Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002411444250714224249
2025-07-31
2026-02-02
Loading full text...

Full text loading...

/deliver/fulltext/cdm/26/3/CDM-26-3-01.html?itemId=/content/journals/cdm/10.2174/0113892002411444250714224249&mimeType=html&fmt=ahah

References

  1. van der KoogL. GandekT.B. NagelkerkeA. Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization.Adv. Healthc. Mater.2022115210063910.1002/adhm.202100639 34165909
    [Google Scholar]
  2. HeH. YuanD. WuY. CaoY. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs.Pharmaceutics201911311010.3390/pharmaceutics11030110 30866479
    [Google Scholar]
  3. OzbekO. GencD.E.O. UlgenK. Advances in physiologically based pharmacokinetic (PBPK) modeling of nanomaterials.ACS Pharmacol. Transl. Sci.2024782251227910.1021/acsptsci.4c00250 39144562
    [Google Scholar]
  4. MinnemaJ. BorgosS.E.F. LiptrottN. VandebrielR. DelmaarC. Physiologically based pharmacokinetic modeling of intravenously administered nanoformulated substances.Drug Deliv. Transl. Res.20221292132214410.1007/s13346‑022‑01159‑w 35551616
    [Google Scholar]
  5. LinW. ChenY. UnadkatJ.D. ZhangX. WuD. HeimbachT. Applications, challenges, and outlook for pbpk modeling and simulation: A regulatory, industrial and academic perspective.Pharm. Res.20223981701173110.1007/s11095‑022‑03274‑2 35552967
    [Google Scholar]
  6. LiM. ZouP. TynerK. LeeS. Physiologically Based Pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles.AAPS J.2017191264210.1208/s12248‑016‑0010‑3 27834047
    [Google Scholar]
  7. HartmanshennC. ScherholzM. AndroulakisI.P. Physiologically-based pharmacokinetic models: Approaches for enabling personalized medicine.J. Pharmacokinet. Pharmacodyn.201643548150410.1007/s10928‑016‑9492‑y 27647273
    [Google Scholar]
  8. VizirianakisI.S. MystridisG.A. AvgoustakisK. FatourosD.G. SpanakisM. Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review).Oncol. Rep.20163541891190410.3892/or.2016.4575 26781205
    [Google Scholar]
  9. JablonkaL. AshtikarM. GaoG.F. ThurnM. ModhH. WangJ.W. PreußA. ScheglmannD. AlbrechtV. RöderB. WackerM.G. Predicting human pharmacokinetics of liposomal temoporfin using a hybrid in silico model.Eur. J. Pharm. Biopharm.202014912113410.1016/j.ejpb.2020.02.001 32035970
    [Google Scholar]
  10. TalkingtonA.M. McSweeneyM.D. WesslerT. RathM.K. LiZ. ZhangT. YuanH. FrankJ.E. ForestM.G. CaoY. LaiS.K. A PBPK model recapitulates early kinetics of anti-PEG antibody-mediated clearance of PEG-liposomes.J. Control. Release202234351852710.1016/j.jconrel.2022.01.022 35066099
    [Google Scholar]
  11. MontanhaM.C. HowarthA. MohamedD.A. LoierE. MainL. RössleinM. DelmaarC. Prina-MelloA. SiccardiM. A physiologically based pharmacokinetic model to predict pegylated liposomal doxorubicin disposition in rats and human.Drug Deliv. Transl. Res.20221292178218610.1007/s13346‑022‑01175‑w 35551629
    [Google Scholar]
  12. BadhanR. KhadkeS. PerrieY. Application of pharmacokinetics modelling to predict human exposure of a cationic liposomal subunit antigen vaccine system.Pharmaceutics2017945710.3390/pharmaceutics9040057 29215597
    [Google Scholar]
  13. SaldanhaL. LangelÜ. ValeN. A physiologically based pharmacokinetic (PBPK) study to assess the adjuvanticity of three peptides in an oral vaccine.Pharmaceutics202416678010.3390/pharmaceutics16060780 38931901
    [Google Scholar]
  14. LinZ. ChouW.C. ChengY.H. HeC. Monteiro-RiviereN.A. RiviereJ.E. Predicting nanoparticle delivery to tumors using machine learning and artificial intelligence approaches.Int. J. Nanomedicine2022171365137910.2147/IJN.S344208 35360005
    [Google Scholar]
  15. ChouW.C. ChenQ. YuanL. ChengY.H. HeC. Monteiro-RiviereN.A. RiviereJ.E. LinZ. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice.J. Control. Release2023361536310.1016/j.jconrel.2023.07.040 37499908
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002411444250714224249
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test