Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Alzheimer’s disease (AD), the most common form of dementia, is characterized by progressive cognitive decline and neuropathological hallmarks, including amyloid-beta plaques and tau tangles. Emerging evidence implicates metabolic dysfunction as a critical contributor to the pathogenesis and progression of AD. Impaired glucose metabolism, mitochondrial dysfunction, oxidative stress, and lipid dysregulation are frequently observed in AD brains, suggesting that metabolic dysfunction may exacerbate neurodegeneration and cognitive deficits. This review explores the therapeutic potential of targeting metabolic pathways to mitigate AD pathology. Key metabolic disruptions, including insulin resistance, reduced cerebral glucose utilization, and mitochondrial inefficiency, are closely linked to neuronal energy deficits and synaptic dysfunction. Therapeutic approaches, such as insulin sensitizers, ketogenic diets, and mitochondrial-targeted antioxidants, have shown promise in preclinical and early clinical studies. Additionally, strategies to modulate lipid metabolism, such as enhancing cholesterol efflux APOE or reducing neurotoxic ceramides, offer potential avenues for intervention. The review also highlights the roles of neuroinflammation and oxidative stress as mediators of metabolic dysfunction in AD, underscoring the need for multifaceted approaches that target both metabolic and inflammatory pathways. The emerging field of precision medicine offers opportunities to tailor interventions based on individual metabolic profiles, potentially enhancing treatment efficacy. Despite the growing recognition of metabolic dysfunction in AD, translating these insights into effective therapies remains challenging due to the disease’s complexity and heterogeneity. Future research must focus on elucidating the interplay between metabolic pathways and AD pathology, identifying reliable biomarkers, and designing targeted interventions. By addressing the metabolic underpinnings of AD, this review underscores the potential of metabolic reprogramming as a novel and integrative therapeutic strategy to slow or prevent disease progression and improve patient outcomes.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002408089250912080734
2025-09-19
2025-12-22
Loading full text...

Full text loading...

References

  1. MohapatraTK NayakRR GaneshpurkarA TiwariP KumarD Navigating the treatment landscape of Alzheimer’s disease: Current strategies and future directions.ibrain202511216218410.1002/ibra.12197
    [Google Scholar]
  2. StanciuG.D. LucaA. RusuR.N. BildV. Beschea ChiriacS.I. SolcanC. BildW. AbabeiD.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement.Biomolecules20191014010.3390/biom10010040 31888102
    [Google Scholar]
  3. TiwariP. KadiriS.K. KhobragadeD.S. DubeyS. GluN2B of NMDA receptor and Calmodulin: Balanced Calcium regulation to combat Alzheimer’s disease.Curr. Drug Ther.20252010.2174/0115748855341835250120064444
    [Google Scholar]
  4. ZhangJ. ZhangY. WangJ. XiaY. ZhangJ. ChenL. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies.Signal Transduct. Target. Ther.20249121110.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  5. KeppK.P. RobakisN.K. Høilund-CarlsenP.F. SensiS.L. VisselB. The amyloid cascade hypothesis: An updated critical review.Brain2023146103969399010.1093/brain/awad159 37183523
    [Google Scholar]
  6. GranzottoA. SensiS.L. Once upon a time, the Amyloid Cascade Hypothesis.Ageing Res. Rev.20249310216110.1016/j.arr.2023.102161 38065226
    [Google Scholar]
  7. OssenkoppeleR. van der KantR. HanssonO. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials.Lancet Neurol.202221872673410.1016/S1474‑4422(22)00168‑5 35643092
    [Google Scholar]
  8. AndohT. Insulin.Handbook of Hormones.AmsterdamElsevier2016157
    [Google Scholar]
  9. AkhtarA. SahS.P. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease.Neurochem. Int.202013510470710.1016/j.neuint.2020.104707 32092326
    [Google Scholar]
  10. DubeyS.K. LakshmiK.K. KrishnaK.V. AgrawalM. SinghviG. SahaR.N. SarafS. SarafS. ShuklaR. AlexanderA. Insulin mediated novel therapies for the treatment of Alzheimer’s disease.Life Sci.202024911754010.1016/j.lfs.2020.117540 32165212
    [Google Scholar]
  11. KunduS. FirdousS.M. Role of insulin in brain: an emphasis on molecular functions.INNOSC Theranostics Pharmacol. Sci.2021421721
    [Google Scholar]
  12. MazucantiC. KennedyV.L. ChoA. LiuQ.R. O’ConnellJ.F. CamandolaS. EganJ.M. Insulin receptors and their signal transduction pathways in choroid plexus.Diabetes2022711320-P10.2337/db22‑1320‑P
    [Google Scholar]
  13. YoonJ.H. HwangJ. SonS.U. ChoiJ. YouS.W. ParkH. ChaS.Y. MaengS. How can insulin resistance cause Alzheimer’s disease?Int. J. Mol. Sci.2023244350610.3390/ijms24043506 36834911
    [Google Scholar]
  14. DahiyaM. YadavM. GoyalC. KumarA. Insulin resistance in Alzheimer’s disease: Signalling mechanisms and therapeutics strategies.Inflammopharmacology20253341817183110.1007/s10787‑025‑01704‑2 40064805
    [Google Scholar]
  15. NowellJ. BluntE. GuptaD. EdisonP. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease.Ageing Res. Rev.20238910197910.1016/j.arr.2023.101979 37328112
    [Google Scholar]
  16. NguyenT.T. TaQ.T.H. NguyenT.K.O. NguyenT.T.D. Van GiauV. Type 3 diabetes and its role implications in Alzheimer’s disease.Int. J. Mol. Sci.2020219316510.3390/ijms21093165 32365816
    [Google Scholar]
  17. MichailidisM. MoraitouD. TataD.A. KalinderiK. PapamitsouT. PapaliagkasV. Alzheimer’s disease as type 3 diabetes: Common pathophysiological mechanisms between Alzheimer’s disease and type 2 diabetes.Int. J. Mol. Sci.2022235268710.3390/ijms23052687 35269827
    [Google Scholar]
  18. GiuffridaM.L. Amyloid β and Alzheimer’s disease: Molecular updates from physiology to pathology.Int. J. Mol. Sci.2023249791310.3390/ijms24097913 37175620
    [Google Scholar]
  19. MiklossyJ. QingH. RadenovicA. KisA. VilenoB. LàszlóF. MillerL. MartinsR.N. WaeberG. MooserV. BosmanF. KhaliliK. DarbinianN. McGeerP.L. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes.Neurobiol. Aging20103191503151510.1016/j.neurobiolaging.2008.08.019 18950899
    [Google Scholar]
  20. BhatR. XueY. BergS. HellbergS. OrmöM. NilssonY. RadesäterA.C. JerningE. MarkgrenP.O. BorgegårdT. NylöfM. Giménez-CassinaA. HernándezF. LucasJ.J. Díaz-NidoJ. AvilaJ. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418.J. Biol. Chem.200327846459374594510.1074/jbc.M306268200 12928438
    [Google Scholar]
  21. de la MonteS.M. PPAR-δ agonist rescue of brain insulin/IGF signaling impairments following developmental exposure to alcohol.J. Drug Alcohol. Res.2023123e235730
    [Google Scholar]
  22. SchubertM. GautamD. SurjoD. UekiK. BaudlerS. SchubertD. KondoT. AlberJ. GalldiksN. KüstermannE. ArndtS. JacobsA.H. KroneW. KahnC.R. BrüningJ.C. Role for neuronal insulin resistance in neurodegenerative diseases.Proc. Natl. Acad. Sci. USA200410193100310510.1073/pnas.0308724101 14981233
    [Google Scholar]
  23. MisraniA. TabassumS. YangL. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease.Front. Aging Neurosci.20211361758810.3389/fnagi.2021.617588 33679375
    [Google Scholar]
  24. ChenY. YuY. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation.J. Neuroinflammation202320116510.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  25. Wong-GuerraM. CalfioC. MaccioniR.B. RojoL.E. Revisiting the neuroinflammation hypothesis in Alzheimer’s disease: A focus on the druggability of current targets.Front. Pharmacol.202314116185010.3389/fphar.2023.1161850 37361208
    [Google Scholar]
  26. CordleA. LandrethG. HMG-CoA reductase inhibitors attenuate β-amyloid-induced microglial inflammatory responses.J. Neurosci.202141229930710.1523/JNEUROSCI.2544‑04.2005 34799416
    [Google Scholar]
  27. BartleyS.C. Triple immunohistochemistry reveals spatially distinct inflammatory profiles in amyloid plaque microenvironments.Mol. Neurodegener.202318145 37415149
    [Google Scholar]
  28. SankarS.B. Infante-GarciaC. WeinstockL.D. Ramos-RodriguezJ.J. Hierro-BujalanceC. Fernandez-PonceC. WoodL.B. Garcia-AllozaM. Amyloid beta and diabetic pathology cooperatively stimulate cytokine expression in an Alzheimer’s mouse model.J. Neuroinflammation20201713810.1186/s12974‑020‑1707‑x 31992349
    [Google Scholar]
  29. YooE.S. YuJ. SohnJ.W. Neuroendocrine control of appetite and metabolism.Exp. Mol. Med.202153450551610.1038/s12276‑021‑00597‑9 33837263
    [Google Scholar]
  30. TianJ. WangT. DuH. Ghrelin system in Alzheimer’s disease.Curr. Opin. Neurobiol.20237810265510.1016/j.conb.2022.102655 36527939
    [Google Scholar]
  31. NavarroG. ReaW. QuirozC. MorenoE. GomezD. WenthurC.J. Complexes of ghrelin GHS-R1a, GHS-R1b and dopamine D1 receptors localized in the ventral tegmental area as main mediators of the dopaminergic effects of ghrelin.J. Neurosci.202141501041210428 34876469
    [Google Scholar]
  32. DavisT.R. PierceM.R. NovakS.X. HouglandJ.L. Ghrelin octanoylation by ghrelin O -acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling.Open Biol.202111721008010.1098/rsob.210080 34315274
    [Google Scholar]
  33. WuW. ZhuL. DouZ. HouQ. WangS. YuanZ. LiB. Ghrelin in focus: dissecting its critical roles in gastrointestinal pathologies and therapies.Curr. Issues Mol. Biol.202446194896410.3390/cimb46010061 38275675
    [Google Scholar]
  34. IbrahimM. KhalifeL. Abdel-LatifR. FaourW.H. Ghrelin hormone a new molecular modulator between obesity and glomerular damage.Mol. Biol. Rep.20235012105251053310.1007/s11033‑023‑08866‑8 37924451
    [Google Scholar]
  35. AirapetovM.I. EreskoS.O. LebedevA.A. BychkovE.R. ShabanovP.D. Expression of the growth hormone secretagogue receptor 1a (GHS‐R1a) in the brain.Physiol. Rep.2021921e1511310.14814/phy2.15113 34755494
    [Google Scholar]
  36. SakataI. TakemiS. Ghrelin-cell physiology and role in the gastrointestinal tract.Curr. Opin. Endocrinol. Diabetes Obes.202128223824210.1097/MED.0000000000000610 33394720
    [Google Scholar]
  37. KumaraswamyP.M. Precision medicine and antipsychotics in parkinson’s disease: A focus on MAO B pathway modulation.Curr. Psychopharmacol.20251310.2174/0122115560349319250330001147
    [Google Scholar]
  38. MohapatraT.K. NayakR.R. Ganeshpurkar, A Navigating the treatment landscape of Alzheimer’s disease: Current strategies and future directions.IBRAIN2025202512310.1002/ibra.12197
    [Google Scholar]
  39. JeonS.G. HongS.B. NamY. TaeJ. YooA. SongE.J. KimK.I. LeeD. ParkJ. LeeS.M. KimJ. MoonM. Ghrelin in Alzheimer’s disease: Pathologic roles and therapeutic implications.Ageing Res. Rev.20195510094510.1016/j.arr.2019.100945 31434007
    [Google Scholar]
  40. Cuadrado-TejedorM. Pérez-GonzálezM. Alfaro-RuizR. BadessoS. SucunzaD. EspelosinM. UrsúaS. Lachen-MontesM. Fernández-IrigoyenJ. SantamariaE. LujánR. García-OstaA. Amyloid-driven tau accumulation on mitochondria potentially leads to cognitive deterioration in Alzheimer’s disease.Int. J. Mol. Sci.202122211195010.3390/ijms222111950 34769380
    [Google Scholar]
  41. IliyasuM.O. MusaS.A. OladeleS.B. IliyaA.I. Amyloid-beta aggregation implicates multiple pathways in Alzheimer’s disease: Understanding the mechanisms.Front. Neurosci.202317108193810.3389/fnins.2023.1081938 37113145
    [Google Scholar]
  42. AlroujiM. AlshammariM.S. TasqeeruddinS. ShamsiA. Interplay between aging and tau pathology in Alzheimer’s disease: mechanisms and translational perspectives.Antioxidants202514777410.3390/antiox14070774 40722878
    [Google Scholar]
  43. ZhangX. WangJ. ZhangZ. YeK. Tau in neurodegenerative diseases: Molecular mechanisms, biomarkers, and therapeutic strategies.Transl. Neurodegener.20241314010.1186/s40035‑024‑00429‑6 39107835
    [Google Scholar]
  44. WeiY. HanC. WangY. WuB. SuT. LiuY. HeR. Ribosylation triggering A lzheimer’s disease‐like T au hyperphosphorylation via activation of C a MKII.Aging Cell201514575476310.1111/acel.12355 26095350
    [Google Scholar]
  45. ChenY. CaoC.P. LiC.R. WangW. ZhangD. HanL.L. ZhangX.Q. KimA. KimS. LiuG.L. Ghrelin modulates insulin sensitivity and tau phosphorylation in high glucose-induced hippocampal neurons.Biol. Pharm. Bull.20103371165116910.1248/bpb.33.1165 20606308
    [Google Scholar]
  46. ChenJ.H. HuangS.M. ChenC.C. TsaiC.F. YehW.L. ChouS.J. HsiehW.T. LuD.Y. Ghrelin induces cell migration through GHS-R, CaMKII, AMPK, and NF-κB signaling pathway in glioma cells.J. Cell. Biochem.2011112102931294110.1002/jcb.23209 21630326
    [Google Scholar]
  47. LiT. ShiH. ZhaoY. Acetaldehyde induces tau phosphorylation via activation of p38 MAPK/JNK and ROS production.Mol. Cell. Toxicol.202218331132010.1007/s13273‑021‑00193‑y
    [Google Scholar]
  48. BresslerS.G. GrunhausD. AviramA. RüdigerS.G.D. HurevichM. FriedlerA. Specific phosphorylation patterns control the interplay between aggregation and condensation of Tau-R4 peptides.Org. Biomol. Chem.202523296912692310.1039/D5OB00885A 40567043
    [Google Scholar]
  49. DruckerD.J. HolstJ.J. The expanding incretin universe: From basic biology to clinical translation.Diabetologia202366101765177910.1007/s00125‑023‑05906‑7 36976349
    [Google Scholar]
  50. RowlandsJ. HengJ. NewsholmeP. CarlessiR. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function.Front. Endocrinol. (Lausanne)2018967210.3389/fendo.2018.00672 30532733
    [Google Scholar]
  51. NauckM.A. QuastD.R. WefersJ. MeierJ.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art.Mol. Metab.20214610110210.1016/j.molmet.2020.101102 33068776
    [Google Scholar]
  52. Yildirim SimsirI. SoyaltinU.E. CetinkalpS. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease.Diabetes Metab. Syndr.201812346947510.1016/j.dsx.2018.03.002 29598932
    [Google Scholar]
  53. AthaudaD. FoltynieT. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action.Drug Discov. Today201621580281810.1016/j.drudis.2016.01.013 26851597
    [Google Scholar]
  54. MaskeryM.P. HolscherC. JonesS.P. PriceC.I. StrainW.D. WatkinsC.L. WerringD.J. EmsleyH.C.A. Glucagon-like peptide-1 receptor agonists as neuroprotective agents for ischemic stroke: A systematic scoping review.J. Cereb. Blood Flow Metab.2021411143010.1177/0271678X20952011 32954901
    [Google Scholar]
  55. PsilopanagiotiA. NikouS. LogothetiS. ArbiM. ChartoumpekisD.V. PapadakiH. Glucagon-like peptide-1 receptor in the human hypothalamus is associated with body mass index and colocalizes with the anorexigenic neuropeptide nucleobindin-2/nesfatin-1.Int. J. Mol. Sci.202223231489910.3390/ijms232314899 36499229
    [Google Scholar]
  56. NizariS. BasalayM. ChapmanP. KorteN. KorsakA. ChristieI.N. GLP-1 receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates neuroprotection against ischemic stroke.Basic Res. Cardiol.202111613210.1007/s00395‑021‑00873‑9 33942194
    [Google Scholar]
  57. GenglerS. McCleanP.L. McCurtinR. GaultV.A. HölscherC. Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice.Neurobiol. Aging201233226527610.1016/j.neurobiolaging.2010.02.014 20359773
    [Google Scholar]
  58. CaiX. SheM. XuM. ChenH. LiJ. ChenX. ZhengD. LiuJ. ChenS. ZhuJ. XuX. LiR. LiJ. ChenS. YangX. LiH. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction.Int. J. Biol. Sci.201814121696170810.7150/ijbs.27774 30416384
    [Google Scholar]
  59. SpielmanL.J. GibsonD.L. KlegerisA. Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors.Eur. J. Cell Biol.201796324025310.1016/j.ejcb.2017.03.004 28336086
    [Google Scholar]
  60. RahmanM.A. RahmanM.D.H. RhimH. KimB. Drug targets to alleviate mitochondrial dysfunctions in Alzheimer’s disease: Recent advances and therapeutic implications.Curr. Neuropharmacol.202422121942195910.2174/1570159X22666240426091311 39234772
    [Google Scholar]
  61. AnF.M. ChenS. XuZ. YinL. WangY. LiuA.R. YaoW.B. GaoX.D. Glucagon-like peptide-1 regulates mitochondrial biogenesis and tau phosphorylation against advanced glycation end product-induced neuronal insult: Studies in vivo and in vitro.Neuroscience2015300758410.1016/j.neuroscience.2015.05.023 25987199
    [Google Scholar]
  62. PerryT. HaugheyN.J. MattsonM.P. EganJ.M. GreigN.H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4.J. Pharmacol. Exp. Ther.2002302388188810.1124/jpet.102.037481 12183643
    [Google Scholar]
  63. ChenS. YinL. XuZ. AnF.M. LiuA.R. WangY. YaoW.B. GaoX.D. Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis.Neurosci. Lett.201661219319810.1016/j.neulet.2015.12.007 26679229
    [Google Scholar]
  64. Vargas-SoriaM. Carranza-NavalM.J. del MarcoA. Garcia-AllozaM. Role of liraglutide in Alzheimer’s disease pathology.Alzheimers Res. Ther.202113111210.1186/s13195‑021‑00853‑0 34118986
    [Google Scholar]
  65. XuW. YangY. YuanG. ZhuW. MaD. HuS. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes.J. Investig. Med.201563226727210.1097/JIM.0000000000000129 25479064
    [Google Scholar]
  66. AchariA. JainS. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction.Int. J. Mol. Sci.2017186132110.3390/ijms18061321 28635626
    [Google Scholar]
  67. BloemerJ. PinkyP.D. GovindarajuluM. HongH. JuddR. AminR.H. MooreT. DhanasekaranM. ReedM.N. SuppiramaniamV. Role of adiponectin in central nervous system disorders.Neural Plast.2018201811510.1155/2018/4593530 30150999
    [Google Scholar]
  68. RizzoM.R. FasanoR. PaolissoG. Adiponectin and cognitive decline.Int. J. Mol. Sci.2020216201010.3390/ijms21062010 32188008
    [Google Scholar]
  69. RyuJ. HadleyJ.T. LiZ. DongF. XuH. XinX. ZhangY. ChenC. LiS. GuoX. ZhaoJ.L. LeachR.J. Abdul-GhaniM.A. DeFronzoR.A. KamatA. LiuF. DongL.Q. Adiponectin alleviates diet-induced inflammation in the liver by suppressing MCP-1 expression and macrophage infiltration.Diabetes20217061303131610.2337/db20‑1073 34162682
    [Google Scholar]
  70. MuratsuJ. KamideK. FujimotoT. TakeyaY. SugimotoK. TaniyamaY. MorishimaA. SakaguchiK. MatsuzawaY. RakugiH. The combination of high levels of adiponectin and insulin resistance are affected by aging in non-obese older adults.Front. Endocrinol. (Lausanne)20221280524410.3389/fendo.2021.805244 35069451
    [Google Scholar]
  71. YoonM.J. LeeG.Y. ChungJ.J. AhnY.H. HongS.H. KimJ.B. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMPK, p38 MAPK, and PPARα.Diabetes20217092562257010.2337/db05‑1322 16936205
    [Google Scholar]
  72. HanX.J. HuY.Y. YangZ.J. JiangL.P. ShiS.L. LiY.R. GuoM.Y. WuH.L. WanY.Y. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria.Mol. Med. Rep.20171644521452810.3892/mmr.2017.7203 28849115
    [Google Scholar]
  73. SamantN.P. GuptaG.L. Adiponectin: A potential target for obesity-associated Alzheimer’s disease.Metab. Brain Dis.20213671565157210.1007/s11011‑021‑00756‑x 34047927
    [Google Scholar]
  74. HardieD.G. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function.Genes Dev.201125181895190810.1101/gad.17420111 21937710
    [Google Scholar]
  75. SabioG. DavisR.J. TNF and MAP kinase signalling pathways.Semin. Immunol.201426323724510.1016/j.smim.2014.02.009 24647229
    [Google Scholar]
  76. SchönM. KovaničováZ. KošutzkáZ. NemecM. TomkováM. JackováL. MáderováD. SlobodováL. ValkovičP. UkropecJ. UkropcováB. Effects of running on adiponectin, insulin and cytokines in cerebrospinal fluid in healthy young individuals.Sci. Rep.201991195910.1038/s41598‑018‑38201‑2 30760755
    [Google Scholar]
  77. NgR.C.L. ChengO.Y. JianM. KwanJ.S.C. HoP.W.L. ChengK.K.Y. YeungP.K.K. ZhouL.L. HooR.L.C. ChungS.K. XuA. LamK.S.L. ChanK.H. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice.Mol. Neurodegener.20161117110.1186/s13024‑016‑0136‑x 27884163
    [Google Scholar]
  78. KimJ.Y. BaruaS. JeongY.J. LeeJ.E. Adiponectin: the potential regulator and therapeutic target of obesity and Alzheimer’s disease.Int. J. Mol. Sci.20202117641910.3390/ijms21176419 32899357
    [Google Scholar]
  79. BrayG.A. HeiselW.E. AfshinA. JensenM.D. DietzW.H. LongM. KushnerR.F. DanielsS.R. WaddenT.A. TsaiA.G. HuF.B. JakicicJ.M. RyanD.H. WolfeB.M. IngeT.H. The science of obesity management: An Endocrine Society scientific statement.Endocr. Rev.20183927913210.1210/er.2017‑00253 29518206
    [Google Scholar]
  80. AshrafR. KhanM.S. LoneS.S. BhatM.H. RashidS. MajidS. BashirH. Implication of leptin and leptin receptor gene variations in type 2 diabetes mellitus: a case-control study.J. Endocrinol. Metab.2022121193110.14740/jem785
    [Google Scholar]
  81. MejidoD.C.P. PenyJ.A. VieiraM.N.N. FerreiraS.T. De FeliceF.G. Insulin and leptin as potential cognitive enhancers in metabolic disorders and Alzheimer’s disease.Neuropharmacology202017110811510.1016/j.neuropharm.2020.108115 32344008
    [Google Scholar]
  82. PanW.W. MyersM.G. Leptin and the maintenance of elevated body weight.Nat. Rev. Neurosci.20181929510510.1038/nrn.2017.168 29321684
    [Google Scholar]
  83. FlakJ.N. MyersM.G. Minireview: CNS mechanisms of leptin action.Mol. Endocrinol.201630131210.1210/me.2015‑1232 26484582
    [Google Scholar]
  84. UpadhyayJ. FarrO.M. MantzorosC.S. The role of leptin in regulating bone metabolism.Metabolism201564110511310.1016/j.metabol.2014.10.021 25497343
    [Google Scholar]
  85. YadavA. KatariaM.A. SainiV. YadavA. Role of leptin and adiponectin in insulin resistance.Clin. Chim. Acta2013417808410.1016/j.cca.2012.12.007 23266767
    [Google Scholar]
  86. Paz-FilhoG. MastronardiC.A. LicinioJ. Leptin treatment: Facts and expectations.Metabolism201564114615610.1016/j.metabol.2014.07.014 25156686
    [Google Scholar]
  87. TrinhT. BroxmeyerH.E. Role for leptin and leptin receptors in stem cells during health and diseases.Stem Cell Rev. Rep.202117251152210.1007/s12015‑021‑10132‑y 33598894
    [Google Scholar]
  88. KadiriS.K. TiwariP. Unraveling the effects of SARS-CoV-2 on dementia: A comprehensive study.Coronaviruses20246110.2174/0126667975329888241010115929
    [Google Scholar]
  89. WadaN. HirakoS. TakenoyaF. KageyamaH. OkabeM. ShiodaS. Leptin and its receptors.J. Chem. Neuroanat.201461-6219119910.1016/j.jchemneu.2014.09.002 25218975
    [Google Scholar]
  90. HarveyJ. Novel leptin-based therapeutic strategies to limit synaptic dysfunction in Alzheimer’s disease.Int. J. Mol. Sci.20242513735210.3390/ijms25137352 39000459
    [Google Scholar]
  91. Schmidt-ArrasD. Rose-JohnS. Endosomes as signaling platforms for IL-6 family cytokine receptors.Front. Cell Dev. Biol.2021968831410.3389/fcell.2021.688314 34141712
    [Google Scholar]
  92. LowZ.Y. Wen YipA.J. ChowV.T.K. LalS.K. The suppressor of cytokine signalling family of proteins and their potential impact on COVID‐19 disease progression.Rev. Med. Virol.2022323e230010.1002/rmv.2300 34546610
    [Google Scholar]
  93. ParkH.K. AhimaR.S. Leptin signaling.F1000Prime Rep.201467310.12703/P6‑73 25343030
    [Google Scholar]
  94. HamiltonK. HarveyJ. The neuronal actions of leptin and the implications for treating Alzheimer’s disease.Pharmaceuticals20211415210.3390/ph14010052 33440796
    [Google Scholar]
  95. ChoudharyH.R. B, D.K.; Kadiri, S.K.; Khobragade, D.S.; Tiwari, P. Integrating Biosensors in phytochemical research: Challenges and breakthroughs.Recent Pat. Biotechnol.20252010.2174/0118722083381223250612181959
    [Google Scholar]
  96. DerkachK.V. SorokoumovV.N. BakhtyukovA.A. BondarevaV.M. ShpakovA.O. Insulin and leptin levels in blood and brain structures of rats with diet-induced obesity and the effect of various drugs on them.J. Evol. Biochem. Physiol.20225861892190410.1134/S0022093022060187
    [Google Scholar]
  97. WangY. ZhangL. ChenX. LiuJ. ZhaoY. XuH. Leptin transport across the blood-brain barrier: Role of ObRa and implications for obesity therapy.J. Neuroendocrinol.2023352e13212
    [Google Scholar]
  98. BergerC. KlötingN. Leptin receptor compound heterozygosity in humans and animal models.Int. J. Mol. Sci.2021229447510.3390/ijms22094475 33922961
    [Google Scholar]
  99. PanW. HsuchouH. HeY. SakharkarA. CainC. YuC. KastinA.J. Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice.Endocrinology200814962798280610.1210/en.2007‑1673 18292187
    [Google Scholar]
  100. FaouziM. LeshanR. BjörnholmM. HennesseyT. JonesJ. MünzbergH. Differential accessibility of circulating leptin to individual hypothalamic sites.Endocrinology2007148115414542310.1210/en.2007‑0655 17690165
    [Google Scholar]
  101. HilemanS.M. PierrozD.D. MasuzakiH. BjørbækC. El-HaschimiK. BanksW.A. FlierJ.S. Characterizaton of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity.Endocrinology2002143377578310.1210/endo.143.3.8669 11861497
    [Google Scholar]
  102. ScarpaceP.J. MathenyM. TümerN. Hypothalamic leptin resistance is associated with impaired leptin signal transduction in aged obese rats.Neuroscience200110441111111710.1016/S0306‑4522(01)00142‑7 11457594
    [Google Scholar]
  103. McGregorG. ClementsL. FarahA. IrvingA.J. HarveyJ. Age-dependent regulation of excitatory synaptic transmission at hippocampal temporoammonic-CA1 synapses by leptin.Neurobiol. Aging201869769310.1016/j.neurobiolaging.2018.05.007 29860205
    [Google Scholar]
  104. CunnaneS.C. TrushinaE. MorlandC. PrigioneA. CasadesusG. AndrewsZ.B. BealM.F. BergersenL.H. BrintonR.D. de la MonteS. EckertA. HarveyJ. JeggoR. JhamandasJ.H. KannO. la CourC.M. MartinW.F. MithieuxG. MoreiraP.I. MurphyM.P. NaveK.A. NurielT. OlietS.H.R. SaudouF. MattsonM.P. SwerdlowR.H. MillanM.J. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing.Nat. Rev. Drug Discov.202019960963310.1038/s41573‑020‑0072‑x 32709961
    [Google Scholar]
  105. GrecoS.J. BryanK.J. SarkarS. ZhuX. SmithM.A. AshfordJ.W. JohnstonJ.M. TezapsidisN. CasadesusG. Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer’s disease.J. Alzheimers Dis.20101941155116710.3233/JAD‑2010‑1308 20308782
    [Google Scholar]
  106. FarrS.A. BanksW.A. MorleyJ.E. Effects of leptin on memory processing.Peptides20062761420142510.1016/j.peptides.2005.10.006 16293343
    [Google Scholar]
  107. DohertyG.H. Beccano-KellyD. YanS.D. Gunn-MooreF.J. HarveyJ. Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid β.Neurobiol. Aging201334122623710.1016/j.neurobiolaging.2012.08.003 22921154
    [Google Scholar]
  108. LiS. HongS. ShepardsonN.E. WalshD.M. ShankarG.M. SelkoeD. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake.Neuron200962678880110.1016/j.neuron.2009.05.012 19555648
    [Google Scholar]
  109. MalekizadehY. HolidayA. RedfearnD. AingeJ.A. DohertyG. HarveyJ. A leptin fragment mirrors the cognitive enhancing and neuroprotective actions of leptin.Cereb. Cortex201727104769478210.1093/cercor/bhw272 27600840
    [Google Scholar]
  110. ZhangY. WangY. LiJ. ChenX. LiuY. ZhaoY. Leptin-derived peptide analogs ameliorate obesity and metabolic dysfunction in ob/ob mice via hypothalamic AMPK signaling.Int. J. Obes.2023475789798
    [Google Scholar]
  111. HundleyW.G. KitzmanD.W. MorganT.M. HamiltonC.A. DartyS.N. StewartK.P. HerringtonD.M. LinkK.M. LittleW.C. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance.J. Am. Coll. Cardiol.200138379680210.1016/S0735‑1097(01)01447‑4 11527636
    [Google Scholar]
  112. GaoL. ZhangY. SterlingK. SongW. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential.Transl. Neurodegener.2022111410.1186/s40035‑022‑00279‑0 35090576
    [Google Scholar]
  113. FukushimaY. SatoY. YamadaT. NakamuraK. TanakaH. YamamotoT. Nanomicelle-mediated delivery of BDNF mRNA promotes neuroprotection and functional recovery in ischemic rat brain.Biomaterials2022287121652
    [Google Scholar]
  114. NumakawaT. KajiharaR. The role of brain-derived neurotrophic factor as an essential mediator in neuronal functions and the therapeutic potential of its mimetics for neuroprotection.Molecules202530484810.3390/molecules30040848 40005159
    [Google Scholar]
  115. WangL. GuS. GanJ. TianY. ZhangF. ZhaoH. LeiD. Neural stem cells overexpressing nerve growth factor improve functional recovery in rats following spinal cord injury via modulating microenvironment and enhancing endogenous neurogenesis.Front. Cell. Neurosci.20211577337510.3389/fncel.2021.773375 34924958
    [Google Scholar]
  116. NagaharaA.H. MerrillD.A. CoppolaG. TsukadaS. SchroederB.E. ShakedG.M. WangL. BleschA. KimA. ConnerJ.M. RockensteinE. ChaoM.V. KooE.H. GeschwindD. MasliahE. ChibaA.A. TuszynskiM.H. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease.Nat. Med.200915333133710.1038/nm.1912 19198615
    [Google Scholar]
  117. LucaciA.G. NotarasM.J. Kosakovsky PondS.L. ColakD. The evolution of BDNF is defined by strict purifying selection and prodomain spatial coevolution, but what does it mean for human brain disease?Transl. Psychiatry202212125810.1038/s41398‑022‑02021‑w 35732627
    [Google Scholar]
  118. Kasemeier-KulesaJ.C. MorrisonJ.A. LefcortF. KulesaP.M. TrkB/BDNF signalling patterns the sympathetic nervous system.Nat. Commun.201561828110.1038/ncomms9281 26404565
    [Google Scholar]
  119. HarwardS.C. HedrickN.G. HallC.E. Parra-BuenoP. MilnerT.A. PanE. LavivT. HempsteadB.L. YasudaR. McNamaraJ.O. Autocrine BDNF–TrkB signalling within a single dendritic spine.Nature201653876239910310.1038/nature19766 27680698
    [Google Scholar]
  120. MinichielloL. CalellaA.M. MedinaD.L. BonhoefferT. KleinR. KorteM. Mechanism of TrkB-mediated hippocampal long-term potentiation.Neuron200236112113710.1016/S0896‑6273(02)00942‑X 12367511
    [Google Scholar]
  121. RevestJ-M. Le RouxA. Roullot-LacarrièreV. KaouaneN. ValléeM. KasanetzF. Rougé-PontF. TroncheF. DesmedtA. PiazzaP.V. BDNF-TrkB signaling through Erk1/2MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids.Mol. Psychiatry20141991001100910.1038/mp.2013.134 24126929
    [Google Scholar]
  122. HockC. HeeseK. HuletteC. RosenbergC. OttenU. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas.Arch. Neurol.200057684685110.1001/archneur.57.6.846 10867782
    [Google Scholar]
  123. Álvarez CastilloA. Rodríguez AlfaroJ.M. Salas BozaA. Influence of Alzheimer’s disease on synaptic neurotransmission systems.Medical Synergy Magazine202054e44210.31434/rms.v5i4.442
    [Google Scholar]
  124. Abreu-VillaçaY. FilgueirasC.C. ManhãesA.C. Developmental aspects of the cholinergic system.Behav. Brain Res.2011221236737810.1016/j.bbr.2009.12.049 20060019
    [Google Scholar]
  125. BersonA. KnoblochM. HananM. DiamantS. SharoniM. SchuppliD. GeyerB.C. RavidR. MorT.S. NitschR.M. SoreqH. Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology.Brain2008131Pt 1109119 18056160
    [Google Scholar]
  126. GeethaS. RamachandranV. Assessment of cholinesterase activity in Alzheimer disease.Int. J. Mod Agric.2023104847856
    [Google Scholar]
  127. DinamarcaM.C. SagalJ.P. QuintanillaR.A. GodoyJ.A. ArrázolaM.S. InestrosaN.C. Amyloid-β-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.201051410.1186/1750‑1326‑5‑4 20205793
    [Google Scholar]
  128. KadiriS.K. TiwariP. Integrating traditional medicine with network pharmacology for Alzheimer’s treatment. Health.Sci. Rev. (Oxf)20251510022310.1016/j.hsr.2025.100223
    [Google Scholar]
  129. GajendraK. PratapG.K. PoornimaD.V. ShantaramM. RanjitaG. Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer’s disease.Eur J. Med. Chem. Rep20241110015410.1016/j.ejmcr.2024.100154
    [Google Scholar]
  130. NagoriK. NakhateK.T. YadavK. Ajazuddin; Pradhan, M. Unlocking the therapeutic potential of medicinal plants for Alzheimer’s disease: Preclinical to clinical trial insights.Future Pharmacol.20233487790710.3390/futurepharmacol3040053
    [Google Scholar]
  131. ChengZ. HanT. YaoJ. WangK. DongX. YuF. HuangH. HanM. LiaoQ. HeS. LyuW. LiQ. Targeting glycogen synthase kinase-3β for Alzheimer’s disease: Recent advances and future Prospects.Eur. J. Med. Chem.202426511606510.1016/j.ejmech.2023.116065 38160617
    [Google Scholar]
  132. DimitrovM. AlattiaJ.R. LemminT. LehalR. FligierA. HouacineJ. HussainI. RadtkeF. Dal PeraroM. BeherD. FraeringP.C. Alzheimer’s disease mutations in APP but not γ-secretase modulators affect epsilon-cleavage-dependent AICD production.Nat. Commun.201341224610.1038/ncomms3246 23907250
    [Google Scholar]
  133. LyP.T.T. WuY. ZouH. WangR. ZhouW. KinoshitaA. ZhangM. YangY. CaiF. WoodgettJ. SongW. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes.J. Clin. Invest.2013123122423510.1172/JCI64516 23202730
    [Google Scholar]
  134. LaurettiE. DincerO. PraticòD. Glycogen synthase kinase-3 signaling in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Cell Res.20201867511866410.1016/j.bbamcr.2020.118664 32006534
    [Google Scholar]
  135. AryaR. JainS. PaliwalS. MadanK. SharmaS. MishraA. TiwariP. KadiriS.K. BACE1 inhibitors: A promising therapeutic approach for the management of Alzheimer’s disease.Asian Pac. J. Trop. Biomed.202414936938110.4103/apjtb.apjtb_192_24
    [Google Scholar]
  136. SayasC.L. ÁvilaJ. GSK-3 and Tau: A key duet in Alzheimer’s disease.Cells202110472110.3390/cells10040721 33804962
    [Google Scholar]
  137. YuH. XiongM. ZhangZ. The role of glycogen synthase kinase 3 beta in neurodegenerative diseases.Front. Mol. Neurosci.202316120970310.3389/fnmol.2023.1209703 37781096
    [Google Scholar]
  138. de PaulaH. SouzaF. FerreiraL. SilvaJ.A.B. RibeiroR. VilachãJ. EmeryF.S. LacerdaV. MoraisP.A.B. Semisynthetic flavonoids as GSK-3β inhibitors: computational methods and enzymatic assay.Targets2025321310.3390/targets3020013
    [Google Scholar]
  139. KimE.K. ChoiE.J. Pathological roles of MAPK signaling pathways in human diseases.Biochim. Biophys. Acta Mol. Basis Dis.20101802439640510.1016/j.bbadis.2009.12.009 20079433
    [Google Scholar]
  140. WangJ.Z. LiuF. Microtubule-associated protein tau in development, degeneration and protection of neurons.Prog. Neurobiol.200885214817510.1016/j.pneurobio.2008.03.002 18448228
    [Google Scholar]
  141. TonniesE. TrushinaE. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease.J. Alzheimers Dis.20218141411142810.3233/JAD‑210167 28059794
    [Google Scholar]
  142. WangY. MandelkowE. Tau in physiology and pathology.Nat. Rev. Neurosci.2016171223510.1038/nrn.2015.1 26631930
    [Google Scholar]
  143. ButterfieldD.A. Boyd-KimballD. Oxidative stress, amyloid-β peptide, and Alzheimer’s disease: A 2023 update.Antioxid. Redox Signal.2023387-952954610.1089/ars.2022.0123 36017629
    [Google Scholar]
  144. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  145. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  146. GonzalezA. SinghS.K. ChaviraA. MasonB.N. Alzheimer’s disease and tauopathy: Molecular mechanisms and therapeutic approaches.Neurotherapeutics2024211e0029610.1016/j.neurot.2023.e00296 38241158
    [Google Scholar]
  147. LiuJ. LiuY. LiY. WangX. ZhangQ. ChenG. Role of JNK signaling pathway in Alzheimer’s disease: Therapeutic implications.Front. Aging Neurosci.20221488381110.3389/fnagi.2022.883811
    [Google Scholar]
  148. ChenY. HuangX. ZhangY.W. XuJ. BuG. Calcium-sensing receptor (CaSR) in the pathogenesis of Alzheimer’s disease.Transl. Neurodegener.2023121910.1186/s40035‑023‑00341‑2 36850004
    [Google Scholar]
  149. PereaJ.R. BolósM. AvilaJ. Tau protein in Alzheimer’s disease: Aggregation, function, and therapeutic targeting.Int. J. Mol. Sci.2024257405910.3390/ijms25074059 38612868
    [Google Scholar]
  150. AlmansoubH.A. Al-kuraishyH.M. Al-GareebA.I. AlshammariM. BatihaG.E. Cruz-MartinsN. Mitogen-activated protein kinase inhibitors in Alzheimer’s disease: therapeutic insights from animal and human studies.Mol. Neurobiol.20246185742575910.1007/s12035‑024‑03971‑8
    [Google Scholar]
  151. GeeM.S. SonS.H. JeonS.H. DoJ. KimN. JuY.J. LeeS.J. ChungE.K. InnK.S. KimN.J. LeeJ.K. A selective p38α/β MAPK inhibitor alleviates neuropathology and cognitive impairment, and modulates microglia function in 5XFAD mouse.Alzheimers Res. Ther.20201214510.1186/s13195‑020‑00617‑2 32317025
    [Google Scholar]
  152. WangL. LiuJ. WangX. ZhangY. ChenG. Targeting p38 MAPK for Alzheimer’s disease: Therapeutic potential and mechanisms.J. Neurochem.2024161645146710.1111/jnc.16072
    [Google Scholar]
  153. Montoliu-GayaL. VillegasS. Protein structures in Alzheimer’s disease: The basis for rationale therapeutic design.Arch. Biochem. Biophys.201558811410.1016/j.abb.2015.10.005 26475676
    [Google Scholar]
  154. TundoG.R. SbardellaD. CiaccioC. GrassoG. GioiaM. ColettaA. PolticelliF. Di PierroD. MilardiD. Van EndertP. MariniS. ColettaM. Multiple functions of insulin-degrading enzyme: A metabolic crosslight?Crit. Rev. Biochem. Mol. Biol.201752555458210.1080/10409238.2017.1337707 28635330
    [Google Scholar]
  155. ŻukowskaJ. MossS.J. SubramanianV. AcharyaK.R. Molecular basis of selective amyloid‐β degrading enzymes in Alzheimer’s disease.FEBS Lett.20235972027032721 37622248
    [Google Scholar]
  156. AzamM.S. WahiduzzamanM. Reyad-ul-FerdousM. IslamM.N. RoyM. Inhibition of insulin-degrading enzyme to control diabetes mellitus and its applications on some other chronic disease: A critical review.Pharm. Res.202239461162910.1007/s11095‑022‑03237‑7 35378698
    [Google Scholar]
  157. VishnumurthyR.H. PriyaM.G.R. TiwariP. SolomonV.R. Cognitive improvement effects of polymer-based microencapsulated celecoxib in a rat model of alzheimer’s disease.Russ. J. Bioorganic Chem.20245062312232410.1134/S1068162024060189
    [Google Scholar]
  158. LeissringM.A. LiuY. Degradation of amyloid β-protein by insulin-degrading enzyme.Front. Aging Neurosci.202113662471
    [Google Scholar]
  159. ZhangY. SongW. γ-Secretase modulators as therapeutic strategies for Alzheimer’s disease.J. Neurochem.2023166216518010.1111/jnc.15845
    [Google Scholar]
  160. YangG. ZhouR. GuoW. ShiY. ChenL. Structural insights and activation mechanisms of γ-secretase in Alzheimer’s disease.Cell. Mol. Life Sci.202481113210.1007/s00018‑024‑05174‑6 38472446
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002408089250912080734
Loading
/content/journals/cdm/10.2174/0113892002408089250912080734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test