Skip to content
2000
image of Computational Chemistry Approach in the Assessment of Potential Acyl Glucuronide-Mediated Toxicity

Abstract

Introduction

Acyl glucuronides are common phase II metabolites of xenobiotics and can sometimes contribute to idiosyncratic toxicities. Their reactivity is primarily mediated through acyl migration and/or nucleophilic displacement, and shorter acyl glucuronide half-lives are associated with increased reactivity. This reactivity can lead to metabolite-induced toxicity, posing a significant risk during drug development.

Methods

We developed regression models trained on features derived from Density Functional Theory (DFT) calculations to predict the half-lives of acyl glucuronide metabolites. The aim was to provide a computational tool to guide the design of drug candidates with more stable acyl glucuronide metabolites.

Results

The best-performing model achieved a strong correlation between predicted and experimental half-lives, with an R2 of 0.67 on the test set. Predicted half-lives for drugs classified as clinically safe were longer than those for drugs in the warning and withdrawn categories, demonstrating a separation comparable to experimentally measured half-lives.

Discussion

The model is sufficiently accurate to support the optimization of acyl glucuronides for longer half-lives. Further analysis indicated that acyl glucuronide stability can be modulated by electron-donating and electron-withdrawing groups, effects that are effectively captured by the model.

Conclusion

This modeling approach can be applied during drug discovery to reduce the risk of metabolite-related toxicity by enabling screening of compound modifications and ranking them based on predicted effects on acyl glucuronide half-life.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002401464251121074008
2026-01-22
2026-01-31
Loading full text...

Full text loading...

References

  1. Kalgutkar A.S. Daniels J.S. Carboxylic acids and their bioisosteres Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of the Building Blocks of Medicinal Chemistry on ADMET Smith D.A. The Royal Society of Chemistry 2010 1 99 167 10.1039/9781849731102‑00099
    [Google Scholar]
  2. Fung M. Thornton A. Mybeck K. Wu J.H.H. Hornbuckle K. Muniz E. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide Pharmaceutical markets-1960 to 1999. Drug Inf. J. 2001 35 1 293 317 10.1177/009286150103500134
    [Google Scholar]
  3. Bailey M.J. Dickinson R.G. Acyl glucuronide reactivity in perspective: Biological consequences. Chem. Biol. Interact. 2003 145 2 117 137 10.1016/S0009‑2797(03)00020‑6 12686489
    [Google Scholar]
  4. Castillo M. Smith P.C. Disposition and reactivity of ibuprofen and ibufenac acyl glucuronides in vivo in the rhesus monkey and in vitro with human serum albumin. Drug Metab. Dispos. 1995 23 5 566 572 10.1016/S0090‑9556(25)06621‑8 7587932
    [Google Scholar]
  5. Yang G. Ge S. Singh R. Basu S. Shatzer K. Zen M. Liu J. Tu Y. Zhang C. Wei J. Shi J. Zhu L. Liu Z. Wang Y. Gao S. Hu M. Glucuronidation: Driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 2017 49 2 105 138 10.1080/03602532.2017.1293682 28266877
    [Google Scholar]
  6. Chiu S-H.L. Huskey S.W. Species differences in N-glucuronidation. Drug Metab. Dispos. 1998 26 9 838 847 10.1124/dmd.26.9.838 9733661
    [Google Scholar]
  7. Lassila T. Hokkanen J. Aatsinki S.M. Mattila S. Turpeinen M. Tolonen A. Toxicity of carboxylic acid-containing drugs: The role of acyl migration and CoA conjugation investigated. Chem. Res. Toxicol. 2015 28 12 2292 2303 10.1021/acs.chemrestox.5b00315 26558897
    [Google Scholar]
  8. Schadt S. Bister B. Chowdhury S.K. Funk C. Hop C.E.C.A. Humphreys W.G. Igarashi F. James A.D. Kagan M. Khojasteh S.C. Nedderman A.N.R. Prakash C. Runge F. Scheible H. Spracklin D.K. Swart P. Tse S. Yuan J. Obach R.S. A decade in the MIST: Learnings from investigations of drug metabolites in drug development under the “metabolites in safety testing” regulatory guidance. Drug Metab. Dispos. 2018 46 6 865 878 10.1124/dmd.117.079848 29487142
    [Google Scholar]
  9. Darnell M. Weidolf L. Metabolism of xenobiotic carboxylic acids: Focus on coenzyme A conjugation, reactivity, and interference with lipid metabolism. Chem. Res. Toxicol. 2013 26 8 1139 1155 10.1021/tx400183y 23790050
    [Google Scholar]
  10. Darnell M. Breitholtz K. Isin E.M. Jurva U. Weidolf L. Significantly different covalent binding of oxidative metabolites, Acyl glucuronides, and S-Acyl CoA conjugates formed from xenobiotic carboxylic acids in human liver microsomes. Chem. Res. Toxicol. 2015 28 5 886 896 10.1021/tx500514z 25803559
    [Google Scholar]
  11. Boelsterli U. Xenobiotic acyl glucuronides and acyl CoA thioesters as protein-reactive metabolites with the potential to cause idiosyncratic drug reactions. Curr. Drug Metab. 2002 3 4 439 450 10.2174/1389200023337315 12093359
    [Google Scholar]
  12. Grillo M.P. Drug-S-acyl-glutathione thioesters: Synthesis, bioanalytical properties, chemical reactivity, biological formation and degradation. Curr. Drug Metab. 2011 12 3 229 244 10.2174/138920011795101886 20946099
    [Google Scholar]
  13. Boelsterli U.A. Ramirez-Alcantara V. NSAID acyl glucuronides and enteropathy. Curr. Drug Metab. 2011 12 3 245 252 10.2174/138920011795101877 21395536
    [Google Scholar]
  14. Sawamura R. Okudaira N. Watanabe K. Murai T. Kobayashi Y. Tachibana M. Ohnuki T. Masuda K. Honma H. Kurihara A. Okazaki O. Predictability of idiosyncratic drug toxicity risk for carboxylic acid-containing drugs based on the chemical stability of acyl glucuronide. Drug Metab. Dispos. 2010 38 10 1857 1864 10.1124/dmd.110.034173 20606003
    [Google Scholar]
  15. Zhong S. Jones R. Lu W. Schadt S. Ottaviani G. A new rapid in in vitro assay for assessing reactivity of Acyl glucuronides. Drug Metab. Dispos. 2015 43 11 1711 1717 10.1124/dmd.115.066159 26276581
    [Google Scholar]
  16. Gunduz M. Argikar U.A. Cirello A.L. Dumouchel J.L. New perspectives on Acyl glucuronide risk assessment in drug discovery: Investigation of in in vitro stability, in situ reactivity, and bioactivation. Drug Metab. Lett. 2018 12 2 84 92 10.2174/1872312812666180611113656 29886840
    [Google Scholar]
  17. Yu Z.J. Le H. Tang J. Yue Q. Zhang J. Murray B. Liu X. Smith B.J. Subramanian R. 18 O-Enabled high-throughput Acyl glucuronide stability assay. Chem. Res. Toxicol. 2022 35 8 1400 1409 10.1021/acs.chemrestox.2c00156 35833852
    [Google Scholar]
  18. Shibazaki, C.; Mashita, O.; Takahashi, K.; Nakamura, S.; Mashino, T.; Ohe, T. Development of a fluorescent-labeled trapping reagent to detect reactive Acyl glucuronides. Chem. Res. Toxicol. 2021 34 11 2343 2352 10.1021/acs.chemrestox.1c00236 34705453
    [Google Scholar]
  19. Kakutani N. Kobayashi S. Taniguchi T. Nomura Y. A cysteine trapping assay for risk assessment of reactive acyl CoA metabolites. Xenobiotica 2022 52 1 16 25 10.1080/00498254.2022.2035016 35084285
    [Google Scholar]
  20. Weidolf L. Wilson I. Minimizing the DILI potential of carboxylic acid-containing drugs: A perspective. Med. Chem. Res. 2023 32 9 2034 2047 10.1007/s00044‑023‑03140‑9
    [Google Scholar]
  21. Ding A. Ojingwa J.C. McDonagh A.F. Burlingame A.L. Benet L.Z. Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 1993 90 9 3797 3801 10.1073/pnas.90.9.3797 8483897
    [Google Scholar]
  22. Nicholls A.W. Akira K. Lindon J.C. Farrant R.D. Wilson I.D. Harding J. Killick D.A. Nicholson J.K. NMR spectroscopic and theoretical chemistry studies on the internal acyl migration reactions of the 1-O-acyl-β-D-glucopyranuronate conjugates of 2-, 3-, and 4-(trifluoromethyl) benzoic acids. Chem. Res. Toxicol. 1996 9 8 1414 1424 10.1021/tx960047r 8951247
    [Google Scholar]
  23. Richards S.E. Bradshaw P.R. Johnson C.H. Stachulski A.V. Athersuch T.J. Nicholson J.K. Lindon J.C. Wilson I.D. Transacylation and hydrolysis of the acyl glucuronides of ibuprofen and its α-methyl-substituted analogues investigated by 1H NMR spectroscopy and computational chemistry: Implications for drug design. J. Pharm. Biomed. Anal. 2024 246 116238 10.1016/j.jpba.2024.116238 38805849
    [Google Scholar]
  24. Bradshaw P.R. Richards S.E. Wilson I.D. Stachulski A.V. Lindon J.C. Athersuch T.J. Kinetic modelling of acyl glucuronide and glucoside reactivity and development of structure–property relationships. Org. Biomol. Chem. 2020 18 7 1389 1401 10.1039/C9OB02008J 32002533
    [Google Scholar]
  25. Sidelmann U.G. Hansen S.H. Gavaghan C. Carless H.A.J. Lindon J.C. Farrant R.D. Wilson I.D. Nicholson J.K. Measurement of internal acyl migration reaction kinetics using directly coupled HPLC−NMR: Application for the positional isomers of synthetic (2-Fluorobenzoyl)- d -glucopyranuronic acid. Anal. Chem. 1996 68 15 2564 2572 10.1021/ac960014g 21619203
    [Google Scholar]
  26. Tugcu G. Sipahi H. QSPR modelling of in vitro degradation half-life of acyl glucuronides. Xenobiotica 2019 49 9 1007 1014 10.1080/00498254.2018.1527049 30240283
    [Google Scholar]
  27. Potter T. Lewis R. Luker T. Bonnert R. Bernstein M.A. Birkinshaw T.N. Thom S. Wenlock M. Paine S. In silico prediction of acyl glucuronide reactivity. J. Comput. Aided Mol. Des. 2011 25 11 997 1005 10.1007/s10822‑011‑9479‑0 22042375
    [Google Scholar]
  28. Camilleri P. Buch A. Soldo B. Hutt A.J. The influence of physicochemical properties on the reactivity and stability of acyl glucuronides. Xenobiotica 2018 48 9 958 972 10.1080/00498254.2017.1384967 28967291
    [Google Scholar]
  29. Kaplowitz N. DeLeve L.D. Drug-Induced Liver Disease. Boca Raton CRC Press 2007 10.3109/9781420021141
    [Google Scholar]
  30. Baba A. Yoshioka T. Structure-activity relationships for degradation reaction of 1-β-o-acyl glucuronides: Kinetic description and prediction of intrinsic electrophilic reactivity under physiological conditions. Chem. Res. Toxicol. 2009 22 1 158 172 10.1021/tx800292m 19105593
    [Google Scholar]
  31. Baba A. Yoshioka T. Structure-activity relationships for the degradation reaction of 1-β-O-acyl glucuronides. Part 3: Electronic and steric descriptors predicting the reactivity of aralkyl carboxylic acid 1-β-O-acyl glucuronides. Chem. Res. Toxicol. 2009 22 12 1998 2008 10.1021/tx9002963 19902937
    [Google Scholar]
  32. Yoshioka T. Baba A. Structure-activity relationships for the degradation reaction of 1-β-O-acyl glucuronides. Part 2: Electronic and steric descriptors predicting the reactivity of 1-β-O-acyl glucuronides derived from benzoic acids. Chem. Res. Toxicol. 2009 22 9 1559 1569 10.1021/tx900092z 19670844
    [Google Scholar]
  33. Inoue N.R. Hall A. Lai W.G. Williams E.T. Reversible inhibition of human carboxylesterases by acyl glucuronides. Drug Metab. Dispos. 2013 41 4 698 703 10.1124/dmd.112.050252 23386702
    [Google Scholar]
  34. Johnson C.H. Karlsson E. Sarda S. Iddon L. Iqbal M. Meng X. Harding J.R. Stachulski A.V. Nicholson J.K. Wilson I.D. Lindon J.C. Integrated HPLC-MS and 1 H-NMR spectroscopic studies on acyl migration reaction kinetics of model drug ester glucuronides. Xenobiotica 2010 40 1 9 23 10.3109/00498250903348720 19919325
    [Google Scholar]
  35. Iddon L. Richards S.E. Johnson C.H. Harding J.R. Wilson I.D. Nicholson J.K. Lindon J.C. Stachulski A.V. Synthesis of a series of phenylacetic acid 1-β-O-acyl glucosides and comparison of their acyl migration and hydrolysis kinetics with the corresponding acyl glucuronides. Org. Biomol. Chem. 2011 9 3 926 934 10.1039/C0OB00820F 21152488
    [Google Scholar]
  36. Zhang D. Raghavan N. Wang L. Xue Y. Obermeier M. Chen S. Tao S. Zhang H. Cheng P.T. Li W. Ramanathan R. Yang Z. Humphreys W.G. Plasma stability-dependent circulation of acyl glucuronide metabolites in humans: How circulating metabolite profiles of muraglitazar and peliglitazar can lead to misleading risk assessment. Drug Metab. Dispos. 2011 39 1 123 131 10.1124/dmd.110.035048 20876787
    [Google Scholar]
  37. Horng H. Spahn-Langguth H. Benet L.Z. Mechanistic role of acyl glucuronides Drug-Induced Liver Disease (Third Edition) Kaplowitz N. DeLeve L.D. Cambridge, Massachusetts Academic Press 2013 35 70 10.1016/B978‑0‑12‑387817‑5.00003‑0
    [Google Scholar]
  38. Iwamura A. In vitro and in vivo toxicological evaluation of acyl glucuronides. Japan Kanazawa Univeristy 2016
    [Google Scholar]
  39. Stachulski A.V. Contemporary medicinal chemistry of glucuronides. 2014 Available from: https://www.rsc.org/images/andrew_stachulski_tcm18-239217.pdf
    [Google Scholar]
  40. Ebner T. Wagner K. Wienen W. Dabigatran acylglucuronide, the major human metabolite of dabigatran: In vitro formation, stability, and pharmacological activity. Drug Metab. Dispos. 2010 38 9 1567 1575 10.1124/dmd.110.033696
    [Google Scholar]
  41. Hawkins P.C.D. Nicholls A. Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. Chem. Inf. Model. 2012 52 11 2919 2936 10.1021/ci300314k 23082786
    [Google Scholar]
  42. Hawkins P.C.D. Skillman A.G. Warren G.L. Ellingson B.A. Stahl M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J. Chem. Inf. Model. 2010 50 4 572 584 10.1021/ci100031x 20235588
    [Google Scholar]
  43. Bannwarth C. Ehlert S. Grimme S. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 2019 15 3 1652 1671 10.1021/acs.jctc.8b01176 30741547
    [Google Scholar]
  44. Hohenberg P. Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964 136 3B B864 B871 10.1103/PhysRev.136.B864
    [Google Scholar]
  45. Kohn W. Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965 140 4A A1133 A1138 10.1103/PhysRev.140.A1133
    [Google Scholar]
  46. Balasubramani S.G. Chen G.P. Coriani S. Diedenhofen M. Frank M.S. Franzke Y.J. Furche F. Grotjahn R. Harding M.E. Hättig C. Hellweg A. Helmich-Paris B. Holzer C. Huniar U. Kaupp M. Marefat Khah A. Karbalaei Khani S. Müller T. Mack F. Nguyen B.D. Parker S.M. Perlt E. Rappoport D. Reiter K. Roy S. Rückert M. Schmitz G. Sierka M. Tapavicza E. Tew D.P. van Wüllen C. Voora V.K. Weigend F. Wodyński A. Yu J.M. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020 152 18 184107 10.1063/5.0004635 32414256
    [Google Scholar]
  47. Becke A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992 96 3 2155 2160 10.1063/1.462066
    [Google Scholar]
  48. Lee C. Yang W. Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988 37 2 785 789 10.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  49. Stephens P.J. Devlin F.J. Chabalowski C.F. Frisch M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994 98 45 11623 11627 10.1021/j100096a001
    [Google Scholar]
  50. Schäfer A. Horn H. Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992 97 4 2571 2577 10.1063/1.463096
    [Google Scholar]
  51. Klamt A. The COSMO and COSMO‐RS solvation models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011 1 5 699 709 10.1002/wcms.56
    [Google Scholar]
  52. Klamt A. Jonas V. Bürger T. Lohrenz J.C.W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 1998 102 26 5074 5085 10.1021/jp980017s
    [Google Scholar]
  53. Sinnecker S. Rajendran A. Klamt A. Diedenhofen M. Neese F. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS). J. Phys. Chem. A 2006 110 6 2235 2245 10.1021/jp056016z 16466261
    [Google Scholar]
  54. Mulliken R.S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955 23 10 1833 1840 10.1063/1.1740588
    [Google Scholar]
  55. Löwdin P.O. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 1950 18 3 365 375 10.1063/1.1747632
    [Google Scholar]
  56. Ehrhardt C. Ahlrichs R. Population analysis based on occupation numbers II. Relationship between shared electron numbers and bond energies and characterization of hypervalent contributions. Theor. Chim. Acta 1985 68 3 231 245 10.1007/BF00526774
    [Google Scholar]
  57. Keal T.W. Tozer D.J. A semiempirical generalized gradient approximation exchange-correlation functional. J. Chem. Phys. 2004 121 12 5654 5660 10.1063/1.1784777 15366989
    [Google Scholar]
  58. Weigend F. Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005 7 18 3297 3305 10.1039/b508541a 16240044
    [Google Scholar]
  59. Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974 27 4 789 807 10.1080/00268977400100711
    [Google Scholar]
  60. Penner P. Vulpetti A. QM assisted ML for 19F NMR chemical shift prediction. J. Comput. Aided Mol. Des. 2024 38 1 4 10.1007/s10822‑023‑00542‑0 38082055
    [Google Scholar]
  61. Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Vanderplas J. Passos A. Cournapeau D. Brucher M. Perrot M. Duchesnay É. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011 2011 12 2825 2830
    [Google Scholar]
  62. Morgan H.L. The generation of a unique machine description for chemical structures-A technique developed at chemical abstracts service. J. Chem. Doc. 1965 5 2 107 113 10.1021/c160017a018
    [Google Scholar]
  63. RDKit Open-source cheminformatics. 2024 Available from: https://rdkit.org
    [Google Scholar]
  64. Yang K. Swanson K. Jin W. Coley C. Eiden P. Gao H. Guzman-Perez A. Hopper T. Kelley B. Mathea M. Palmer A. Settels V. Jaakkola T. Jensen K. Barzilay R. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 2019 59 8 3370 3388 10.1021/acs.jcim.9b00237 31361484
    [Google Scholar]
  65. Heid E. Greenman K.P. Chung Y. Li S.C. Graff D.E. Vermeire F.H. Wu H. Green W.H. McGill C.J. Chemprop: A machine learning package for chemical property prediction. J. Chem. Inf. Model. 2024 64 1 9 17 10.1021/acs.jcim.3c01250 38147829
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002401464251121074008
Loading
/content/journals/cdm/10.2174/0113892002401464251121074008
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: thioacyl glutathione ; in silico ; stability ; bioactivation ; glucuronidation ; UGT ; acyl glucuronides ; reactivity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test