Skip to content
2000
image of Targeting Metabolic Dysregulation in Alzheimer’s Disease: A Potential Therapeutic Strategy

Abstract

Alzheimer’s disease (AD), the most common form of dementia, is characterized by progressive cognitive decline and neuropathological hallmarks, including amyloid-beta plaques and tau tangles. Emerging evidence implicates metabolic dysfunction as a critical contributor to the pathogenesis and progression of AD. Impaired glucose metabolism, mitochondrial dysfunction, oxidative stress, and lipid dysregulation are frequently observed in AD brains, suggesting that metabolic dysfunction may exacerbate neurodegeneration and cognitive deficits. This review explores the therapeutic potential of targeting metabolic pathways to mitigate AD pathology. Key metabolic disruptions, including insulin resistance, reduced cerebral glucose utilization, and mitochondrial inefficiency, are closely linked to neuronal energy deficits and synaptic dysfunction. Therapeutic approaches, such as insulin sensitizers, ketogenic diets, and mitochondrial-targeted antioxidants, have shown promise in preclinical and early clinical studies. Additionally, strategies to modulate lipid metabolism, such as enhancing cholesterol efflux APOE or reducing neurotoxic ceramides, offer potential avenues for intervention. The review also highlights the roles of neuroinflammation and oxidative stress as mediators of metabolic dysfunction in AD, underscoring the need for multifaceted approaches that target both metabolic and inflammatory pathways. The emerging field of precision medicine offers opportunities to tailor interventions based on individual metabolic profiles, potentially enhancing treatment efficacy. Despite the growing recognition of metabolic dysfunction in AD, translating these insights into effective therapies remains challenging due to the disease’s complexity and heterogeneity. Future research must focus on elucidating the interplay between metabolic pathways and AD pathology, identifying reliable biomarkers, and designing targeted interventions. By addressing the metabolic underpinnings of AD, this review underscores the potential of metabolic reprogramming as a novel and integrative therapeutic strategy to slow or prevent disease progression and improve patient outcomes.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002408089250912080734
2025-09-19
2025-11-05
Loading full text...

Full text loading...

References

  1. Mohapatra TK Nayak RR Ganeshpurkar A Tiwari P Kumar D Navigating the treatment landscape of Alzheimer’s disease: Current strategies and future directions ibrain 2025 11 2 162 84 10.1002/ibra.12197
    [Google Scholar]
  2. Stanciu G.D. Luca A. Rusu R.N. Bild V. Beschea Chiriac S.I. Solcan C. Bild W. Ababei D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules 2019 10 1 40 10.3390/biom10010040 31888102
    [Google Scholar]
  3. Tiwari P. Kadiri S.K. Khobragade D.S. Dubey S. GluN2B of NMDA receptor and Calmodulin: Balanced Calcium regulation to combat Alzheimer’s disease. Curr. Drug Ther. 2025 20 10.2174/0115748855341835250120064444
    [Google Scholar]
  4. Zhang J. Zhang Y. Wang J. Xia Y. Zhang J. Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024 9 1 211 10.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  5. Kepp K.P. Robakis N.K. Høilund-Carlsen P.F. Sensi S.L. Vissel B. The amyloid cascade hypothesis: An updated critical review. Brain 2023 146 10 3969 3990 10.1093/brain/awad159 37183523
    [Google Scholar]
  6. Granzotto A. Sensi S.L. Once upon a time, the Amyloid Cascade Hypothesis. Ageing Res. Rev. 2024 93 102161 10.1016/j.arr.2023.102161 38065226
    [Google Scholar]
  7. Ossenkoppele R. van der Kant R. Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022 21 8 726 734 10.1016/S1474‑4422(22)00168‑5 35643092
    [Google Scholar]
  8. Andoh T. Insulin. In:Handbook of Hormones. Amsterdam Elsevier 2016 157
    [Google Scholar]
  9. Akhtar A. Sah S.P. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease. Neurochem. Int. 2020 135 104707 10.1016/j.neuint.2020.104707 32092326
    [Google Scholar]
  10. Dubey S.K. Lakshmi K.K. Krishna K.V. Agrawal M. Singhvi G. Saha R.N. Saraf S. Saraf S. Shukla R. Alexander A. Insulin mediated novel therapies for the treatment of Alzheimer’s disease. Life Sci. 2020 249 117540 10.1016/j.lfs.2020.117540 32165212
    [Google Scholar]
  11. Kundu S. Firdous S.M. Role of insulin in brain: an emphasis on molecular functions. INNOSC Theranostics Pharmacol. Sci. 2021 4 2 17 21
    [Google Scholar]
  12. Mazucanti C. Kennedy V.L. Cho A. Liu Q.R. O’Connell J.F. Camandola S. Egan J.M. Insulin receptors and their signal transduction pathways in choroid plexus. Diabetes 2022 71 1320 10.2337/db22‑1320‑P
    [Google Scholar]
  13. Yoon J.H. Hwang J. Son S.U. Choi J. You S.W. Park H. Cha S.Y. Maeng S. How can insulin resistance cause Alzheimer’s disease? Int. J. Mol. Sci. 2023 24 4 3506 10.3390/ijms24043506 36834911
    [Google Scholar]
  14. Dahiya M. Yadav M. Goyal C. Kumar A. Insulin resistance in Alzheimer’s disease: Signalling mechanisms and therapeutics strategies. Inflammopharmacology 2025 33 4 1817 1831 10.1007/s10787‑025‑01704‑2 40064805
    [Google Scholar]
  15. Nowell J. Blunt E. Gupta D. Edison P. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease. Ageing Res. Rev. 2023 89 101979 10.1016/j.arr.2023.101979 37328112
    [Google Scholar]
  16. Nguyen T.T. Ta Q.T.H. Nguyen T.K.O. Nguyen T.T.D. Van Giau V. Type 3 diabetes and its role implications in Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 9 3165 10.3390/ijms21093165 32365816
    [Google Scholar]
  17. Michailidis M. Moraitou D. Tata D.A. Kalinderi K. Papamitsou T. Papaliagkas V. Alzheimer’s disease as type 3 diabetes: Common pathophysiological mechanisms between Alzheimer’s disease and type 2 diabetes. Int. J. Mol. Sci. 2022 23 5 2687 10.3390/ijms23052687 35269827
    [Google Scholar]
  18. Giuffrida M.L. Amyloid β and Alzheimer’s disease: Molecular updates from physiology to pathology. Int. J. Mol. Sci. 2023 24 9 7913 10.3390/ijms24097913 37175620
    [Google Scholar]
  19. Miklossy J. Qing H. Radenovic A. Kis A. Vileno B. Làszló F. Miller L. Martins R.N. Waeber G. Mooser V. Bosman F. Khalili K. Darbinian N. McGeer P.L. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol. Aging 2010 31 9 1503 1515 10.1016/j.neurobiolaging.2008.08.019 18950899
    [Google Scholar]
  20. Bhat R. Xue Y. Berg S. Hellberg S. Ormö M. Nilsson Y. Radesäter A.C. Jerning E. Markgren P.O. Borgegård T. Nylöf M. Giménez-Cassina A. Hernández F. Lucas J.J. Díaz-Nido J. Avila J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem. 2003 278 46 45937 45945 10.1074/jbc.M306268200 12928438
    [Google Scholar]
  21. de la Monte S.M. PPAR-δ agonist rescue of brain insulin/IGF signaling impairments following developmental exposure to alcohol. J. Drug Alcohol. Res. 2023 12 3 e235730
    [Google Scholar]
  22. Schubert M. Gautam D. Surjo D. Ueki K. Baudler S. Schubert D. Kondo T. Alber J. Galldiks N. Küstermann E. Arndt S. Jacobs A.H. Krone W. Kahn C.R. Brüning J.C. Role for neuronal insulin resistance in neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 2004 101 9 3100 3105 10.1073/pnas.0308724101 14981233
    [Google Scholar]
  23. Misrani A. Tabassum S. Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 2021 13 617588 10.3389/fnagi.2021.617588 33679375
    [Google Scholar]
  24. Chen Y. Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023 20 1 165 10.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  25. Wong-Guerra M. Calfio C. Maccioni R.B. Rojo L.E. Revisiting the neuroinflammation hypothesis in Alzheimer’s disease: A focus on the druggability of current targets. Front. Pharmacol. 2023 14 1161850 10.3389/fphar.2023.1161850 37361208
    [Google Scholar]
  26. Cordle A. Landreth G. HMG-CoA reductase inhibitors attenuate β-amyloid-induced microglial inflammatory responses. J. Neurosci. 2021 41 2 299 307 10.1523/JNEUROSCI.2544‑04.2005 34799416
    [Google Scholar]
  27. Bartley S.C. Triple immunohistochemistry reveals spatially distinct inflammatory profiles in amyloid plaque microenvironments. Mol. Neurodegener. 2023 18 1 45 [PMID: 37415149
    [Google Scholar]
  28. Sankar S.B. Infante-Garcia C. Weinstock L.D. Ramos-Rodriguez J.J. Hierro-Bujalance C. Fernandez-Ponce C. Wood L.B. Garcia-Alloza M. Amyloid beta and diabetic pathology cooperatively stimulate cytokine expression in an Alzheimer’s mouse model. J. Neuroinflammation 2020 17 1 38 10.1186/s12974‑020‑1707‑x 31992349
    [Google Scholar]
  29. Yoo E.S. Yu J. Sohn J.W. Neuroendocrine control of appetite and metabolism. Exp. Mol. Med. 2021 53 4 505 516 10.1038/s12276‑021‑00597‑9 33837263
    [Google Scholar]
  30. Tian J. Wang T. Du H. Ghrelin system in Alzheimer’s disease. Curr. Opin. Neurobiol. 2023 78 102655 10.1016/j.conb.2022.102655 36527939
    [Google Scholar]
  31. Navarro G. Rea W. Quiroz C. Moreno E. Gomez D. Wenthur C.J. Complexes of ghrelin GHS-R1a, GHS-R1b and dopamine D1 receptors localized in the ventral tegmental area as main mediators of the dopaminergic effects of ghrelin. J. Neurosci. 2021 41 50 10412 10428 [PMID: 34876469
    [Google Scholar]
  32. Davis T.R. Pierce M.R. Novak S.X. Hougland J.L. Ghrelin octanoylation by ghrelin O -acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biol. 2021 11 7 210080 10.1098/rsob.210080 34315274
    [Google Scholar]
  33. Wu W. Zhu L. Dou Z. Hou Q. Wang S. Yuan Z. Li B. Ghrelin in focus: dissecting its critical roles in gastrointestinal pathologies and therapies. Curr. Issues Mol. Biol. 2024 46 1 948 964 10.3390/cimb46010061 38275675
    [Google Scholar]
  34. Ibrahim M. Khalife L. Abdel-Latif R. Faour W.H. Ghrelin hormone a new molecular modulator between obesity and glomerular damage. Mol. Biol. Rep. 2023 50 12 10525 10533 10.1007/s11033‑023‑08866‑8 37924451
    [Google Scholar]
  35. Airapetov M.I. Eresko S.O. Lebedev A.A. Bychkov E.R. Shabanov P.D. Expression of the growth hormone secretagogue receptor 1a (GHS‐R1a) in the brain. Physiol. Rep. 2021 9 21 e15113 10.14814/phy2.15113 34755494
    [Google Scholar]
  36. Sakata I. Takemi S. Ghrelin-cell physiology and role in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 2021 28 2 238 242 10.1097/MED.0000000000000610 33394720
    [Google Scholar]
  37. Kumaraswamy P.M. Precision medicine and antipsychotics in parkinson’s disease: A focus on MAO B pathway modulation. Curr. Psychopharmacol. 2025 13 10.2174/0122115560349319250330001147
    [Google Scholar]
  38. Mohapatra T.K. Nayak R.R. Ganeshpurkar, A Navigating the treatment landscape of Alzheimer’s disease: Current strategies and future directions. IBRAIN 2025 2025 1 23 10.1002/ibra.12197
    [Google Scholar]
  39. Jeon S.G. Hong S.B. Nam Y. Tae J. Yoo A. Song E.J. Kim K.I. Lee D. Park J. Lee S.M. Kim J. Moon M. Ghrelin in Alzheimer’s disease: Pathologic roles and therapeutic implications. Ageing Res. Rev. 2019 55 100945 10.1016/j.arr.2019.100945 31434007
    [Google Scholar]
  40. Cuadrado-Tejedor M. Pérez-González M. Alfaro-Ruiz R. Badesso S. Sucunza D. Espelosin M. Ursúa S. Lachen-Montes M. Fernández-Irigoyen J. Santamaria E. Luján R. García-Osta A. Amyloid-driven tau accumulation on mitochondria potentially leads to cognitive deterioration in Alzheimer’s disease. Int. J. Mol. Sci. 2021 22 21 11950 10.3390/ijms222111950 34769380
    [Google Scholar]
  41. Iliyasu M.O. Musa S.A. Oladele S.B. Iliya A.I. Amyloid-beta aggregation implicates multiple pathways in Alzheimer’s disease: Understanding the mechanisms. Front. Neurosci. 2023 17 1081938 10.3389/fnins.2023.1081938 37113145
    [Google Scholar]
  42. Alrouji M. Alshammari M.S. Tasqeeruddin S. Shamsi A. Interplay between aging and tau pathology in Alzheimer’s disease: mechanisms and translational perspectives. Antioxidants 2025 14 7 774 10.3390/antiox14070774 40722878
    [Google Scholar]
  43. Zhang X. Wang J. Zhang Z. Ye K. Tau in neurodegenerative diseases: Molecular mechanisms, biomarkers, and therapeutic strategies. Transl. Neurodegener. 2024 13 1 40 10.1186/s40035‑024‑00429‑6 39107835
    [Google Scholar]
  44. Wei Y. Han C. Wang Y. Wu B. Su T. Liu Y. He R. Ribosylation triggering A lzheimer’s disease‐like T au hyperphosphorylation via activation of C a MKII. Aging Cell 2015 14 5 754 763 10.1111/acel.12355 26095350
    [Google Scholar]
  45. Chen Y. Cao C.P. Li C.R. Wang W. Zhang D. Han L.L. Zhang X.Q. Kim A. Kim S. Liu G.L. Ghrelin modulates insulin sensitivity and tau phosphorylation in high glucose-induced hippocampal neurons. Biol. Pharm. Bull. 2010 33 7 1165 1169 10.1248/bpb.33.1165 20606308
    [Google Scholar]
  46. Chen J.H. Huang S.M. Chen C.C. Tsai C.F. Yeh W.L. Chou S.J. Hsieh W.T. Lu D.Y. Ghrelin induces cell migration through GHS-R, CaMKII, AMPK, and NF-κB signaling pathway in glioma cells. J. Cell. Biochem. 2011 112 10 2931 2941 10.1002/jcb.23209 21630326
    [Google Scholar]
  47. Li T. Shi H. Zhao Y. Acetaldehyde induces tau phosphorylation via activation of p38 MAPK/JNK and ROS production. Mol. Cell. Toxicol. 2022 18 3 311 320 10.1007/s13273‑021‑00193‑y
    [Google Scholar]
  48. Bressler S.G. Grunhaus D. Aviram A. Rüdiger S.G.D. Hurevich M. Friedler A. Specific phosphorylation patterns control the interplay between aggregation and condensation of Tau-R4 peptides. Org. Biomol. Chem. 2025 23 29 6912 6923 10.1039/D5OB00885A 40567043
    [Google Scholar]
  49. Drucker D.J. Holst J.J. The expanding incretin universe: From basic biology to clinical translation. Diabetologia 2023 66 10 1765 1779 10.1007/s00125‑023‑05906‑7 36976349
    [Google Scholar]
  50. Rowlands J. Heng J. Newsholme P. Carlessi R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front. Endocrinol. (Lausanne) 2018 9 672 10.3389/fendo.2018.00672 30532733
    [Google Scholar]
  51. Nauck M.A. Quast D.R. Wefers J. Meier J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol. Metab. 2021 46 101102 10.1016/j.molmet.2020.101102 33068776
    [Google Scholar]
  52. Yildirim Simsir I. Soyaltin U.E. Cetinkalp S. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes Metab. Syndr. 2018 12 3 469 475 10.1016/j.dsx.2018.03.002 29598932
    [Google Scholar]
  53. Athauda D. Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today 2016 21 5 802 818 10.1016/j.drudis.2016.01.013 26851597
    [Google Scholar]
  54. Maskery M.P. Holscher C. Jones S.P. Price C.I. Strain W.D. Watkins C.L. Werring D.J. Emsley H.C.A. Glucagon-like peptide-1 receptor agonists as neuroprotective agents for ischemic stroke: A systematic scoping review. J. Cereb. Blood Flow Metab. 2021 41 1 14 30 10.1177/0271678X20952011 32954901
    [Google Scholar]
  55. Psilopanagioti A. Nikou S. Logotheti S. Arbi M. Chartoumpekis D.V. Papadaki H. Glucagon-like peptide-1 receptor in the human hypothalamus is associated with body mass index and colocalizes with the anorexigenic neuropeptide nucleobindin-2/nesfatin-1. Int. J. Mol. Sci. 2022 23 23 14899 10.3390/ijms232314899 36499229
    [Google Scholar]
  56. Nizari S. Basalay M. Chapman P. Korte N. Korsak A. Christie I.N. GLP-1 receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates neuroprotection against ischemic stroke. Basic Res. Cardiol. 2021 116 1 32 10.1007/s00395‑021‑00873‑9 33942194
    [Google Scholar]
  57. Gengler S. McClean P.L. McCurtin R. Gault V.A. Hölscher C. Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiol. Aging 2012 33 2 265 276 10.1016/j.neurobiolaging.2010.02.014 20359773
    [Google Scholar]
  58. Cai X. She M. Xu M. Chen H. Li J. Chen X. Zheng D. Liu J. Chen S. Zhu J. Xu X. Li R. Li J. Chen S. Yang X. Li H. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int. J. Biol. Sci. 2018 14 12 1696 1708 10.7150/ijbs.27774 30416384
    [Google Scholar]
  59. Spielman L.J. Gibson D.L. Klegeris A. Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors. Eur. J. Cell Biol. 2017 96 3 240 253 10.1016/j.ejcb.2017.03.004 28336086
    [Google Scholar]
  60. Rahman M.A. Rahman M.D.H. Rhim H. Kim B. Drug targets to alleviate mitochondrial dysfunctions in Alzheimer’s disease: Recent advances and therapeutic implications. Curr. Neuropharmacol. 2024 22 12 1942 1959 10.2174/1570159X22666240426091311 39234772
    [Google Scholar]
  61. An F.M. Chen S. Xu Z. Yin L. Wang Y. Liu A.R. Yao W.B. Gao X.D. Glucagon-like peptide-1 regulates mitochondrial biogenesis and tau phosphorylation against advanced glycation end product-induced neuronal insult: Studies in vivo and in vitro. Neuroscience 2015 300 75 84 10.1016/j.neuroscience.2015.05.023 25987199
    [Google Scholar]
  62. Perry T. Haughey N.J. Mattson M.P. Egan J.M. Greig N.H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther. 2002 302 3 881 888 10.1124/jpet.102.037481 12183643
    [Google Scholar]
  63. Chen S. Yin L. Xu Z. An F.M. Liu A.R. Wang Y. Yao W.B. Gao X.D. Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis. Neurosci. Lett. 2016 612 193 198 10.1016/j.neulet.2015.12.007 26679229
    [Google Scholar]
  64. Vargas-Soria M. Carranza-Naval M.J. del Marco A. Garcia-Alloza M. Role of liraglutide in Alzheimer’s disease pathology. Alzheimers Res. Ther. 2021 13 1 112 10.1186/s13195‑021‑00853‑0 34118986
    [Google Scholar]
  65. Xu W. Yang Y. Yuan G. Zhu W. Ma D. Hu S. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes. J. Investig. Med. 2015 63 2 267 272 10.1097/JIM.0000000000000129 25479064
    [Google Scholar]
  66. Achari A. Jain S. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 2017 18 6 1321 10.3390/ijms18061321 28635626
    [Google Scholar]
  67. Bloemer J. Pinky P.D. Govindarajulu M. Hong H. Judd R. Amin R.H. Moore T. Dhanasekaran M. Reed M.N. Suppiramaniam V. Role of adiponectin in central nervous system disorders. Neural Plast. 2018 2018 1 15 10.1155/2018/4593530 30150999
    [Google Scholar]
  68. Rizzo M.R. Fasano R. Paolisso G. Adiponectin and cognitive decline. Int. J. Mol. Sci. 2020 21 6 2010 10.3390/ijms21062010 32188008
    [Google Scholar]
  69. Ryu J. Hadley J.T. Li Z. Dong F. Xu H. Xin X. Zhang Y. Chen C. Li S. Guo X. Zhao J.L. Leach R.J. Abdul-Ghani M.A. DeFronzo R.A. Kamat A. Liu F. Dong L.Q. Adiponectin alleviates diet-induced inflammation in the liver by suppressing MCP-1 expression and macrophage infiltration. Diabetes 2021 70 6 1303 1316 10.2337/db20‑1073 34162682
    [Google Scholar]
  70. Muratsu J. Kamide K. Fujimoto T. Takeya Y. Sugimoto K. Taniyama Y. Morishima A. Sakaguchi K. Matsuzawa Y. Rakugi H. The combination of high levels of adiponectin and insulin resistance are affected by aging in non-obese older adults. Front. Endocrinol. (Lausanne) 2022 12 805244 10.3389/fendo.2021.805244 35069451
    [Google Scholar]
  71. Yoon M.J. Lee G.Y. Chung J.J. Ahn Y.H. Hong S.H. Kim J.B. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMPK, p38 MAPK, and PPARα. Diabetes 2021 70 9 2562 2570 10.2337/db05‑1322 16936205
    [Google Scholar]
  72. Han X.J. Hu Y.Y. Yang Z.J. Jiang L.P. Shi S.L. Li Y.R. Guo M.Y. Wu H.L. Wan Y.Y. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria. Mol. Med. Rep. 2017 16 4 4521 4528 10.3892/mmr.2017.7203 28849115
    [Google Scholar]
  73. Samant N.P. Gupta G.L. Adiponectin: A potential target for obesity-associated Alzheimer’s disease. Metab. Brain Dis. 2021 36 7 1565 1572 10.1007/s11011‑021‑00756‑x 34047927
    [Google Scholar]
  74. Hardie D.G. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 2011 25 18 1895 1908 10.1101/gad.17420111 21937710
    [Google Scholar]
  75. Sabio G. Davis R.J. TNF and MAP kinase signalling pathways. Semin. Immunol. 2014 26 3 237 245 10.1016/j.smim.2014.02.009 24647229
    [Google Scholar]
  76. Schön M. Kovaničová Z. Košutzká Z. Nemec M. Tomková M. Jacková L. Máderová D. Slobodová L. Valkovič P. Ukropec J. Ukropcová B. Effects of running on adiponectin, insulin and cytokines in cerebrospinal fluid in healthy young individuals. Sci. Rep. 2019 9 1 1959 10.1038/s41598‑018‑38201‑2 30760755
    [Google Scholar]
  77. Ng R.C.L. Cheng O.Y. Jian M. Kwan J.S.C. Ho P.W.L. Cheng K.K.Y. Yeung P.K.K. Zhou L.L. Hoo R.L.C. Chung S.K. Xu A. Lam K.S.L. Chan K.H. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol. Neurodegener. 2016 11 1 71 10.1186/s13024‑016‑0136‑x 27884163
    [Google Scholar]
  78. Kim J.Y. Barua S. Jeong Y.J. Lee J.E. Adiponectin: the potential regulator and therapeutic target of obesity and Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 17 6419 10.3390/ijms21176419 32899357
    [Google Scholar]
  79. Bray G.A. Heisel W.E. Afshin A. Jensen M.D. Dietz W.H. Long M. Kushner R.F. Daniels S.R. Wadden T.A. Tsai A.G. Hu F.B. Jakicic J.M. Ryan D.H. Wolfe B.M. Inge T.H. The science of obesity management: An Endocrine Society scientific statement. Endocr. Rev. 2018 39 2 79 132 10.1210/er.2017‑00253 29518206
    [Google Scholar]
  80. Ashraf R. Khan M.S. Lone S.S. Bhat M.H. Rashid S. Majid S. Bashir H. Implication of leptin and leptin receptor gene variations in type 2 diabetes mellitus: a case-control study. J. Endocrinol. Metab. 2022 12 1 19 31 10.14740/jem785
    [Google Scholar]
  81. Mejido D.C.P. Peny J.A. Vieira M.N.N. Ferreira S.T. De Felice F.G. Insulin and leptin as potential cognitive enhancers in metabolic disorders and Alzheimer’s disease. Neuropharmacology 2020 171 108115 10.1016/j.neuropharm.2020.108115 32344008
    [Google Scholar]
  82. Pan W.W. Myers M.G. Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 2018 19 2 95 105 10.1038/nrn.2017.168 29321684
    [Google Scholar]
  83. Flak J.N. Myers M.G. Minireview: CNS mechanisms of leptin action. Mol. Endocrinol. 2016 30 1 3 12 10.1210/me.2015‑1232 26484582
    [Google Scholar]
  84. Upadhyay J. Farr O.M. Mantzoros C.S. The role of leptin in regulating bone metabolism. Metabolism 2015 64 1 105 113 10.1016/j.metabol.2014.10.021 25497343
    [Google Scholar]
  85. Yadav A. Kataria M.A. Saini V. Yadav A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta 2013 417 80 84 10.1016/j.cca.2012.12.007 23266767
    [Google Scholar]
  86. Paz-Filho G. Mastronardi C.A. Licinio J. Leptin treatment: Facts and expectations. Metabolism 2015 64 1 146 156 10.1016/j.metabol.2014.07.014 25156686
    [Google Scholar]
  87. Trinh T. Broxmeyer H.E. Role for leptin and leptin receptors in stem cells during health and diseases. Stem Cell Rev. Rep. 2021 17 2 511 522 10.1007/s12015‑021‑10132‑y 33598894
    [Google Scholar]
  88. Kadiri S.K. Tiwari P. Unraveling the effects of SARS-CoV-2 on dementia: A comprehensive study. Coronaviruses 2024 6 1 10.2174/0126667975329888241010115929
    [Google Scholar]
  89. Wada N. Hirako S. Takenoya F. Kageyama H. Okabe M. Shioda S. Leptin and its receptors. J. Chem. Neuroanat. 2014 61-62 191 199 10.1016/j.jchemneu.2014.09.002 25218975
    [Google Scholar]
  90. Harvey J. Novel leptin-based therapeutic strategies to limit synaptic dysfunction in Alzheimer’s disease. Int. J. Mol. Sci. 2024 25 13 7352 10.3390/ijms25137352 39000459
    [Google Scholar]
  91. Schmidt-Arras D. Rose-John S. Endosomes as signaling platforms for IL-6 family cytokine receptors. Front. Cell Dev. Biol. 2021 9 688314 10.3389/fcell.2021.688314 34141712
    [Google Scholar]
  92. Low Z.Y. Wen Yip A.J. Chow V.T.K. Lal S.K. The suppressor of cytokine signalling family of proteins and their potential impact on COVID‐19 disease progression. Rev. Med. Virol. 2022 32 3 e2300 10.1002/rmv.2300 34546610
    [Google Scholar]
  93. Park H.K. Ahima R.S. Leptin signaling. F1000Prime Rep. 2014 6 73 10.12703/P6‑73 25343030
    [Google Scholar]
  94. Hamilton K. Harvey J. The neuronal actions of leptin and the implications for treating Alzheimer’s disease. Pharmaceuticals 2021 14 1 52 10.3390/ph14010052 33440796
    [Google Scholar]
  95. Choudhary H.R. B, D.K.; Kadiri, S.K.; Khobragade, D.S.; Tiwari, P. Integrating Biosensors in phytochemical research: Challenges and breakthroughs. Recent Pat. Biotechnol. 2025 20 10.2174/0118722083381223250612181959
    [Google Scholar]
  96. Derkach K.V. Sorokoumov V.N. Bakhtyukov A.A. Bondareva V.M. Shpakov A.O. Insulin and leptin levels in blood and brain structures of rats with diet-induced obesity and the effect of various drugs on them. J. Evol. Biochem. Physiol. 2022 58 6 1892 1904 10.1134/S0022093022060187
    [Google Scholar]
  97. Wang Y. Zhang L. Chen X. Liu J. Zhao Y. Xu H. Leptin transport across the blood-brain barrier: Role of ObRa and implications for obesity therapy. J. Neuroendocrinol. 2023 35 2 e13212
    [Google Scholar]
  98. Berger C. Klöting N. Leptin receptor compound heterozygosity in humans and animal models. Int. J. Mol. Sci. 2021 22 9 4475 10.3390/ijms22094475 33922961
    [Google Scholar]
  99. Pan W. Hsuchou H. He Y. Sakharkar A. Cain C. Yu C. Kastin A.J. Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology 2008 149 6 2798 2806 10.1210/en.2007‑1673 18292187
    [Google Scholar]
  100. Faouzi M. Leshan R. Björnholm M. Hennessey T. Jones J. Münzberg H. Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology 2007 148 11 5414 5423 10.1210/en.2007‑0655 17690165
    [Google Scholar]
  101. Hileman S.M. Pierroz D.D. Masuzaki H. Bjørbæk C. El-Haschimi K. Banks W.A. Flier J.S. Characterizaton of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology 2002 143 3 775 783 10.1210/endo.143.3.8669 11861497
    [Google Scholar]
  102. Scarpace P.J. Matheny M. Tümer N. Hypothalamic leptin resistance is associated with impaired leptin signal transduction in aged obese rats. Neuroscience 2001 104 4 1111 1117 10.1016/S0306‑4522(01)00142‑7 11457594
    [Google Scholar]
  103. McGregor G. Clements L. Farah A. Irving A.J. Harvey J. Age-dependent regulation of excitatory synaptic transmission at hippocampal temporoammonic-CA1 synapses by leptin. Neurobiol. Aging 2018 69 76 93 10.1016/j.neurobiolaging.2018.05.007 29860205
    [Google Scholar]
  104. Cunnane S.C. Trushina E. Morland C. Prigione A. Casadesus G. Andrews Z.B. Beal M.F. Bergersen L.H. Brinton R.D. de la Monte S. Eckert A. Harvey J. Jeggo R. Jhamandas J.H. Kann O. la Cour C.M. Martin W.F. Mithieux G. Moreira P.I. Murphy M.P. Nave K.A. Nuriel T. Oliet S.H.R. Saudou F. Mattson M.P. Swerdlow R.H. Millan M.J. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020 19 9 609 633 10.1038/s41573‑020‑0072‑x 32709961
    [Google Scholar]
  105. Greco S.J. Bryan K.J. Sarkar S. Zhu X. Smith M.A. Ashford J.W. Johnston J.M. Tezapsidis N. Casadesus G. Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2010 19 4 1155 1167 10.3233/JAD‑2010‑1308 20308782
    [Google Scholar]
  106. Farr S.A. Banks W.A. Morley J.E. Effects of leptin on memory processing. Peptides 2006 27 6 1420 1425 10.1016/j.peptides.2005.10.006 16293343
    [Google Scholar]
  107. Doherty G.H. Beccano-Kelly D. Yan S.D. Gunn-Moore F.J. Harvey J. Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid β. Neurobiol. Aging 2013 34 1 226 237 10.1016/j.neurobiolaging.2012.08.003 22921154
    [Google Scholar]
  108. Li S. Hong S. Shepardson N.E. Walsh D.M. Shankar G.M. Selkoe D. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 2009 62 6 788 801 10.1016/j.neuron.2009.05.012 19555648
    [Google Scholar]
  109. Malekizadeh Y. Holiday A. Redfearn D. Ainge J.A. Doherty G. Harvey J. A leptin fragment mirrors the cognitive enhancing and neuroprotective actions of leptin. Cereb. Cortex 2017 27 10 4769 4782 10.1093/cercor/bhw272 27600840
    [Google Scholar]
  110. Zhang Y. Wang Y. Li J. Chen X. Liu Y. Zhao Y. Leptin-derived peptide analogs ameliorate obesity and metabolic dysfunction in ob/ob mice via hypothalamic AMPK signaling. Int. J. Obes. 2023 47 5 789 798
    [Google Scholar]
  111. Hundley W.G. Kitzman D.W. Morgan T.M. Hamilton C.A. Darty S.N. Stewart K.P. Herrington D.M. Link K.M. Little W.C. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J. Am. Coll. Cardiol. 2001 38 3 796 802 10.1016/S0735‑1097(01)01447‑4 11527636
    [Google Scholar]
  112. Gao L. Zhang Y. Sterling K. Song W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022 11 1 4 10.1186/s40035‑022‑00279‑0 35090576
    [Google Scholar]
  113. Fukushima Y. Sato Y. Yamada T. Nakamura K. Tanaka H. Yamamoto T. Nanomicelle-mediated delivery of BDNF mRNA promotes neuroprotection and functional recovery in ischemic rat brain. Biomaterials 2022 287 121652
    [Google Scholar]
  114. Numakawa T. Kajihara R. The role of brain-derived neurotrophic factor as an essential mediator in neuronal functions and the therapeutic potential of its mimetics for neuroprotection. Molecules 2025 30 4 848 10.3390/molecules30040848 40005159
    [Google Scholar]
  115. Wang L. Gu S. Gan J. Tian Y. Zhang F. Zhao H. Lei D. Neural stem cells overexpressing nerve growth factor improve functional recovery in rats following spinal cord injury via modulating microenvironment and enhancing endogenous neurogenesis. Front. Cell. Neurosci. 2021 15 773375 10.3389/fncel.2021.773375 34924958
    [Google Scholar]
  116. Nagahara A.H. Merrill D.A. Coppola G. Tsukada S. Schroeder B.E. Shaked G.M. Wang L. Blesch A. Kim A. Conner J.M. Rockenstein E. Chao M.V. Koo E.H. Geschwind D. Masliah E. Chiba A.A. Tuszynski M.H. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 2009 15 3 331 337 10.1038/nm.1912 19198615
    [Google Scholar]
  117. Lucaci A.G. Notaras M.J. Kosakovsky Pond S.L. Colak D. The evolution of BDNF is defined by strict purifying selection and prodomain spatial coevolution, but what does it mean for human brain disease? Transl. Psychiatry 2022 12 1 258 10.1038/s41398‑022‑02021‑w 35732627
    [Google Scholar]
  118. Kasemeier-Kulesa J.C. Morrison J.A. Lefcort F. Kulesa P.M. TrkB/BDNF signalling patterns the sympathetic nervous system. Nat. Commun. 2015 6 1 8281 10.1038/ncomms9281 26404565
    [Google Scholar]
  119. Harward S.C. Hedrick N.G. Hall C.E. Parra-Bueno P. Milner T.A. Pan E. Laviv T. Hempstead B.L. Yasuda R. McNamara J.O. Autocrine BDNF–TrkB signalling within a single dendritic spine. Nature 2016 538 7623 99 103 10.1038/nature19766 27680698
    [Google Scholar]
  120. Minichiello L. Calella A.M. Medina D.L. Bonhoeffer T. Klein R. Korte M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 2002 36 1 121 137 10.1016/S0896‑6273(02)00942‑X 12367511
    [Google Scholar]
  121. Revest J-M. Le Roux A. Roullot-Lacarrière V. Kaouane N. Vallée M. Kasanetz F. Rougé-Pont F. Tronche F. Desmedt A. Piazza P.V. BDNF-TrkB signaling through Erk1/2MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids. Mol. Psychiatry 2014 19 9 1001 1009 10.1038/mp.2013.134 24126929
    [Google Scholar]
  122. Hock C. Heese K. Hulette C. Rosenberg C. Otten U. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol. 2000 57 6 846 851 10.1001/archneur.57.6.846 10867782
    [Google Scholar]
  123. Álvarez Castillo A. Rodríguez Alfaro J.M. Salas Boza A. Influence of Alzheimer’s disease on synaptic neurotransmission systems. Medical Synergy Magazine 2020 5 4 e442 10.31434/rms.v5i4.442
    [Google Scholar]
  124. Abreu-Villaça Y. Filgueiras C.C. Manhães A.C. Developmental aspects of the cholinergic system. Behav. Brain Res. 2011 221 2 367 378 10.1016/j.bbr.2009.12.049 20060019
    [Google Scholar]
  125. Berson A. Knobloch M. Hanan M. Diamant S. Sharoni M. Schuppli D. Geyer B.C. Ravid R. Mor T.S. Nitsch R.M. Soreq H. Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 2008 131 Pt 1 109 119 [PMID: 18056160
    [Google Scholar]
  126. Geetha S. Ramachandran V. Assessment of cholinesterase activity in Alzheimer disease. Int. J. Mod Agric. 2023 10 4 847 856
    [Google Scholar]
  127. Dinamarca M.C. Sagal J.P. Quintanilla R.A. Godoy J.A. Arrázola M.S. Inestrosa N.C. Amyloid-β-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 2010 5 1 4 10.1186/1750‑1326‑5‑4 20205793
    [Google Scholar]
  128. Kadiri S.K. Tiwari P. Integrating traditional medicine with network pharmacology for Alzheimer’s treatment. Health. Sci. Rev. (Oxf) 2025 15 100223 10.1016/j.hsr.2025.100223
    [Google Scholar]
  129. Gajendra K. Pratap G.K. Poornima D.V. Shantaram M. Ranjita G. Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer’s disease. Eur J. Med. Chem. Rep 2024 11 100154 10.1016/j.ejmcr.2024.100154
    [Google Scholar]
  130. Nagori K. Nakhate K.T. Yadav K. Ajazuddin; Pradhan, M. Unlocking the therapeutic potential of medicinal plants for Alzheimer’s disease: Preclinical to clinical trial insights. Future Pharmacol. 2023 3 4 877 907 10.3390/futurepharmacol3040053
    [Google Scholar]
  131. Cheng Z. Han T. Yao J. Wang K. Dong X. Yu F. Huang H. Han M. Liao Q. He S. Lyu W. Li Q. Targeting glycogen synthase kinase-3β for Alzheimer’s disease: Recent advances and future Prospects. Eur. J. Med. Chem. 2024 265 116065 10.1016/j.ejmech.2023.116065 38160617
    [Google Scholar]
  132. Dimitrov M. Alattia J.R. Lemmin T. Lehal R. Fligier A. Houacine J. Hussain I. Radtke F. Dal Peraro M. Beher D. Fraering P.C. Alzheimer’s disease mutations in APP but not γ-secretase modulators affect epsilon-cleavage-dependent AICD production. Nat. Commun. 2013 4 1 2246 10.1038/ncomms3246 23907250
    [Google Scholar]
  133. Ly P.T.T. Wu Y. Zou H. Wang R. Zhou W. Kinoshita A. Zhang M. Yang Y. Cai F. Woodgett J. Song W. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Invest. 2013 123 1 224 235 10.1172/JCI64516 23202730
    [Google Scholar]
  134. Lauretti E. Dincer O. Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 5 118664 10.1016/j.bbamcr.2020.118664 32006534
    [Google Scholar]
  135. Arya R. Jain S. Paliwal S. Madan K. Sharma S. Mishra A. Tiwari P. Kadiri S.K. BACE1 inhibitors: A promising therapeutic approach for the management of Alzheimer’s disease. Asian Pac. J. Trop. Biomed. 2024 14 9 369 381 10.4103/apjtb.apjtb_192_24
    [Google Scholar]
  136. Sayas C.L. Ávila J. GSK-3 and Tau: A key duet in Alzheimer’s disease. Cells 2021 10 4 721 10.3390/cells10040721 33804962
    [Google Scholar]
  137. Yu H. Xiong M. Zhang Z. The role of glycogen synthase kinase 3 beta in neurodegenerative diseases. Front. Mol. Neurosci. 2023 16 1209703 10.3389/fnmol.2023.1209703 37781096
    [Google Scholar]
  138. de Paula H. Souza F. Ferreira L. Silva J.A.B. Ribeiro R. Vilachã J. Emery F.S. Lacerda V. Morais P.A.B. Semisynthetic flavonoids as GSK-3β inhibitors: computational methods and enzymatic assay. Targets 2025 3 2 13 10.3390/targets3020013
    [Google Scholar]
  139. Kim E.K. Choi E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 4 396 405 10.1016/j.bbadis.2009.12.009 20079433
    [Google Scholar]
  140. Wang J.Z. Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog. Neurobiol. 2008 85 2 148 175 10.1016/j.pneurobio.2008.03.002 18448228
    [Google Scholar]
  141. Tonnies E. Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 2021 81 4 1411 1428 10.3233/JAD‑210167 28059794
    [Google Scholar]
  142. Wang Y. Mandelkow E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016 17 1 22 35 10.1038/nrn.2015.1 26631930
    [Google Scholar]
  143. Butterfield D.A. Boyd-Kimball D. Oxidative stress, amyloid-β peptide, and Alzheimer’s disease: A 2023 update. Antioxid. Redox Signal. 2023 38 7-9 529 546 10.1089/ars.2022.0123 36017629
    [Google Scholar]
  144. Hampel H. Hardy J. Blennow K. Chen C. Perry G. Kim S.H. Villemagne V.L. Aisen P. Vendruscolo M. Iwatsubo T. Masters C.L. Cho M. Lannfelt L. Cummings J.L. Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  145. Zhang Y. Chen H. Li R. Sterling K. Song W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023 8 1 248 10.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  146. Gonzalez A. Singh S.K. Chavira A. Mason B.N. Alzheimer’s disease and tauopathy: Molecular mechanisms and therapeutic approaches. Neurotherapeutics 2024 21 1 e00296 10.1016/j.neurot.2023.e00296 38241158
    [Google Scholar]
  147. Liu J. Liu Y. Li Y. Wang X. Zhang Q. Chen G. Role of JNK signaling pathway in Alzheimer’s disease: Therapeutic implications. Front. Aging Neurosci. 2022 14 883811 10.3389/fnagi.2022.883811
    [Google Scholar]
  148. Chen Y. Huang X. Zhang Y.W. Xu J. Bu G. Calcium-sensing receptor (CaSR) in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener. 2023 12 1 9 10.1186/s40035‑023‑00341‑2 36850004
    [Google Scholar]
  149. Perea J.R. Bolós M. Avila J. Tau protein in Alzheimer’s disease: Aggregation, function, and therapeutic targeting. Int. J. Mol. Sci. 2024 25 7 4059 10.3390/ijms25074059 38612868
    [Google Scholar]
  150. Almansoub H.A. Al-kuraishy H.M. Al-Gareeb A.I. Alshammari M. Batiha G.E. Cruz-Martins N. Mitogen-activated protein kinase inhibitors in Alzheimer’s disease: therapeutic insights from animal and human studies. Mol. Neurobiol. 2024 61 8 5742 5759 10.1007/s12035‑024‑03971‑8
    [Google Scholar]
  151. Gee M.S. Son S.H. Jeon S.H. Do J. Kim N. Ju Y.J. Lee S.J. Chung E.K. Inn K.S. Kim N.J. Lee J.K. A selective p38α/β MAPK inhibitor alleviates neuropathology and cognitive impairment, and modulates microglia function in 5XFAD mouse. Alzheimers Res. Ther. 2020 12 1 45 10.1186/s13195‑020‑00617‑2 32317025
    [Google Scholar]
  152. Wang L. Liu J. Wang X. Zhang Y. Chen G. Targeting p38 MAPK for Alzheimer’s disease: Therapeutic potential and mechanisms. J. Neurochem. 2024 161 6 451 467 10.1111/jnc.16072
    [Google Scholar]
  153. Montoliu-Gaya L. Villegas S. Protein structures in Alzheimer’s disease: The basis for rationale therapeutic design. Arch. Biochem. Biophys. 2015 588 1 14 10.1016/j.abb.2015.10.005 26475676
    [Google Scholar]
  154. Tundo G.R. Sbardella D. Ciaccio C. Grasso G. Gioia M. Coletta A. Polticelli F. Di Pierro D. Milardi D. Van Endert P. Marini S. Coletta M. Multiple functions of insulin-degrading enzyme: A metabolic crosslight? Crit. Rev. Biochem. Mol. Biol. 2017 52 5 554 582 10.1080/10409238.2017.1337707 28635330
    [Google Scholar]
  155. Żukowska J. Moss S.J. Subramanian V. Acharya K.R. Molecular basis of selective amyloid‐β degrading enzymes in Alzheimer’s disease. FEBS Lett. 2023 597 20 2703 2721 [PMID: 37622248
    [Google Scholar]
  156. Azam M.S. Wahiduzzaman M. Reyad-ul-Ferdous M. Islam M.N. Roy M. Inhibition of insulin-degrading enzyme to control diabetes mellitus and its applications on some other chronic disease: A critical review. Pharm. Res. 2022 39 4 611 629 10.1007/s11095‑022‑03237‑7 35378698
    [Google Scholar]
  157. Vishnumurthy R.H. Priya M.G.R. Tiwari P. Solomon V.R. Cognitive improvement effects of polymer-based microencapsulated celecoxib in a rat model of alzheimer’s disease. Russ. J. Bioorganic Chem. 2024 50 6 2312 2324 10.1134/S1068162024060189
    [Google Scholar]
  158. Leissring M.A. Liu Y. Degradation of amyloid β-protein by insulin-degrading enzyme. Front. Aging Neurosci. 2021 13 662471
    [Google Scholar]
  159. Zhang Y. Song W. γ-Secretase modulators as therapeutic strategies for Alzheimer’s disease. J. Neurochem. 2023 166 2 165 180 10.1111/jnc.15845
    [Google Scholar]
  160. Yang G. Zhou R. Guo W. Shi Y. Chen L. Structural insights and activation mechanisms of γ-secretase in Alzheimer’s disease. Cell. Mol. Life Sci. 2024 81 1 132 10.1007/s00018‑024‑05174‑6 38472446
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002408089250912080734
Loading
/content/journals/cdm/10.2174/0113892002408089250912080734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test