Skip to content
2000
image of Comparative Proteomics Of Hepatocytes And Hepatic Cell Lines Using Swath-MS

Abstract

Introduction

Human hepatic carcinoma cell lines are widely used to study lipid and xenobiotic metabolism, as well as glucose regulation in both normal and diseased states. However, their validity is often questioned due to variability in protein expression compared to primary human hepatocytes (cHH). This study aimed to quantify protein abundance in various hepatic cell lines versus cHH and human liver tissue homogenate (HLT) using a data-independent acquisition-based total protein approach (DIA-TPA). We compared the global proteome from the whole cell homogenates of HepaRG, HepG2, and Huh7 cell lines with that of cHH and HLT.

Methods

Proteins in whole cell homogenates were digested in solution using pressure-cycling technology (PCT). DIA was performed via sequential window acquisition of theoretical mass spectra (SWATH-MS), and MS2 spectra were quantified using Spectronaut™, followed by analysis with TPA.

Results

We identified 2715, 2578, 2874, 2717, and 3083 proteins in HepaRG, HepG2, Huh7, cHH, and HLT, respectively, at a 1% FDR. The global proteome of cHH significantly differed from that of the cancer hepatic cell lines. Among the cell lines, the global and ADME protein profile of HepaRG most closely correlated with cHH, with 89 out of 101 ADME proteins identified. Clinically relevant DMEs from the CYP450 family (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and the UGT family (UGT1A1, UGT1A3, UGT1A6, UGT2B7, and UGT2B15) were quantifiable in human hepatocytes, human liver tissue, and the HepaRG cell line. The Huh7 cell line exhibited a higher abundance of proteins related to gluconeogenesis and glycolysis compared to other groups.

Conclusion

This study highlights the potential of untargeted global proteomics in detecting differences in protein expression among various hepatic cell lines and provides a comprehensive database to inform the choice of the cell line in future studies.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002403596251122091342
2026-01-22
2026-01-31
Loading full text...

Full text loading...

References

  1. Liver E.A.F.T.S.O.T. Cancer E.O.F.R.A.T.O. EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2012 56 4 908 943 10.1016/j.jhep.2011.12.001 22424438
    [Google Scholar]
  2. Wiśniewski J.R. Vildhede A. Norén A. Artursson P. In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. J. Proteomics 2016 136 234 247 10.1016/j.jprot.2016.01.016 26825538
    [Google Scholar]
  3. Toyoda H. Bregerie O. Vallet A. Nalpas B. Pivert G. Brechot C. Desdouets C. Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis. Gut 2005 54 2 297 302 10.1136/gut.2004.043893 15647198
    [Google Scholar]
  4. Saravanakumar A. Sadighi A. Ryu R. Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: A systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin. Pharmacokinet. 2019 58 10 1281 1294 10.1007/s40262‑019‑00750‑8 30972694
    [Google Scholar]
  5. Nagarajan S.R. Paul-Heng M. Krycer J.R. Fazakerley D.J. Sharland A.F. Hoy A.J. Lipid and glucose metabolism in hepatocyte cell lines and primary mouse hepatocytes: A comprehensive resource for in vitro studies of hepatic metabolism. Am. J. Physiol. Endocrinol. Metab. 2019 316 4 E578 E589 10.1152/ajpendo.00365.2018 30694691
    [Google Scholar]
  6. Dave T. Tilles A.W. Vemula M. A cell-based assay to investigate hypolipidemic effects of nonalcoholic fatty liver disease therapeutics. SLAS Discov. 2018 23 3 274 282 10.1177/2472555217741077 29132235
    [Google Scholar]
  7. Chavez-Tapia N.C. Rosso N. Tiribelli C. Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012 12 1 20 10.1186/1471‑230X‑12‑20 22380754
    [Google Scholar]
  8. Brown M.V. Compton S.A. Milburn M.V. Lawton K.A. Cheatham B. Metabolomic signatures in lipid‐loaded HepaRGs reveal pathways involved in steatotic progression. Obesity 2013 21 12 E561 E570 10.1002/oby.20440 23512965
    [Google Scholar]
  9. Ma R. Zhang W. Tang K. Zhang H. Zhang Y. Li D. Li Y. Xu P. Luo S. Cai W. Ji T. Katirai F. Ye D. Huang B. Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat. Commun. 2013 4 1 2508 10.1038/ncomms3508 24149070
    [Google Scholar]
  10. Gerets H.H.J. Tilmant K. Gerin B. Chanteux H. Depelchin B.O. Dhalluin S. Atienzar F.A. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 2012 28 2 69 87 10.1007/s10565‑011‑9208‑4 22258563
    [Google Scholar]
  11. Guillouzo A. Corlu A. Aninat C. Glaise D. Morel F. Guguen-Guillouzo C. The human hepatoma HepaRG cells: A highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 2007 168 1 66 73 10.1016/j.cbi.2006.12.003 17241619
    [Google Scholar]
  12. Sivertsson L. Ek M. Darnell M. Edebert I. Ingelman-Sundberg M. Neve E.P.A. CYP3A4 catalytic activity is induced in confluent Huh7 hepatoma cells. Drug Metab. Dispos. 2010 38 6 995 1002 10.1124/dmd.110.032367 20233841
    [Google Scholar]
  13. Vildhede A. Wiśniewski J.R. Norén A. Karlgren M. Artursson P. Comparative proteomic analysis of human liver tissue and isolated hepatocytes with a focus on proteins determining drug exposure. J. Proteome Res. 2015 14 8 3305 3314 10.1021/acs.jproteome.5b00334 26167961
    [Google Scholar]
  14. Gu X. Xiao Q. Ruan Q. Shu Y. Dongre A. Iyer R. Humphreys W.G. Lai Y. Comparative untargeted proteomic analysis of ADME proteins and tumor antigens for tumor cell lines. Acta Pharm. Sin. B 2018 8 2 252 260 10.1016/j.apsb.2017.10.002 29719786
    [Google Scholar]
  15. Shi J. Wang X. Lyu L. Jiang H. Zhu H.J. Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes. Drug Metab. Pharmacokinet. 2018 33 2 133 140 10.1016/j.dmpk.2018.03.003 29610054
    [Google Scholar]
  16. Huang Q. Yang L. Luo J. Guo L. Wang Z. Yang X. Jin W. Fang Y. Ye J. Shan B. Zhang Y. SWATH enables precise label-free quantification on proteome scale. Proteomics 2015 15 7 1215 1223 10.1002/pmic.201400270 25560523
    [Google Scholar]
  17. Gillet L.C. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 2012 11 6 O111.016717 10.1074/mcp.O111.016717
    [Google Scholar]
  18. Gao Y. Wang X. Sang Z. Li Z. Liu F. Mao J. Yan D. Zhao Y. Wang H. Li P. Ying X. Zhang X. He K. Wang H. Quantitative proteomics by SWATH-MS reveals sophisticated metabolic reprogramming in hepatocellular carcinoma tissues. Sci. Rep. 2017 7 1 45913 10.1038/srep45913 28378759
    [Google Scholar]
  19. Xu M. Saxena N. Vrana M. Zhang H. Kumar V. Billington S. Khojasteh C. Heyward S. Unadkat J.D. Prasad B. Targeted LC-MS/MS proteomics-based strategy to characterize in vitro models used in drug metabolism and transport studies. Anal. Chem. 2018 90 20 11873 11882 10.1021/acs.analchem.8b01913 30204418
    [Google Scholar]
  20. Achour B. Al Feteisi H. Lanucara F. Rostami-Hodjegan A. Barber J. Global proteomic analysis of human liver microsomes: Rapid characterization and quantification of hepatic drug-metabolizing enzymes. Drug Metab. Dispos. 2017 45 6 666 675 10.1124/dmd.116.074732 28373266
    [Google Scholar]
  21. a Guo L. Dial S. Shi L. Branham W. Liu J. Fang J.L. Green B. Deng H. Kaput J. Ning B. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab. Dispos. 2011 39 3 528 538
    [Google Scholar]
  22. b Saravanakumar A. Tierney C.A. He W. Jamwal R. Barlock B. Bush X. Johnson J.G. Rodrigues D.A. Akhlaghi F. Transcriptomic and Proteomics Analysis of a Lipid-Loaded HepaRG Model for Steatosis Reveals Altered Regulation in Lipid and Xenobiotic Metabolism. Curr. Drug Metab. 2025 26 5 343 360 10.1124/dmd.110.035873 21149542
    [Google Scholar]
  23. Olsavsky K.M. Page J.L. Johnson M.C. Zarbl H. Strom S.C. Omiecinski C.J. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues. Toxicol. Appl. Pharmacol. 2007 222 1 42 56 10.1016/j.taap.2007.03.032 17512962
    [Google Scholar]
  24. Jamwal R. de la Monte S.M. Ogasawara K. Adusumalli S. Barlock B.B. Akhlaghi F. Nonalcoholic fatty liver disease and diabetes are associated with decreased CYP3A4 protein expression and activity in human liver. Mol. Pharm. 2018 15 7 2621 2632 10.1021/acs.molpharmaceut.8b00159 29792708
    [Google Scholar]
  25. Jamwal R. Barlock B.J. Adusumalli S. Ogasawara K. Simons B.L. Akhlaghi F. Multiplex and label-free relative quantification approach for studying protein abundance of drug metabolizing enzymes in human liver microsomes using SWATH-MS. J. Proteome Res. 2017 16 11 4134 4143 10.1021/acs.jproteome.7b00505 28944677
    [Google Scholar]
  26. Prasad B. Evers R. Gupta A. Hop C.E.C.A. Salphati L. Shukla S. Ambudkar S.V. Unadkat J.D. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: Quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab. Dispos. 2014 42 1 78 88 10.1124/dmd.113.053819 24122874
    [Google Scholar]
  27. Li C. Zhang G. Zhao L. Ma Z. Chen H. Metabolic reprogramming in cancer cells: Glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol. 2015 14 1 15 10.1186/s12957‑016‑0769‑9 26791262
    [Google Scholar]
  28. Cobbina E. Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) – Pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 2017 49 2 197 211 10.1080/03602532.2017.1293683 28303724
    [Google Scholar]
  29. Fraczek J. Bolleyn J. Vanhaecke T. Rogiers V. Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: At the busy crossroad of various anti-dedifferentiation strategies. Arch. Toxicol. 2013 87 4 577 610 10.1007/s00204‑012‑0983‑3 23242478
    [Google Scholar]
  30. Gripon P. Rumin S. Urban S. Le Seyec J. Glaise D. Cannie I. Guyomard C. Lucas J. Trepo C. Guguen-Guillouzo C. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 2002 99 24 15655 15660 10.1073/pnas.232137699 12432097
    [Google Scholar]
  31. Parent R. Marion M.J. Furio L. Trépo C. Petit M.A. Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology 2004 126 4 1147 1156 10.1053/j.gastro.2004.01.002 15057753
    [Google Scholar]
  32. Hart S.N. Li Y. Nakamoto K. Subileau E. Steen D. Zhong X. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab. Dispos. 2010 38 6 988 994 10.1124/dmd.109.031831 20228232
    [Google Scholar]
  33. Jennen D.G.J. Magkoufopoulou C. Ketelslegers H.B. van Herwijnen M.H.M. Kleinjans J.C.S. van Delft J.H.M. Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol. Sci. 2010 115 1 66 79 10.1093/toxsci/kfq026 20106945
    [Google Scholar]
  34. Schwanhäusser B. Busse D. Li N. Dittmar G. Schuchhardt J. Wolf J. Chen W. Selbach M. Global quantification of mammalian gene expression control. Nature 2011 473 7347 337 342 10.1038/nature10098 21593866
    [Google Scholar]
  35. Slany A. Haudek V.J. Zwickl H. Gundacker N.C. Grusch M. Weiss T.S. Seir K. Rodgarkia-Dara C. Hellerbrand C. Gerner C. Cell characterization by proteome profiling applied to primary hepatocytes and hepatocyte cell lines Hep-G2 and Hep-3B. J. Proteome Res. 2010 9 1 6 21 10.1021/pr900057t 19678649
    [Google Scholar]
  36. Sison-Young R.L.C. Mitsa D. Jenkins R.E. Mottram D. Alexandre E. Richert L. Aerts H. Weaver R.J. Jones R.P. Johann E. Hewitt P.G. Ingelman-Sundberg M. Goldring C.E.P. Kitteringham N.R. Park B.K. Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication. Toxicol. Sci. 2015 147 2 412 424 10.1093/toxsci/kfv136 26160117
    [Google Scholar]
  37. Ni R. Leo M.A. Zhao J. Lieber C.S. Toxicity of beta-carotene and its exacerbation by acetaldehyde in HepG2 cells. Alcohol Alcohol. 2001 36 4 281 285 10.1093/alcalc/36.4.281 11468125
    [Google Scholar]
  38. Lu D. Wang S. Xie Q. Guo L. Wu B. Transcriptional regulation of human UDP-Glucuronosyltransferase 2B10 by Farnesoid X receptor in human hepatoma HepG2 cells. Mol. Pharm. 2017 14 9 2899 2907 10.1021/acs.molpharmaceut.6b01103 28267333
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002403596251122091342
Loading
/content/journals/cdm/10.2174/0113892002403596251122091342
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: proteomics ; drug metabolizing enzymes ; CYP450 ; HepaRG ; human hepatocytes ; SWATH-MS ; Huh7 ; HepG2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test