Skip to content
2000
image of A Lack of Studies on the Metabolism and Disposition of Hot Compound Class: Triphenylphosphonium-Conjugated Compounds

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002393074251023081112
2025-11-03
2025-12-18
Loading full text...

Full text loading...

References

  1. Pan J. Lee Y. Cheng G. Zielonka J. Zhang Q. Bajzikova M. Xiong D. Tsaih S.W. Hardy M. Flister M. Olsen C.M. Wang Y. Vang O. Neuzil J. Myers C.R. Kalyanaraman B. You M. Mitochondria-targeted honokiol confers a striking inhibitory effect on lung cancer via inhibiting complex I activity. iScience 2018 3 192 207 10.1016/j.isci.2018.04.013 30428319
    [Google Scholar]
  2. Murakami A. Ashida H. Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008 269 2 315 325 10.1016/j.canlet.2008.03.046 18467024
    [Google Scholar]
  3. Wang J. Li J. Xiao Y. Fu B. Qin Z. TPP-based mitocans: A potent strategy for anticancer drug design. RSC Med. Chem. 2020 11 8 858 875 10.1039/C9MD00572B 33479681
    [Google Scholar]
  4. Siragusa G. Brandi J. Rawling T. Murray M. Cecconi D. Triphenylphosphonium-conjugated palmitic acid for mitochondrial targeting of pancreatic cancer cells: Proteomic and molecular evidence. Int. J. Mol. Sci. 2024 25 12 6790 10.3390/ijms25126790 38928494
    [Google Scholar]
  5. Millard M. Gallagher J.D. Olenyuk B.Z. Neamati N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J. Med. Chem. 2013 56 22 9170 9179 10.1021/jm4012438 24147900
    [Google Scholar]
  6. Cheng G. Zielonka J. Ouari O. Lopez M. McAllister D. Boyle K. Barrios C.S. Weber J.J. Johnson B.D. Hardy M. Dwinell M.B. Kalyanaraman B. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Res. 2016 76 13 3904 3915 10.1158/0008‑5472.CAN‑15‑2534 27216187
    [Google Scholar]
  7. Wang J. Liu X. Yin F. Xu Y. Fu B. Li J. Qin Z. Triphenylphosphonium (TPP)-conjugated quinolone analogs displayed significantly enhanced fungicidal activity superior to its parent molecule. J. Fungi 2023 9 6 685 10.3390/jof9060685 37367621
    [Google Scholar]
  8. Feng B. Hu H. Xiang J. Wu G. Zhu Z. Zhang G. Zhang J. Pan W. Zhang W. Li T. Wu S. Discovery of novel triphenylphosphonium conjugated pleuromutilin with enhanced anti-MRSA effect and broaden antibacterial spectrum. Eur. J. Med. Chem. 2025 294 117731 10.1016/j.ejmech.2025.117731 40398156
    [Google Scholar]
  9. Vinita N.M. Devan U. Durgadevi S. Anitha S. Prabhu D. Rajamanikandan S. Govarthanan M. Yuvaraj A. Biruntha M. Antony Joseph Velanganni A. Jeyakanthan J. Prakash P.A. Mohamed Jaabir M.S. Kumar P. Triphenylphosphonium conjugated gold nanotriangles impact Pi3K/AKT pathway in breast cancer cells: A photodynamic therapy approach. Sci. Rep. 2023 13 1 2230 10.1038/s41598‑023‑28678‑x 36754981
    [Google Scholar]
  10. Kim H.J. Kim S.T. Park D.B. Cho H. Asadujjaman M. Jee J.P. Triphenylphosphonium modified mesoporous silica nanoparticle for enhanced algicidal efficacy of cyclohexyl-(3,4-dichlorobenzyl) amine. Int. J. Mol. Sci. 2022 23 19 11901 10.3390/ijms231911901 36233203
    [Google Scholar]
  11. Zhang Y. Jiang R. Jiang H. Xia Q. Wang Y. Xiong L. Xiang zhou; Hu, L.; Qi, W. Design, synthesis and imaging of a novel mitochondrial fluorescent nanoprobe based on distyreneanthracene-substituted triphenylphosphonium salt. Anal. Biochem. 2021 634 114424 10.1016/j.ab.2021.114424 34678251
    [Google Scholar]
  12. Arafa K.K. Hamzawy M.A. Mousa S.A. El-Sherbiny I.M. Mitochondria-targeted alginate/triphenylphosphonium-grafted-chitosan for treatment of hepatocellular carcinoma. RSC Advances 2022 12 34 21690 21703 10.1039/D2RA03240F 35975035
    [Google Scholar]
  13. Han X. Su R. Huang X. Wang Y. Kuang X. Zhou S. Liu H. Triphenylphosphonium-modified mitochondria-targeted paclitaxel nanocrystals for overcoming multidrug resistance. Asian J. Pharm. Sci. 2019 14 5 569 580 10.1016/j.ajps.2018.06.006 32104484
    [Google Scholar]
  14. Biswas S. Dodwadkar N.S. Deshpande P.P. Torchilin V.P. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release 2012 159 3 393 402 10.1016/j.jconrel.2012.01.009 22286008
    [Google Scholar]
  15. Ekmekcioglu A. Gok O. Oz-Arslan D. Erdal M.S. Yagan Uzuner Y. Muftuoglu M. Mitochondria-targeted liposomes for drug delivery to tumor mitochondria. Pharmaceutics 2024 16 7 950 10.3390/pharmaceutics16070950 39065647
    [Google Scholar]
  16. Norimatsu J. Mizuno H.L. Watanabe T. Obara T. Nakakido M. Tsumoto K. Cabral H. Kuroda D. Anraku Y. Triphenylphosphonium-modified catiomers enhance in vivo mRNA delivery through stabilized polyion complexation. Mater. Horiz. 2024 11 19 4711 4721 10.1039/D4MH00325J 38988276
    [Google Scholar]
  17. Sivagnanam S. Das K. Pan I. Stewart A. Barik A. Maity B. Das P. Engineered triphenylphosphonium-based, mitochondrial-targeted liposomal drug delivery system facilitates cancer cell killing actions of chemotherapeutics. RSC Chem. Biol. 2024 5 3 236 248 10.1039/D3CB00219E 38456034
    [Google Scholar]
  18. Zhang S. Zheng F. Liu K. Liu S. Xiao T. Zhu Y. Xu L. Mitochondria-targeting polymer micelles in stepwise response releasing gemcitabine and destroying the mitochondria and nucleus for combined antitumor chemotherapy. Int. J. Mol. Sci. 2022 23 20 12624 10.3390/ijms232012624 36293476
    [Google Scholar]
  19. Jesus S. Marques A.P. Duarte A. Soares E. Costa J.P. Colaço M. Schmutz M. Som C. Borchard G. Wick P. Borges O. Chitosan nanoparticles: Shedding light on immunotoxicity and hemocompatibility. Front. Bioeng. Biotechnol. 2020 8 100 10.3389/fbioe.2020.00100 32154232
    [Google Scholar]
  20. Rodriguez-Cuenca S. Cochemé H.M. Logan A. Abakumova I. Prime T.A. Rose C. Vidal-Puig A. Smith A.C. Rubinsztein D.C. Fearnley I.M. Jones B.A. Pope S. Heales S.J.R. Lam B.Y.H. Neogi S.G. McFarlane I. James A.M. Smith R.A.J. Murphy M.P. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic. Biol. Med. 2010 48 1 161 172 10.1016/j.freeradbiomed.2009.10.039 19854266
    [Google Scholar]
  21. Smith R.A.J. Porteous C.M. Gane A.M. Murphy M.P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. USA 2003 100 9 5407 5412 10.1073/pnas.0931245100 12697897
    [Google Scholar]
  22. Murphy M.P. Smith R.A.J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007 47 1 629 656 10.1146/annurev.pharmtox.47.120505.105110 17014364
    [Google Scholar]
  23. Adlam V.J. Harrison J.C. Porteous C.M. James A.M. Smith R.A.J. Murphy M.P. Sammut I.A. Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injury. FASEB J. 2005 19 9 1088 1095 10.1096/fj.05‑3718com 15985532
    [Google Scholar]
  24. Graham D. Huynh N.N. Hamilton C.A. Beattie E. Smith R.A.J. Cochemé H.M. Murphy M.P. Dominiczak A.F. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 2009 54 2 322 328 10.1161/HYPERTENSIONAHA.109.130351 19581509
    [Google Scholar]
  25. Capeloa T. Krzystyniak J. Rodriguez A.C. Payen V.L. Zampieri L.X. Pranzini E. Derouane F. Vazeille T. Bouzin C. Duhoux F.P. Murphy M.P. Porporato P.E. Sonveaux P. MitoQ prevents human breast cancer recurrence and lung metastasis in mice. Cancers 2022 14 6 1488 10.3390/cancers14061488 35326639
    [Google Scholar]
  26. Porteous C.M. Logan A. Evans C. Ledgerwood E.C. Menon D.K. Aigbirhio F. Smith R.A.J. Murphy M.P. Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specific therapies and probes. Biochim. Biophys. Acta, Gen. Subj. 2010 1800 9 1009 1017 10.1016/j.bbagen.2010.06.001 20621583
    [Google Scholar]
  27. Bielcikova Z. Stursa J. Krizova L. Dong L. Spacek J. Hlousek S. Vocka M. Rohlenova K. Bartosova O. Cerny V. Padrta T. Pesta M. Michalek P. Hubackova S.S. Kolostova K. Pospisilova E. Bobek V. Klezl P. Zobalova R. Endaya B. Rohlena J. Petruzelka L. Werner L. Neuzil J. Mitochondrially targeted tamoxifen in patients with metastatic solid tumours: An open-label, phase I/Ib single-centre trial. EClinicalMedicine 2023 57 101873 10.1016/j.eclinm.2023.101873 37064512
    [Google Scholar]
  28. Cochemé H.M. Logan A. Prime T.A. Abakumova I. Quin C. McQuaker S.J. Patel J.V. Fearnley I.M. James A.M. Porteous C.M. Smith R.A.J. Hartley R.C. Partridge L. Murphy M.P. Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat. Protoc. 2012 7 5 946 958 10.1038/nprot.2012.035 22517261
    [Google Scholar]
  29. Shi L. Gao L. Cai S. Xiong Q. Ma Z. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur. J. Med. Chem. 2021 221 113528 10.1016/j.ejmech.2021.113528 34020339
    [Google Scholar]
  30. Liu H.N. Guo N.N. Wang T.T. Guo W.W. Lin M.T. Huang-Fu M.Y. Vakili M.R. Xu W.H. Chen J.J. Wei Q.C. Han M. Lavasanifar A. Gao J.Q. Mitochondrial targeted doxorubicin-triphenylphosphonium delivered by hyaluronic acid modified and ph responsive nanocarriers to breast tumor: In vitro and in vivo studies. Mol. Pharm. 2018 15 3 882 891 10.1021/acs.molpharmaceut.7b00793 29357260
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002393074251023081112
Loading
/content/journals/cdm/10.2174/0113892002393074251023081112
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test