Skip to content
2000
image of Shenfu Decoction Extends Survival Time of Seawater-Induced Hypothermia in Rats: The Role of Metabolomics and Gut Microbiota

Abstract

Introduction

Shenfu decoction (SFD), a Traditional Chinese Medicine formula, is used in clinical emergencies. Its effects on seawater-induced hypothermia remain unclear. This study investigates the therapeutic mechanisms of SFD in improving the survival of hypothermic rats through metabolomics and gut microbiota analysis.

Methods

Hypothermia was induced in rats seawater immersion. The chemical constituents of SFD were analyzed using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Survival time and rates of low-temperature water-immersed rats were assessed. Rat blood samples were obtained for analysis of hematologic parameters, electrolytes, hepatic and renal function, cardiac injury, and inflammatory cytokines. To investigate the potential mechanism underlying the survival-prolonging effect of SFD on seawater-immersed hypothermic rats, untargeted blood metabolomics and gut microbiota profiling were employed for preliminary screening.

Results

UPLC-Q-TOF-MS identified almost 50 compounds in SFD, and 1.35 g/kg SFD significantly extended the survival time of seawater-induced hypothermia rats by 6 hours. After hypothermic seawater immersion, the levels of red blood cells, hemoglobin, hematocrit, as well as serum calcium, phosphorus, blood urea nitrogen, alkaline phosphatase, total protein, cardiac troponin T, and interleukin-6 were significantly increased. However, pretreatment with 1.35 g/kg SFD in rats markedly decreased these parameters. The induction of hypothermic seawater immersion elevated blood glucose, and the administration of SFD exacerbated this increase in rats. Metabolomic analysis revealed elevated levels of valerenic acid and benzoylmesaconine in the SFD group, suggesting the restoration of metabolic homeostasis. This recovery was associated with modulation of the gut microbiota, notably an enhancement of beneficial genera, such as Enterococcus.

Discussion

The findings demonstrated that SFD significantly prolonged survival in a rat model of seawater-immersion hypothermia. The protective mechanism involved a dual action: mitigating hypothermia-induced organ damage and hematological disturbances, coupled with restoring metabolic homeostasis and modulating gut microbiota. SFD has been found to possess specifically enriched beneficial bacterial genera, linked to the activation of brown adipose tissue and non-shivering thermogenesis. This study has provided initial evidence for a gut microbiota-metabolism axis mediating SFD's protective effect.

Conclusion

SFD prolonged survival in rats with seawater-induced hypothermia, likely by enhancing thermogenesis and regulating lipid metabolism through gut microbiota changes. The findings highlighted the potential of SFD for hypothermia prevention; however, its exact underlying mechanisms require further validation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002403722251122095723
2026-01-20
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cdm/10.2174/0113892002403722251122095723/BMS-CDM-2025-HT63-6891-1.html?itemId=/content/journals/cdm/10.2174/0113892002403722251122095723&mimeType=html&fmt=ahah

References

  1. Okada Y. Matsuyama T. Hayashida K. Takauji S. Kanda J. Yokobori S. External validation of 5A score model for predicting in-hospital mortality among the accidental hypothermia patients: JAAM-Hypothermia study 2018–2019 secondary analysis. J. Intensive Care 2022 10 1 24 10.1186/s40560‑022‑00616‑5 35619190
    [Google Scholar]
  2. Brown D.J.A. Brugger H. Boyd J. Paal P. Accidental Hypothermia. N. Engl. J. Med. 2012 367 20 1930 1938 10.1056/NEJMra1114208 23150960
    [Google Scholar]
  3. Stickley A. Baburin A. Jasilionis D. Krumins J. Martikainen P. Kondo N. Shin J.I. Oh H. Waldman K. Leinsalu M. Educational inequalities in hypothermia mortality in the Baltic countries and Finland in 2000–15. Eur. J. Public Health 2023 33 4 555 560 10.1093/eurpub/ckad062 37094965
    [Google Scholar]
  4. Zhao Q. Guo Y. Ye T. Gasparrini A. Tong S. Overcenco A. Urban A. Schneider A. Entezari A. Vicedo-Cabrera A.M. Zanobetti A. Analitis A. Zeka A. Tobias A. Nunes B. Alahmad B. Armstrong B. Forsberg B. Pan S.C. Íñiguez C. Ameling C. De la Cruz Valencia C. Åström C. Houthuijs D. Dung D.V. Royé D. Indermitte E. Lavigne E. Mayvaneh F. Acquaotta F. de’Donato F. Di Ruscio F. Sera F. Carrasco-Escobar G. Kan H. Orru H. Kim H. Holobaca I.H. Kyselý J. Madureira J. Schwartz J. Jaakkola J.J.K. Katsouyanni K. Hurtado Diaz M. Ragettli M.S. Hashizume M. Pascal M. de Sousa Zanotti Stagliorio Coélho M. Valdés Ortega N. Ryti N. Scovronick N. Michelozzi P. Matus Correa P. Goodman P. Nascimento Saldiva P.H. Abrutzky R. Osorio S. Rao S. Fratianni S. Dang T.N. Colistro V. Huber V. Lee W. Seposo X. Honda Y. Guo Y.L. Bell M.L. Li S. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study. Lancet Planet. Health 2021 5 7 e415 e425 10.1016/S2542‑5196(21)00081‑4 34245712
    [Google Scholar]
  5. Paal P. Pasquier M. Darocha T. Lechner R. Kosinski S. Wallner B. Zafren K. Brugger H. Accidental Hypothermia: 2021 Update. Int. J. Environ. Res. Public Health 2022 19 1 501 10.3390/ijerph19010501 35010760
    [Google Scholar]
  6. Berglund S. Döös K. Groeskamp S. McDougall T.J. The downward spiralling nature of the North Atlantic Subtropical Gyre. Nat. Commun. 2022 13 1 2000 10.1038/s41467‑022‑29607‑8 35422049
    [Google Scholar]
  7. Xiong J. Qiang H. Li T. Zhao J. Wang Z. Li F. Xu J. Human adipose-derived stem cells promote seawater-immersed wound healing via proangiogenic effects. Aging 2021 13 13 17118 17136 10.18632/aging.202773 33819183
    [Google Scholar]
  8. Liu K.L. Yu X.J. Sun T.Z. Wang Y.C. Chen M.X. Su Y.W. Zhang H.C. Chen Y.M. Gao H.L. Shi X.L. Qi J. Li Y. Li H.B. Dong W.J. He J.K. Kang Y.M. Effects of seawater immersion on open traumatic brain injury in rabbit model. Brain Res. 2020 1743 146903 10.1016/j.brainres.2020.146903 32445716
    [Google Scholar]
  9. Jiang M. Li M. Gao Y. Wu L. Zhao W. Li C. Hou C. Qi Z. Wang K. Zheng S. Yin Z. Wu C. Ji X. The intra‐arterial selective cooling infusion system: A mathematical temperature analysis and in vitro experiments for acute ischemic stroke therapy. CNS Neurosci. Ther. 2022 28 9 1303 1314 10.1111/cns.13883 35702957
    [Google Scholar]
  10. Prekker M.E. Rischall M. Carlson M. Driver B.E. Touroutoutoudis M. Boland J. Hu M. Heather B. Simpson N.S. Extracorporeal membrane oxygenation versus conventional rewarming for severe hypothermia in an urban emergency department. Acad. Emerg. Med. 2023 30 1 6 15 10.1111/acem.14585 36000288
    [Google Scholar]
  11. Behringer W. Skrifvars M.B. Taccone F.S. Postresuscitation management. Curr. Opin. Crit. Care 2023 29 6 640 647 10.1097/MCC.0000000000001116 37909369
    [Google Scholar]
  12. Mindukshev I. Fock E. Dobrylko I. Sudnitsyna J. Gambaryan S. Panteleev M.A. Platelet hemostasis reactions at different temperatures correlate with intracellular calcium concentration. Int. J. Mol. Sci. 2022 23 18 10667 10.3390/ijms231810667 36142580
    [Google Scholar]
  13. Podsiadło P. Smoleń A. Brožek T. Kosiński S. Balik M. Hymczak H. Cools E. Walpoth B. Nowak E. Dąbrowski W. Miazgowski B. Witt-Majchrzak A. Jędrzejczak T. Reszka K. Segond N. Debaty G. Dudek M. Górski S. Darocha T. Extracorporeal rewarming is associated with increased survival rate in severely hypothermic patients with preserved spontaneous circulation. ASAIO J. 2023 69 8 749 755 10.1097/MAT.0000000000001935 37039862
    [Google Scholar]
  14. Dietrichs E.S. McGlynn K. Allan A. Connolly A. Bishop M. Burton F. Kettlewell S. Myles R. Tveita T. Smith G.L. Moderate but not severe hypothermia causes pro-arrhythmic changes in cardiac electrophysiology. Cardiovasc. Res. 2020 116 13 2081 2090 10.1093/cvr/cvz309 32031595
    [Google Scholar]
  15. He Y. Hu C. Liu S. Xu M. Liang G. Du D. Liu T. Cai F. Chen Z. Tan Q. Deng L. Xia Q. Anti-inflammatory effects and molecular mechanisms of shenmai injection in treating acute pancreatitis: Network pharmacology analysis and experimental verification. Drug Des. Devel. Ther. 2022 16 2479 2495 10.2147/DDDT.S364352 35941928
    [Google Scholar]
  16. Fan H. Su B. Le J. Zhu J. Salidroside protects acute kidney injury in septic rats by inhibiting inflammation and apoptosis. Drug Des. Devel. Ther. 2022 16 899 907 10.2147/DDDT.S361972 35386851
    [Google Scholar]
  17. Jin Y. Pang H. Zhao L. Zhao F. Cheng Z. Liu Q. Cui R. Yang W. Li B. Ginseng total saponins and Fuzi total alkaloids exert antidepressant-like effects in ovariectomized mice through BDNF-mTORC1, autophagy and peripheral metabolic pathways. Phytomedicine 2022 107 154425 10.1016/j.phymed.2022.154425 36137328
    [Google Scholar]
  18. Li X. Lin H. Wang Q. Cui L. Luo H. Luo L. Chemical composition and pharmacological mechanism of shenfu decoction in the treatment of novel coronavirus pneumonia (COVID-19). Drug Dev. Ind. Pharm. 2020 46 12 1947 1959 10.1080/03639045.2020.1826510 33054436
    [Google Scholar]
  19. Chen L. Yu D. Ling S. Xu J.W. Mechanism of tonifying-kidney Chinese herbal medicine in the treatment of chronic heart failure. Front. Cardiovasc. Med. 2022 9 988360 10.3389/fcvm.2022.988360 36172573
    [Google Scholar]
  20. Zhang H. Gao X. Chen P. Wang H. Protective effects of tiaoganquzhi decoction in treating inflammatory injury of nonalcoholic fatty liver disease by promoting CGI-58 and inhibiting expression of NLRP3 inflammasome. Front. Pharmacol. 2022 13 851267 10.3389/fphar.2022.851267 35586044
    [Google Scholar]
  21. Díez P. Pérez-Andrés M. Bøgsted M. Azkargorta M. García-Valiente R. Dégano R.M. Blanco E. Mateos-Gomez S. Bárcena P. Santa Cruz S. Góngora R. Elortza F. Landeira-Viñuela A. Juanes-Velasco P. Segura V. Manzano-Román R. Almeida J. Dybkaer K. Orfao A. Fuentes M. Dynamic intracellular metabolic cell signaling profiles during Ag-dependent B-cell differentiation. Front. Immunol. 2021 12 637832 10.3389/fimmu.2021.637832 33859640
    [Google Scholar]
  22. Liu P. Zhong L. Xiao J. Hu Y. Liu T. Ren Z. Wang Y. Zheng K. Ethanol extract from Artemisia argyi leaves inhibits HSV-1 infection by destroying the viral envelope. Virol. J. 2023 20 1 8 10.1186/s12985‑023‑01969‑5 36647143
    [Google Scholar]
  23. Deng M. Chen B. Liu Z. Wan Y. Li D. Yang Y. Wang F. YBX1 mediates alternative splicing and maternal mRNA decay during pre-implantation development. Cell Biosci. 2022 12 1 12 10.1186/s13578‑022‑00743‑4 35109938
    [Google Scholar]
  24. Chen S. Zhou Y. Chen Y. Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018 34 17 i884 i890 10.1093/bioinformatics/bty560 30423086
    [Google Scholar]
  25. Magoč T. Salzberg S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011 27 21 2957 2963 10.1093/bioinformatics/btr507 21903629
    [Google Scholar]
  26. Zhang C. Wang H. Yang X. Fu Z. Ji X. Shi Y. Zhong J. Hu W. Ye Y. Wang Z. Ni D. Oral zero-valent-molybdenum nanodots for inflammatory bowel disease therapy. Sci. Adv. 2022 8 37 eabp9882 10.1126/sciadv.abp9882 36112678
    [Google Scholar]
  27. Hong B.Y. Driscoll M. Gratalo D. Jarvie T. Weinstock G.M. Improved DNA extraction and amplification strategy for 16S rRNA gene amplicon-based microbiome studies. Int. J. Mol. Sci. 2024 25 5 2966 10.3390/ijms25052966 38474213
    [Google Scholar]
  28. Caudill M.T. Brayton K.A. The use and limitations of the 16S rRNA sequence for species classification of Anaplasma samples. Microorganisms 2022 10 3 605 10.3390/microorganisms10030605 35336180
    [Google Scholar]
  29. Ma J. Wang J. Jin X. Liu S. Tang S. Zhang Z. Long S. Piao X. Effect of dietary supplemented with mulberry leaf powder on growth performance, serum metabolites, antioxidant property and intestinal health of weaned piglets. Antioxidants 2023 12 2 307 10.3390/antiox12020307 36829865
    [Google Scholar]
  30. Zheng J. Zhang L. Gao Y. Wu H. Zhang J. The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice. Front. Nutr. 2022 9 941969 10.3389/fnut.2022.941969 35928844
    [Google Scholar]
  31. Breuninger T.A. Wawro N. Breuninger J. Reitmeier S. Clavel T. Six-Merker J. Pestoni G. Rohrmann S. Rathmann W. Peters A. Grallert H. Meisinger C. Haller D. Linseisen J. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome 2021 9 1 61 10.1186/s40168‑020‑00969‑9 33726846
    [Google Scholar]
  32. Wu X. Rensing C. Han D. Xiao K.Q. Dai Y. Tang Z. Liesack W. Peng J. Cui Z. Zhang F. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems 2022 7 1 e01107 e01121 10.1128/msystems.01107‑21 35014868
    [Google Scholar]
  33. Cheng J. Chen J. Liao J. Wang T. Shao X. Long J. Yang P. Li A. Wang Z. Lu X. Fan X. High-throughput transcriptional profiling of perturbations by Panax ginseng saponins and Panax notoginseng saponins using TCM-seq. J. Pharm. Anal. 2023 13 4 376 387 10.1016/j.jpha.2023.02.009 37181291
    [Google Scholar]
  34. Lee Y. Park A. Park Y.J. Jung H. Kim T.D. Noh J.Y. Choi I. Lee S. Ran Yoon S. Ginsenoside 20(R)-Rg3 enhances natural killer cell activity by increasing activating receptor expression through the MAPK/ERK signaling pathway. Int. Immunopharmacol. 2022 107 108618 10.1016/j.intimp.2022.108618 35219164
    [Google Scholar]
  35. Zhou J.C. Jin C.C. Wei X.L. Xu R.B. Wang R.Y. Zhang Z.M. Tang B. Yu J.M. Yu J.J. Shang S. Lv X.X. Hua F. Li P.P. Hu Z.W. Shen Y.M. Wang F.P. Ma X.Y. Cui B. Geng F.N. Zhang X.W. Mesaconine alleviates doxorubicin-triggered cardiotoxicity and heart failure by activating PINK1-dependent cardiac mitophagy. Front. Pharmacol. 2023 14 1118017 10.3389/fphar.2023.1118017 37124193
    [Google Scholar]
  36. Zhang J. Li D. Zhong D. Zhou Q. Yin Y. Gao J. Peng C. Processed lateral root of Aconitum carmichaelii Debx.: A review of cardiotonic effects and cardiotoxicity on molecular mechanisms. Front. Pharmacol. 2022 13 1026219 10.3389/fphar.2022.1026219 36324672
    [Google Scholar]
  37. Guseva K. Darcy S. Simon E. Alteio L.V. Montesinos-Navarro A. Kaiser C. From diversity to complexity: Microbial networks in soils. Soil Biol. Biochem. 2022 169 108604 10.1016/j.soilbio.2022.108604 35712047
    [Google Scholar]
  38. Yang Y. Ju Z. Yang Y. Zhang Y. Yang L. Wang Z. Phytochemical analysis of Panax species: A review. J. Ginseng Res. 2021 45 1 1 21 10.1016/j.jgr.2019.12.009 33437152
    [Google Scholar]
  39. Zhang F. Tang S. Zhao L. Yang X. Yao Y. Hou Z. Xue P. Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: Comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment. J. Ginseng Res. 2021 45 1 163 175 10.1016/j.jgr.2020.01.003 33437168
    [Google Scholar]
  40. Tang M.H. Peng F.L. Liu X.X. Chao R.B. Comparative pharmacokinetic investigation on multiple active aminoalcohol-diterpenoid alkaloids after single oral administrations of monomers and aqueous extract of Fuzi (Aconiti Lateralis Radix Praeparata) by UFLC-MS/MS. Planta Med. 2023 89 5 561 570 10.1055/a‑1984‑8515 36690020
    [Google Scholar]
  41. Hu J. Zhang L. Fu F. Lai Q. Zhang L. Liu T. Yu B. Kou J. Li F. Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy. J. Ginseng Res. 2022 46 2 255 265 10.1016/j.jgr.2021.06.011 35509816
    [Google Scholar]
  42. Mariadoss A.V.A. Park S. Saravanakumar K. Sathiyaseelan A. Wang M.H. Ethyl Acetate Fraction of Helianthus tuberosus L. Induces Anti-Diabetic, and Wound-Healing Activities in Insulin-Resistant Human Liver Cancer and Mouse Fibroblast Cells. Antioxidants 2021 10 1 99 10.3390/antiox10010099 33445702
    [Google Scholar]
  43. Rostomily K.A. Jones D.M. Pautz C.M. Ito D.W. Buono M.J. Haemoconcentration, not decreased blood temperature, increases blood viscosity during cold water immersion. Diving Hyperb. Med. 2020 50 1 24 27 10.28920/dhm50.1.24‑27 32187614
    [Google Scholar]
  44. Conn A.W. Miyasaka K. Katayama M. Fujita M. Orima H. Barker G. Bohn D. A canine study of cold water drowning in fresh versus salt water. Crit. Care Med. 1995 23 12 2029 2037 10.1097/00003246‑199512000‑00012 7497726
    [Google Scholar]
  45. Tu M.Y. Han K.Y. Chang G.R.L. Lai G.D. Chang K.Y. Chen C.F. Lai J.C. Lai C.Y. Chen H.L. Chen C.M. Kefir peptides prevent estrogen deficiency-induced bone loss and modulate the structure of the gut microbiota in ovariectomized mice. Nutrients 2020 12 11 3432 10.3390/nu12113432 33182364
    [Google Scholar]
  46. Fang J. Zeng L. He Y. Liu X. Zhang T. Wang Q. Effects of dietary tannic acid on obesity and gut microbiota in C57BL/6J mice fed with high-fat diet. Foods 2022 11 21 3325 10.3390/foods11213325 36359937
    [Google Scholar]
  47. Cui G. Liu S. Liu Z. Chen Y. Wu T. Lou J. Wang H. Zou Y. Sun Y. Rao B. Ren Z. Lian Y. Jiang Y. Gut microbiome distinguishes patients with epilepsy from healthy individuals. Front. Microbiol. 2022 12 696632 10.3389/fmicb.2021.696632 35069460
    [Google Scholar]
  48. Lott C. Truhlář A. Alfonzo A. Barelli A. González-Salvado V. Hinkelbein J. Nolan J.P. Paal P. Perkins G.D. Thies K.C. Yeung J. Zideman D.A. Soar J. Khalifa G.E.A. Álvarez E. Barelli R. Bierens J.J.L.M. Boettiger B. Brattebø G. Browne D. Brugger H. Darocha T. Deakin C.D. Dunning J. Hunyadi-Anticevic S. Koster R.W. Lockey D.J. Pasquier M. Schmitz J. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation 2021 161 152 219 10.1016/j.resuscitation.2021.02.011 33773826
    [Google Scholar]
  49. Dow J. Giesbrecht G.G. Danzl D.F. Brugger H. Sagalyn E.B. Walpoth B. Auerbach P.S. McIntosh S.E. Némethy M. McDevitt M. Schoene R.B. Rodway G.W. Hackett P.H. Zafren K. Bennett B.L. Grissom C.K. Wilderness medical society clinical practice guidelines for the out-of-hospital evaluation and treatment of accidental hypothermia: 2019 update. Wilderness Environ. Med. 2019 30 4 Suppl. S47 S69 10.1016/j.wem.2019.10.002 31740369
    [Google Scholar]
  50. Sugiyama K. Nomura O. Irie J. Ishizawa Y. Takauji S. Hayakawa M. Tamada Y. Hanada H. Effects of rewarming therapies on outcomes in accidental hypothermia: A secondary analysis of a multicenter prospective study. Am. J. Emerg. Med. 2024 79 91 96 10.1016/j.ajem.2024.02.014 38412669
    [Google Scholar]
  51. Bennett B.L. Giesbrect G. Zafren K. Christensen R. Littlejohn L.F. Drew B. Cap A.P. Miles E.A. Butler F.K. Holcomb J.B. Shackelford S.A. Management of hypothermia in tactical combat casualty care: TCCC guideline proposed change 20-01 (June 2020). J. Spec. Oper. Med. 2020 20 3 21 35 10.55460/QQ9R‑RR8A 32969001
    [Google Scholar]
  52. Tao L. Mo Z. Li Z. Li S. Luo Z. Li D. Wang D. Zhu W. Ding B. Efficacy and safety of shenfu injection on acute heart failure: A systematic review and meta-analysis. Phytomedicine 2023 110 154641 10.1016/j.phymed.2023.154641 36646027
    [Google Scholar]
  53. Wu Y. Li S. Li Z. Mo Z. Luo Z. Li D. Wang D. Zhu W. Ding B. Efficacy and safety of Shenfu injection for the treatment of post-acute myocardial infarction heart failure: A systematic review and meta-analysis. Front. Pharmacol. 2022 13 1027131 10.3389/fphar.2022.1027131 36506518
    [Google Scholar]
  54. Wang X. Miao H. Yan Y. Guo R. Gong W. He Y. Wang H. Ma X. Nie S. Effect of Shenfu injection on reperfusion injury in patients undergoing primary percutaneous coronary intervention for ST segment elevation myocardial infarction: A pilot randomized clinical trial. Front. Cardiovasc. Med. 2021 8 736526 10.3389/fcvm.2021.736526 34926601
    [Google Scholar]
  55. Jiang L. Chen Q. Bei M. Shao M. Xu J. Characterizing the tumor RBP-ncRNA circuits by integrating transcriptomics, interactomics and clinical data. Comput. Struct. Biotechnol. J. 2021 19 5235 5245 10.1016/j.csbj.2021.09.019 34630941
    [Google Scholar]
  56. Zhu Y. Li J. Peng L. Meng L. Diao M. Jiang S. Li J. Xie N. High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae. Microb. Cell Fact. 2022 21 1 230 10.1186/s12934‑022‑01949‑4 36335407
    [Google Scholar]
  57. Alamzeb M. Setzer W.N. Ali S. Khan B. Rashid M.U. Ihsanullah; Salman, S.M.; Adnan; Omer, M.; Ali, J.; Ullah, A. Spectral, anti-inflammatory, anti-pyretic, leishmanicidal, and molecular docking studies, against selected protein targets, of a new bisbenzylisoquinoline alkaloid. Front Chem. 2021 9 711190 10.3389/fchem.2021.711190 34976944
    [Google Scholar]
  58. Yang J. Sun Y. Chen J. Cheng Y. Zhang H. Gao T. Xu F. Pan S. Tao Y. Lu J. Fermentation of ginkgo biloba kernel juice using Lactobacillus plantarum Y2 from the ginkgo peel: Fermentation characteristics and evolution of phenolic profiles, antioxidant activities in vitro, and volatile flavor compounds. Front. Nutr. 2022 9 1025080 10.3389/fnut.2022.1025080 36386957
    [Google Scholar]
  59. Zhou X. Zou L. Deng H. Zhou Y. Wu Y. Ouyang X. Liu L. Wang L. Li T. Protective effects and mechanisms of inhibiting endoplasmic reticulum stress on cold seawater immersion combined with hemorrhagic shock. J. Inflamm. Res. 2024 17 4923 4940 10.2147/JIR.S469622 39070132
    [Google Scholar]
  60. Kander T. Schött U. Effect of hypothermia on haemostasis and bleeding risk: A narrative review. J. Int. Med. Res. 2019 47 8 3559 3568 10.1177/0300060519861469 31475619
    [Google Scholar]
  61. Chivers K. Accidental hypothermia: Pathophysiology, investigations and management. Emerg. Nurse 2022 10.7748/en.2022.e2147 36281752
    [Google Scholar]
  62. Li D. Ma W. Xiong M. Xie P. Feng Y. Liu D. Qiao Y. Shi C. Water rewarming after seawater hypothermia mitigates IL-1β in both intestinal tissue and blood. Ther. Hypothermia Temp. Manag. 2023 13 1 1 10 10.1089/ther.2021.0033 35731005
    [Google Scholar]
  63. Xu L. Chang C. Jiang P. Wei K. Zhang R. Jin Y. Zhao J. Xu L. Shi Y. Guo S. He D. Metabolomics in rheumatoid arthritis: Advances and review. Front. Immunol. 2022 13 961708 10.3389/fimmu.2022.961708 36032122
    [Google Scholar]
  64. Shen X. Wang R. Xiong X. Yin Y. Cai Y. Ma Z. Liu N. Zhu Z.J. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat. Commun. 2019 10 1 1516 10.1038/s41467‑019‑09550‑x 30944337
    [Google Scholar]
  65. Curtabbi A. Enríquez J.A. The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life 2022 74 7 629 644 10.1002/iub.2600 35166025
    [Google Scholar]
  66. da Silva-Araújo E.R. Toscano A.E. Silva P.B.P. Pereira dos Santos J. Junior Gouveia H.J.C.B. da Silva M.M. Souza V.S. de Freitas Silva S.R. Manhães-de-Castro R. Effects of deficiency or supplementation of riboflavin on energy metabolism: A systematic review with preclinical studies. Nutr. Rev. 2025 83 2 e332 e342 10.1093/nutrit/nuae041 38719205
    [Google Scholar]
  67. Yoval-Sánchez B. Ansari F. James J. Niatsetskaya Z. Sosunov S. Filipenko P. Tikhonova I.G. Ten V. Wittig I. Rafikov R. Galkin A. Redox-dependent loss of flavin by mitochondria complex I is different in brain and heart. Redox Biol. 2022 51 102258 10.1016/j.redox.2022.102258 35189550
    [Google Scholar]
  68. Korbecki J. Bosiacki M. Kupnicka P. Barczak K. Ziętek P. Chlubek D. Baranowska-Bosiacka I. Biochemistry and diseases related to the interconversion of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Int. J. Mol. Sci. 2024 25 19 10745 10.3390/ijms251910745 39409074
    [Google Scholar]
  69. Johnson J.M. Peterlin A.D. Balderas E. Sustarsic E.G. Maschek J.A. Lang M.J. Jara-Ramos A. Panic V. Morgan J.T. Villanueva C.J. Sanchez A. Rutter J. Lodhi I.J. Cox J.E. Fisher-Wellman K.H. Chaudhuri D. Gerhart-Hines Z. Funai K. Mitochondrial phosphatidylethanolamine modulates UCP1 to promote brown adipose thermogenesis. Sci. Adv. 2023 9 8 eade7864 10.1126/sciadv.ade7864 36827367
    [Google Scholar]
  70. Primrose M.T. Claypool S.M. Phosphatidylethanolamine. Trends Endocrinol. Metab. 2024 35 10 929 930 10.1016/j.tem.2024.06.011 39426372
    [Google Scholar]
  71. Schoeler M. Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019 20 4 461 472 10.1007/s11154‑019‑09512‑0 31707624
    [Google Scholar]
  72. Chevalier C. Stojanović O. Colin D.J. Suarez-Zamorano N. Tarallo V. Veyrat-Durebex C. Rigo D. Fabbiano S. Stevanović A. Hagemann S. Montet X. Seimbille Y. Zamboni N. Hapfelmeier S. Trajkovski M. Gut microbiota orchestrates energy homeostasis during cold. Cell 2015 163 6 1360 1374 10.1016/j.cell.2015.11.004 26638070
    [Google Scholar]
  73. Quan L.H. Zhang C. Dong M. Jiang J. Xu H. Yan C. Liu X. Zhou H. Zhang H. Chen L. Zhong F.L. Luo Z.B. Lam S.M. Shui G. Li D. Jin W. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation. Gut 2020 69 7 1239 1247 10.1136/gutjnl‑2019‑319114 31744910
    [Google Scholar]
  74. Hou Y. Gu D. Peng J. Jiang K. Li Z. Shi J. Yang S. Li S. Fan X. Ginsenoside Rg1 regulates liver lipid factor metabolism in NAFLD model rats. ACS Omega 2020 5 19 10878 10890 10.1021/acsomega.0c00529 32455208
    [Google Scholar]
  75. Wang Y. Li T. Liu Y. Yang C. Liu L. Zhang X. Yang X. Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet. Food Funct. 2022 13 24 13014 13027 10.1039/D2FO02415B 36449351
    [Google Scholar]
  76. Ma X. Yan H. Hong S. Yu S. Gong Y. Wu D. Li Y. Xiao H. Gamma-aminobutyric acid promotes beige adipocyte reconstruction by modulating the gut microbiota in obese mice. Nutrients 2023 15 2 456 10.3390/nu15020456 36678326
    [Google Scholar]
  77. Chien Y.H. Yu Y.H. Chen Y.W. Taiwanese green propolis ameliorates metabolic syndrome via remodeling of white adipose tissue and modulation of gut microbiota in diet-induced obese mice. Biomed. Pharmacother. 2023 160 114386 10.1016/j.biopha.2023.114386 36773526
    [Google Scholar]
  78. Tung Y.C. Liang Z.R. Yang M.J. Ho C.T. Pan M.H. Oolong tea extract alleviates weight gain in high-fat diet-induced obese rats by regulating lipid metabolism and modulating gut microbiota. Food Funct. 2022 13 5 2846 2856 10.1039/D1FO03356E 35179170
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002403722251122095723
Loading
/content/journals/cdm/10.2174/0113892002403722251122095723
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test