 8 1895 1909 10.1002/hep4.1959 35596597
    [Google Scholar]
  43. Zade D. Hepatotoxicity associated with anti-tuberculosis mmdica-tions: Analyzing mechanisms, risk factors, and strategies for preven-tion and management. J. Drug Deliv Ther. 2024 1 03 01 12 10.61920/jddb.v1i03.155
    [Google Scholar]
  44. Sunil S. Simon S. Mathew M.S. Renuka R. Abraham E. Review on drugs inducing hepatotoxicity. World J. Pharm. Sci. 2018 6 3 91 140
    [Google Scholar]
  45. He L. Guo Y. Deng Y. Li C. Zuo C. Peng W. Involvement of protoporphyrin IX accumulation in the pathogenesis of isoniazid/rifampicin-induced liver injury: The prevention of curcumin. Xenobiotica 2017 47 2 154 163 10.3109/00498254.2016.1160159 28118809
    [Google Scholar]
  46. Ezhilarasan D. Antitubercular drugs induced liver injury: An updated insight into molecular mechanisms. Drug Metab. Rev. 2023 55 3 239 253 10.1080/03602532.2023.2215478 37218081
    [Google Scholar]
  47. Zhuang X. Li L. Liu T. Zhang R. Yang P. Wang X. Dai L. Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review. Front. Pharmacol. 2022 13 1037814 10.3389/fphar.2022.1037814 36299895
    [Google Scholar]
  48. Hussain Z. Zhu J. Ma X. Metabolism and hepatotoxicity of pyrazinamide, an antituberculosis drug. Drug Metab. Dispos. 2021 49 8 679 682 10.1124/dmd.121.000389 34074731
    [Google Scholar]
  49. Ciftel S. Ciftel S. Altuner D. Huseynova G. Yucel N. Mendil A.S. Sarigul C. Suleyman H. Bulut S. Effects of adenosine triphosphate, thiamine pyrophosphate, melatonin, and liv-52 on subacute pyrazinamide proliferation hepatotoxicity in rats. BMC Pharmacol. Toxicol. 2025 26 1 67 10.1186/s40360‑025‑00901‑7 40128909
    [Google Scholar]
  50. Rawat A. Chaturvedi S. Singh A.K. Guleria A. Dubey D. Keshari A.K. Raj V. Rai A. Prakash A. Kumar U. Kumar D. Saha S. Metabolomics approach discriminates toxicity index of pyrazinamide and its metabolic products, pyrazinoic acid and 5-hydroxy pyrazinoic acid. Hum. Exp. Toxicol. 2018 37 4 373 389 10.1177/0960327117705426 28425350
    [Google Scholar]
  51. Khalil S.M. MacKenzie K.R. Maletic-Savatic M. Li F. Metabolic bioactivation of antidepressants: Advance and underlying hepatotoxicity. Drug Metab. Rev. 2024 56 2 97 126 10.1080/03602532.2024.2313967 38311829
    [Google Scholar]
  52. Todorović Vukotić N.; Đorđević J.; Pejić S.; Đorđević N.; Pajović S.B. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch. Toxicol. 2021 95 3 767 789 10.1007/s00204‑020‑02963‑4 33398419
    [Google Scholar]
  53. Strauss K.L.E. Phoswa W.N. Hanser S. Mokgalaboni K. HIV infection and antiretroviral therapy impair liver function in people living with HIV: Systematic review and meta-analysis. Pharmaceuticals 2025 18 7 955 10.3390/ph18070955 40732246
    [Google Scholar]
  54. Chanhom N. Sonjan J. Inchai J. Udomsinprasert W. Chaikledkaew U. Suvichapanich S. Mahasirimongkol S. Jittikoon J. Association between the CYP2B6 polymorphisms and nonnucleoside reverse transcriptase inhibitors drug-induced liver injury: A systematic review and meta-analysis. Sci. Rep. 2024 14 1 29511 10.1038/s41598‑024‑79965‑0 39604537
    [Google Scholar]
  55. Murray M. The role of CYPs and transporters in the biotransformation and transport of the anti-hepatitis C antiviral agents asunaprevir, daclatasvir, and beclabuvir: Impact of liver disease, race and drug-drug interactions on safety and efficacy. Curr. Drug Metab. 2024 25 2 96 109 10.2174/0113892002288832240213095622 38441017
    [Google Scholar]
  56. Ihegboro G.O. Ononamadu C.J. Drug-induced hepatotoxicity. Hepatotoxicity. Streba C.T. Rogoveanu I. Vere C.C. Intechnopen 2022 1 13 10.5772/intechopen.10376
    [Google Scholar]
  57. Mahajan P. Palkar M. Pingili R.B. Drug reactive metabolite-induced hepatotoxicity: A comprehensive review. Toxicol. Mech. Methods 2024 34 6 607 627 10.1080/15376516.2024.2332613 38504503
    [Google Scholar]
  58. Ramezani V. Tavakoli F. Emami A. Javadi S.A. Comparison of the hepatotoxicity of carbamazepine, sodium valproate, phenytoin, lamotrigine, and vigabatrin in a rat model. Avicenna J. Pharm. Res. 2022 3 1 17 22 10.34172/ajpr.2022.1056
    [Google Scholar]
  59. Gziut T. Thanacoody, R. L-carnitine for valproic acid-induced toxicity. Br. J. Clin. Pharmacol. 2025 91 3 636 647 10.1111/bcp.16233 39261302
    [Google Scholar]
  60. Sheu H.S. Chen Y.M. Liao Y.J. Wei C.Y. Chen J.P. Lin H.J. Hung W.T. Huang W.N. Chen Y.H. Thiopurine S-methyltransferase polymorphisms predict hepatotoxicity in azathioprine-treated patients with autoimmune diseases. J. Pers. Med. 2022 12 9 1399 10.3390/jpm12091399 36143183
    [Google Scholar]
  61. Sparrow M.P. Hande S.A. Friedman S. Cao D. Hanauer S.B. Effect of allopurinol on clinical outcomes in inflammatory bowel disease nonresponders to azathioprine or 6-mercaptopurine. Clin. Gastroenterol. Hepatol. 2007 5 2 209 214 10.1016/j.cgh.2006.11.020 17296529
    [Google Scholar]
  62. Ye W. Ding Y. Li M. Tian Z. Wang S. Liu Z. Safety assessment of sulfasalazine: A pharmacovigilance study based on FAERS database. Front. Pharmacol. 2024 15 1452300 10.3389/fphar.2024.1452300 39329122
    [Google Scholar]
  63. Li Y.C. Shen J.D. Lu S.F. Zhu L.L. Wang B.Y. Bai M. Xu E.P. Transcriptomic analysis reveals the mechanism of sulfasalazine-induced liver injury in mice. Toxicol. Lett. 2020 321 12 20 10.1016/j.toxlet.2019.12.011 31830553
    [Google Scholar]
  64. Núñez F.P. Quera R. Bay C. Castro F. Mezzano G. Drug-induced liver injury used in the treatment of inflammatory bowel disease. J. Crohn’s Colitis 2022 16 7 1168 1176 10.1093/ecco‑jcc/jjac013 35044449
    [Google Scholar]
  65. Jacobson T.A. Statin safety: lessons from new drug applications for marketed statins. Am. J. Cardiol. 2006 97 8 S44 S51 10.1016/j.amjcard.2005.12.009 16581328
    [Google Scholar]
  66. Grimbert S. Pessayre D. Degott C. Benhamou J.P. Acute Hepatitis induced by HMG-CoA reductase inhibitor, lovastatin. Dig. Dis. Sci. 1994 39 9 2032 2033 10.1007/BF02088142 8082513
    [Google Scholar]
  67. Zhang Q. Qu H. Chen Y. Luo X. Chen C. Xiao B. Ding X. Zhao P. Lu Y. Chen A.F. Yu Y. Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 axis. Front. Cell Dev. Biol. 2022 10 806081 10.3389/fcell.2022.806081 35309902
    [Google Scholar]
  68. Zhou L. Wu B. Bian Y. Lu Y. Zou Y. Lin S. Li Q. Liu C. Hepatotoxicity associated with statins: A retrospective pharmacovigilance study based on the FAERS database. PLoS One 2025 20 7 e0327500 10.1371/journal.pone.0327500 40632746
    [Google Scholar]
  69. Ricaurte B. Guirguis A. Taylor H.C. Zabriskie D. Simvastatin-amiodarone interaction resulting in rhabdomyolysis, azotemia, and possible hepatotoxicity. Ann. Pharmacother. 2006 40 4 753 757 10.1345/aph.1G462 16537817
    [Google Scholar]
  70. Averbukh L.D. Turshudzhyan A. Wu D.C. Wu G.Y. Statin-induced liver injury patterns: A clinical review. J. Clin. Transl. Hepatol. 2022 10 3 543 552 10.14218/JCTH.2021.00271 35836753
    [Google Scholar]
  71. Hayes A.W. Kobets T. Hayes’ Principles and Methods of Toxicology. Boca Raton CRC Press 2023 10.1201/978100339000
    [Google Scholar]
  72. Safari S. Motavaf M. Seyed Siamdoust S.A. Alavian S.M. Hepatotoxicity of halogenated inhalational anesthetics. Iran. Red Crescent Med. J. 2014 16 9 e20153 10.5812/ircmj.20153 25593732
    [Google Scholar]
  73. Curran R.D. Billiar T.R. Stuehr D.J. Ochoa J.B. Harbrecht B.G. Flint S.G. Simmons R.L. Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann. Surg. 1990 212 4 462 471 10.1097/00000658‑199010000‑00009 2121110
    [Google Scholar]
  74. Rajesh O. Patil V. Galande S. Gaikwad T. Gawade P. A review on drug-induced hepatotoxicity. Int. J. Pharm. Sci. Rev. Res. 2024 84 1 88 95 10.47583/ijpsrr.2024.v84i01.013
    [Google Scholar]
  75. Yuming Z. Ruqi T. Gershwin M.E. Xiong M. Autoimmune Hepatitis. Clin. Liver Dis. 2024 28 1 15 35 10.1016/j.cld.2023.06.003 37945156
    [Google Scholar]
  76. Jee A. Sernoskie S.C. Uetrecht J. Idiosyncratic drug-induced liver injury: Mechanistic and clinical challenges. Int. J. Mol. Sci. 2021 22 6 2954 10.3390/ijms22062954 33799477
    [Google Scholar]
  77. Khalil E. El-baroudy N. Mahgoub L. Nageeb M. An insight about diclofenac induced hepato-renal toxicity: A review article. Zagazig University Medical Journal 2025 31 1.1 56 61 10.21608/zumj.2024.277963.3265
    [Google Scholar]
  78. Hanumegowda U.M. Davis C. The role of drug metabolism in toxicity. Drug Metabolism Handbook: Concepts and Applications in Cancer Research Nassar A.F. Hollenberg P.F. Scatina J. Manna S.K. Zeng S. Wiley 2022 605 676 10.1002/9781119851042.ch19
    [Google Scholar]
  79. Gupta S.M. Behera A. Singh S. Pharmacological potential of sulindac and its active metabolite: A comprehensive review. Curr. Drug Ther. 2024 19 7 765 779 10.2174/0115748855264953231020142004
    [Google Scholar]
  80. Luo G. Huang L. Zhang Z. The molecular mechanisms of acetaminophen-induced hepatotoxicity and its potential therapeutic targets. Exp. Biol. Med. 2023 248 5 412 424 10.1177/15353702221147563 36670547
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002416903251006113913
Loading
/content/journals/cdm/10.2174/0113892002416903251006113913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test