Skip to content
2000
image of Natural Compounds as Potential Therapeutics for Pancreatic Cancer: A Narrative Review

Abstract

Pancreatic cancer is a highly lethal malignancy with a low 5-year survival rate. This review focuses on natural compounds as potential therapeutics for it. Different types of natural compounds, such as polyphenols, saponins, and alkaloids, have shown anti-pancreatic cancer effects, including inhibiting tumor cell growth, inducing apoptosis, and preventing angiogenesis. They also have indirect impacts on pancreatic cancer through influencing the gut microbiota, glucose and lipid metabolism, and the endocrine system. Additionally, Chinese herbal medicines containing these compounds show promise in clinical applications. However, challenges such as target identification and low bioavailability persist. Future research trends involve interdisciplinary collaboration and the use of advanced technologies to overcome these issues.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002393013250812093213
2025-09-30
2025-10-27
Loading full text...

Full text loading...

References

  1. Zhao J.F. Zou F.L. Zhu J.F. Huang C. Bu F.Q. Zhu Z.M. Yuan R.F. Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis. Front. Pharmacol. 2022 13 1025618 10.3389/fphar.2022.1025618 36330100
    [Google Scholar]
  2. Ren L. Lu R. Fei X. Chen S. Liu P. Zhu C. Wang X. Pan Y. Unveiling the role of PYGB in pancreatic cancer: A novel diagnostic biomarker and gene therapy target. J. Cancer Res. Clin. Oncol. 2024 150 3 127 10.1007/s00432‑024‑05644‑2 38483604
    [Google Scholar]
  3. Zhao Y. Zheng Y. Zhu Y. Ding K. Zhou M. Liu T. Co-delivery of gemcitabine and Triapine by calcium carbonate nanoparticles against chemoresistant pancreatic cancer. Int. J. Pharm. 2023 636 122844 10.1016/j.ijpharm.2023.122844 36925025
    [Google Scholar]
  4. Steen T.V. Espinoza I. Duran C. Casadevall G. Serrano-Hervás E. Cuyàs E. Verdura S. Kemble G. Kaufmann S.H. McWilliams R. Osuna S. Billadeau D.D. Menendez J.A. Lupu R. Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer. Neoplasia 2025 62 101143 10.1016/j.neo.2025.101143 39999714
    [Google Scholar]
  5. Yang H. Liu B. Liu D. Yang Z. Zhang S. Xu P. Xing Y. Kutschick I. Pfeffer S. Britzen-Laurent N. Grützmann R. Pilarsky C. Genome-wide crispr screening identifies DCK and CCNL1 as genes that contribute to gemcitabine resistance in pancreatic cancer. Cancers 2022 14 13 3152 10.3390/cancers14133152 35804923
    [Google Scholar]
  6. Wang J.P. Wu C.Y. Yeh Y.C. Shyr Y.M. Wu Y.Y. Kuo C.Y. Hung Y.P. Chen M.H. Lee W.P. Luo J.C. Chao Y. Li C.P. Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: A randomized, open-label, prospective trial. Oncotarget 2015 6 20 18162 18173 10.18632/oncotarget.4216 26046796
    [Google Scholar]
  7. Ferguson R. Aughton K. Evans A. Shaw V. Armstrong J. Ware A. Bennett L. Costello E. Greenhalf W. Mutant K-Ras in pancreatic cancer: An insight on the role of wild-type N-Ras and K-Ras-dependent cell cycle regulation. Curr. Issues Mol. Biol. 2023 45 3 2505 2520 10.3390/cimb45030164 36975534
    [Google Scholar]
  8. Jaroszewski B. Jelonek K. Kasperczyk J. Drug delivery systems of betulin and its derivatives: An overview. Biomedicines 2024 12 6 1168 10.3390/biomedicines12061168 38927375
    [Google Scholar]
  9. Kostecka-Gugała A. Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants 2024 13 1 71 10.3390/antiox13010071 38247495
    [Google Scholar]
  10. Braciuliene A. Janulis V. Petrikaite V. The chemo-sensitizing effect of doxorubicin of apple extract-enriched triterpenic complex on human colon adenocarcinoma and human glioblastoma cell lines. Pharmaceutics 2022 14 12 2593 10.3390/pharmaceutics14122593 36559087
    [Google Scholar]
  11. Mudhish E.A. Siddique A.B. Ebrahim H.Y. Abdelwahed K.S. King J.A. El Sayed K.A. The tobacco β-cembrenediol: A prostate cancer recurrence suppressor lead and prospective scaffold via modulation of indoleamine 2,3-dioxygenase and tryptophan dioxygenase. Nutrients 2022 14 7 1505 10.3390/nu14071505 35406118
    [Google Scholar]
  12. Arora P. Li W. Huang X. Yu W. Huang R. Jiang Q. Chen C. Metabolic reconfiguration activates stemness and immunomodulation of PDLSCs. Int. J. Mol. Sci. 2022 23 7 4038 10.3390/ijms23074038 35409397
    [Google Scholar]
  13. Yang K. Zeng L. He Q. Wang S. Xu H. Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front. Pharmacol. 2024 15 1250918 10.3389/fphar.2024.1250918 38601463
    [Google Scholar]
  14. Garza-Juárez A. Pérez-Carrillo E. Arredondo-Espinoza E.U. Islas J.F. Benítez-Chao D.F. Escamilla-García E. Nutraceuticals and their contribution to preventing noncommunicable diseases. Foods 2023 12 17 3262 10.3390/foods12173262 37685194
    [Google Scholar]
  15. Zhang J. Zhang H. Xin X. Zhu Y. Ye Y. Li D. Efficacy of flavonoids on animal models of polycystic ovary syndrome: A systematic review and meta-analysis. Nutrients 2022 14 19 4128 10.3390/nu14194128 36235780
    [Google Scholar]
  16. Pinto T. Aires A. Cosme F. Bacelar E. Morais M.C. Oliveira I. Ferreira-Cardoso J. Anjos R. Vilela A. Gonçalves B. Bioactive (Poly)phenols, volatile compounds from vegetables, medicinal and aromatic plants. Foods 2021 10 1 106 10.3390/foods10010106 33419090
    [Google Scholar]
  17. Laka K. Makgoo L. Mbita Z. Cholesterol-lowering phytochemicals: Targeting the mevalonate pathway for anticancer interventions. Front. Genet. 2022 13 841639 10.3389/fgene.2022.841639 35391801
    [Google Scholar]
  18. Góral I. Wojciechowski K. Surface activity and foaming properties of saponin-rich plants extracts. Adv. Colloid Interface Sci. 2020 279 102145 10.1016/j.cis.2020.102145 32229329
    [Google Scholar]
  19. Gómez de Cedrón M. Navarro del Hierro J. Reguero M. Wagner S. Bouzas A. Quijada-Freire A. Reglero G. Martín D. Ramírez de Molina A. Saponin-rich extracts and their acid hydrolysates differentially target colorectal cancer metabolism in the frame of precision nutrition. Cancers 2020 12 11 3399 10.3390/cancers12113399 33212825
    [Google Scholar]
  20. Yu Z. Zhang T. Zhou F. Xiao X. Ding X. He H. Rang J. Quan M. Wang T. Zuo M. Xia L. Anticancer activity of saponins from Allium chinense against the B16 Melanoma and 4T1 Breast Carcinoma Cell. Evid. Based Complement. Alternat. Med. 2015 2015 1 12 10.1155/2015/725023 26146506
    [Google Scholar]
  21. Guimarães R. Milho C. Liberal Â. Silva J. Fonseca C. Barbosa A. Ferreira I.C.F.R. Alves M.J. Barros L. Antibiofilm potential of medicinal plants against Candida spp. Oral biofilms: A review. Antibiotics 2021 10 9 1142 10.3390/antibiotics10091142 34572724
    [Google Scholar]
  22. Kumar P. Sharma B. Bakshi N. Biological activity of alkaloids from Solanum dulcamara L. Nat. Prod. Res. 2009 23 8 719 723 10.1080/14786410802267692 19418354
    [Google Scholar]
  23. Andrés C.M.C. Pérez de la Lastra J.M. Bustamante Munguira E. Juan C.A. Plou F.J. Pérez Lebeña E. Electrophilic compounds in the human diet and their role in the induction of the transcription factor NRF2. Int. J. Mol. Sci. 2024 25 6 3521 10.3390/ijms25063521 38542492
    [Google Scholar]
  24. Zhao X. Yan F. Li X.S. Qu D. Xu Y.L. A systematic review of tea pigments: Prevention of major diseases, protection of organs, and potential mechanisms and applications. Food Sci. Nutr. 2023 11 11 6830 6844 10.1002/fsn3.3666 37970420
    [Google Scholar]
  25. Aiassa V. Garnero C. Zoppi A. Longhi M.R. Cyclodextrins and their derivatives as drug stability modifiers. Pharmaceuticals 2023 16 8 1074 10.3390/ph16081074 37630988
    [Google Scholar]
  26. Roddan R. Carter E.M. Thair B. Hailes H.C. Chemoenzymatic approaches to plant natural product inspired compounds. Nat. Prod. Rep. 2022 39 7 1375 1382 10.1039/D2NP00008C 35343542
    [Google Scholar]
  27. Guan Y. Chen S. Chen F. Chen F. Jiang Y. Exploring the relationship between trichome and terpene chemistry in chrysanthemum. Plants 2022 11 11 1410 10.3390/plants11111410 35684184
    [Google Scholar]
  28. Shah M.D. Tani K. Yong Y.S. Ching F.F. Shaleh S.R.M. Vairappan C.S. Venmathi Maran B.A. Antiparasitic potential of chromatographic fractions of Nephrolepis biserrata and liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis. Molecules 2021 26 2 499 10.3390/molecules26020499 33477743
    [Google Scholar]
  29. Al-Harbi L.N. Pandurangan S.B. Al-Dossari A.M. Shamlan G. Salamatullah A.M. Alshatwi A.A. Alotiby A.A. Beta vulgaris rubra L. (Beetroot) peel methanol extract reduces oxidative stress and stimulates cell proliferation via increasing vegf expression in H2O2 induced oxidative stressed human umbilical vein endothelial cells. Genes 2021 12 9 1380 10.3390/genes12091380 34573361
    [Google Scholar]
  30. Gu X. Zhou H. Miao M. Hu D. Wang X. Zhou J. Teichmann A.T. Yang Y. Wang C. Therapeutic potential of natural resources against endometriosis: Current advances and future perspectives. Drug Des. Devel. Ther. 2024 18 3667 3696 10.2147/DDDT.S464910 39188919
    [Google Scholar]
  31. Tripathi A.M. Devi M.T. Kalra S.K. Ghoshal U. Kalra S.K. Ghoshal U. Evaluation of the antimicrobial efficacy of herbal extracts added to root canal sealers of different bases: An in vitro study. Int. J. Clin. Pediatr. Dent. 2019 12 5 398 404 10.5005/jp‑journals‑10005‑1660 32440044
    [Google Scholar]
  32. Rizkiyah D.N. Putra N.R. Yunus M.A.C. Veza I. Irianto I. Aziz A.H.A. Rahayuningsih S. Yuniarti E. Ikhwani I. Insight into green extraction for roselle as a source of natural red pigments: A review. Molecules 2023 28 3 1336 10.3390/molecules28031336 36771003
    [Google Scholar]
  33. Kitic D. Miladinovic B. Randjelovic M. Szopa A. Sharifi-Rad J. Calina D. Seidel V. Anticancer potential and other pharmacological properties of Prunus armeniaca L.: An updated overview. Plants 2022 11 14 1885 10.3390/plants11141885 35890519
    [Google Scholar]
  34. Ratajczak K. Glatzel-Plucińska N. Ratajczak-Wielgomas K. Nowińska K. Borska S. Effect of resveratrol treatment on human pancreatic cancer cells through alterations of Bcl-2 family members. Molecules 2021 26 21 6560 10.3390/molecules26216560 34770968
    [Google Scholar]
  35. Mo W. Xu X. Xu L. Wang F. Ke A. Wang X. Guo C. Resveratrol inhibits proliferation and induces apoptosis through the hedgehog signaling pathway in pancreatic cancer cell. Pancreatology 2011 11 6 601 609 10.1159/000333542 22301921
    [Google Scholar]
  36. Srivani G. Behera S.K. Dariya B. Aliya S. Alam A. Nagaraju G.P. Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer. Exp. Cell Res. 2020 394 1 112126 10.1016/j.yexcr.2020.112126 32485183
    [Google Scholar]
  37. Shankar S. Nall D. Tang S.N. Meeker D. Passarini J. Sharma J. Srivastava R.K. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 2011 6 1 16530 10.1371/journal.pone.0016530 21304978
    [Google Scholar]
  38. Borska S. Pedziwiatr M. Danielewicz M. Nowinska K. Pula B. Drag-Zalesinska M. Olbromski M. Gomulkiewicz A. Dziegiel P. Classical and atypical resistance of cancer cells as a target for resveratrol. Oncol. Rep. 2016 36 3 1562 1568 10.3892/or.2016.4930 27431533
    [Google Scholar]
  39. Jiang X. Ma Y. Wang T. Zhou H. Wang K. Shi W. Qin L. Guan J. Li L. Long B. Wang J. Guan X. Ye H. Yang J. Yu Z. Jiao Z. Targeting UBE2T potentiates gemcitabine efficacy in pancreatic cancer by regulating pyrimidine metabolism and replication stress. Gastroenterology 2023 164 7 1232 1247 10.1053/j.gastro.2023.02.025 36842710
    [Google Scholar]
  40. Xu M. Zhong W. Yang C. Liu M. Yuan X. Lu T. Li D. Zhang G. Liu H. Zeng Y. Yang X. Zhou Y. Zhou L. Tiliroside disrupted iron homeostasis and induced ferroptosis via directly targeting calpain-2 in pancreatic cancer cells. Phytomedicine 2024 127 155392 10.1016/j.phymed.2024.155392 38412575
    [Google Scholar]
  41. Asgharian P. Tazekand A.P. Hosseini K. Forouhandeh H. Ghasemnejad T. Ranjbar M. Hasan M. Kumar M. Beirami S.M. Tarhriz V. Soofiyani S.R. Kozhamzharova L. Sharifi-Rad J. Calina D. Cho W.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer Cell Int. 2022 22 1 257 10.1186/s12935‑022‑02677‑w 35971151
    [Google Scholar]
  42. Wei R. Cortez Penso N.E. Hackman R.M. Wang Y. Mackenzie G.G. Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of AKT pathway and epithelial–mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients 2019 11 8 1856 10.3390/nu11081856 31405071
    [Google Scholar]
  43. Hu L. Xu X. Chen X. Qiu S. Li Q. Zhang D. Wang F. Epigallocatechin-3-gallate decreases hypoxia-inducible factor-1 in pancreatic cancer cells. Am. J. Chin. Med. 2023 51 3 761 777 10.1142/S0192415X23500362 36867109
    [Google Scholar]
  44. Sanaei M. Kavoosi F. Poursadgh Soufiani I. Effect of sodium butyrate and epigallocatechin-3-gallate on the genes expression of intrinsic apoptotic pathway on PA-TU-8902, CFPAC-1, and CAPAN-1 human pancreatic cancer cell lines: Epi-drugs and intrinsic apoptotic pathway in pancreatic cancer. Galen Med. J. 2022 11 2248 10.31661/gmj.v11i.2248 36698691
    [Google Scholar]
  45. Li Y. Ellis K.L. Ali S. El-Rayes B.F. Nedeljkovic-Kurepa A. Kucuk O. Philip P.A. Sarkar F.H. Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-kappaB in BxPC-3 pancreatic cancer cell line. Pancreas 2004 28 4 e90 e95 10.1097/00006676‑200405000‑00020 15097869
    [Google Scholar]
  46. Banerjee S. Zhang Y. Ali S. Bhuiyan M. Wang Z. Chiao P.J. Philip P.A. Abbruzzese J. Sarkar F.H. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res. 2005 65 19 9064 9072 10.1158/0008‑5472.CAN‑05‑1330 16204081
    [Google Scholar]
  47. Ferro R. Adamska A. Lattanzio R. Mavrommati I. Edling C.E. Arifin S.A. Fyffe C.A. Sala G. Sacchetto L. Chiorino G. De Laurenzi V. Piantelli M. Sansom O.J. Maffucci T. Falasca M. GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine. Oncogene 2018 37 49 6368 6382 10.1038/s41388‑018‑0390‑1 30061636
    [Google Scholar]
  48. Farhan M. Rizvi A. Ali F. Ahmad A. Aatif M. Malik A. Alam M.W. Muteeb G. Ahmad S. Noor A. Siddiqui F.A. Pomegranate juice anthocyanidins induce cell death in human cancer cells by mobilizing intracellular copper ions and producing reactive oxygen species. Front. Oncol. 2022 12 998346 10.3389/fonc.2022.998346 36147917
    [Google Scholar]
  49. Zhang T. Liu M. Liu Q. Xiao G.G. Wogonin increases gemcitabine sensitivity in pancreatic cancer by inhibiting Akt pathway. Front. Pharmacol. 2022 13 1068855 10.3389/fphar.2022.1068855 36618921
    [Google Scholar]
  50. Jia S. Xu X. Zhou S. Chen Y. Ding G. Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 2019 10 2 142 10.1038/s41419‑019‑1366‑y 30760707
    [Google Scholar]
  51. Lou C. Zhang F. Yang M. Zhao J. Zeng W. Fang X. Zhang Y. Zhang C. Liang W. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells. PLoS One 2012 7 12 50956 10.1371/journal.pone.0050956 23300530
    [Google Scholar]
  52. Park H.J. Choi Y.J. Lee J.H. Nam M.J. Naringenin causes ASK1-induced apoptosis via reactive oxygen species in human pancreatic cancer cells. Food Chem. Toxicol. 2017 99 1 8 10.1016/j.fct.2016.11.008 27838343
    [Google Scholar]
  53. Motallebi M. Bhia M. Rajani H.F. Bhia I. Tabarraei H. Mohammadkhani N. Pereira-Silva M. Kasaii M.S. Nouri-Majd S. Mueller A.L. Veiga F.J.B. Paiva-Santos A.C. Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci. 2022 305 120752 10.1016/j.lfs.2022.120752 35779626
    [Google Scholar]
  54. Ma Y. Zhao Y. Luo M. Jiang Q. Liu S. Jia Q. Bai Z. Wu F. Xie J. Advancements and challenges in pharmacokinetic and pharmacodynamic research on the traditional Chinese medicine saponins: A comprehensive review. Front. Pharmacol. 2024 15 1393409 10.3389/fphar.2024.1393409 38774213
    [Google Scholar]
  55. Palanisamy R. Indrajith Kahingalage N. Archibald D. Casari I. Falasca M. Synergistic anticancer activity of plumbagin and xanthohumol combination on pancreatic cancer models. Int. J. Mol. Sci. 2024 25 4 2340 10.3390/ijms25042340 38397018
    [Google Scholar]
  56. Abotaleb M. Liskova A. Kubatka P. Büsselberg D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020 10 2 221 10.3390/biom10020221 32028623
    [Google Scholar]
  57. Zaremba-Czogalla M. Jaromin A. Sidoryk K. Zagórska A. Cybulski M. Gubernator J. Evaluation of the in vitro cytotoxic activity of caffeic acid derivatives and liposomal formulation against pancreatic cancer cell lines. Materials 2020 13 24 5813 10.3390/ma13245813 33352809
    [Google Scholar]
  58. Gupta S. Tak H. Rathore K. Banavath H.N. Tejavath K.K. Caffeic acid, a dietary polyphenol, pre-sensitizes pancreatic ductal adenocarcinoma to chemotherapeutic drug. J. Biomol. Struct. Dyn. 2024 1 15 10.1080/07391102.2024.2318481 38385452
    [Google Scholar]
  59. Duan J. Xiaokaiti Y. Fan S. Pan Y. Li X. Li X. Direct interaction between caffeic acid phenethyl ester and human neutrophil elastase inhibits the growth and migration of PANC-1 cells. Oncol. Rep. 2017 37 5 3019 3025 10.3892/or.2017.5516 28339071
    [Google Scholar]
  60. Chen X. Liu B. Tong J. Bo J. Feng M. Yin L. Lin X. Chlorogenic acid inhibits proliferation, migration and invasion of pancreatic cancer cells via AKT/GSK-3β/β-catenin signaling pathway. Recent Patents Anticancer Drug Discov. 2024 19 2 146 153 10.2174/1574892818666230327134746 38214354
    [Google Scholar]
  61. Brecht K. Riebel V. Couttet P. Paech F. Wolf A. Chibout S.D. Pognan F. Krähenbühl S. Uteng M. Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin. Toxicol. In Vitro 2017 40 55 65 10.1016/j.tiv.2016.12.001 27923774
    [Google Scholar]
  62. Lee W. Song G. Bae H. Matairesinol induces mitochondrial dysfunction and exerts synergistic anticancer effects with 5-fluorouracil in pancreatic cancer cells. Mar. Drugs 2022 20 8 473 10.3390/md20080473 35892941
    [Google Scholar]
  63. Arora S. Bhardwaj A. Srivastava S.K. Singh S. McClellan S. Wang B. Singh A.P. Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One 2011 6 6 21573 10.1371/journal.pone.0021573 21720559
    [Google Scholar]
  64. Zhao X. Tao X. Xu L. Yin L. Qi Y. Xu Y. Han X. Peng J. Dioscin induces apoptosis in human cervical carcinoma hela and SIHA cells through ros-mediated dna damage and the mitochondrial signaling pathway. Molecules 2016 21 6 730 10.3390/molecules21060730 27271587
    [Google Scholar]
  65. Son M.K. Jung K.H. Lee H.S. Lee H. Kim S.J. Yan H.H. Ryu Y.L. Hong S.S. SB365, Pulsatilla saponin D suppresses proliferation and induces apoptosis of pancreatic cancer cells. Oncol. Rep. 2013 30 2 801 808 10.3892/or.2013.2517 23733203
    [Google Scholar]
  66. Liu Q. Chen W. Jiao Y. Hou J. Wu Q. Liu Y. Qi X. Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell death and inhibits tumor growth in mouse xenograft models. J. Surg. Res. 2014 188 2 387 395 10.1016/j.jss.2014.01.026 24576780
    [Google Scholar]
  67. Wang Y.W. Wang S.J. Zhou Y.N. Pan S.H. Sun B. Escin augments the efficacy of gemcitabine through down-regulation of nuclear factor-κB and nuclear factor-κB-regulated gene products in pancreatic cancer both in vitro and in vivo. J. Cancer Res. Clin. Oncol. 2012 138 5 785 797 10.1007/s00432‑012‑1152‑z 22270965
    [Google Scholar]
  68. Si L. Xu L. Yin L. Qi Y. Han X. Xu Y. Zhao Y. Liu K. Peng J. Potent effects of dioscin against pancreatic cancer via miR‐149‐3P‐mediated inhibition of the Akt1 signalling pathway. Br. J. Pharmacol. 2017 174 7 553 568 10.1111/bph.13718 28095588
    [Google Scholar]
  69. MarElia C.B. Sharp A.E. Shemwell T.A. Clare Zhang Y. Burkhardt B.R. Anemarrhena asphodeloides Bunge and its constituent timosaponin‐ AIII induce cell cycle arrest and apoptosis in pancreatic cancer cells. FEBS Open Bio 2018 8 7 1155 1166 10.1002/2211‑5463.12457 29988574
    [Google Scholar]
  70. Zou J. Su H. Zou C. Liang X. Fei Z. Ginsenoside Rg3 suppresses the growth of gemcitabine‐resistant pancreatic cancer cells by upregulating lncRNA‐CASC2 and activating PTEN signaling. J. Biochem. Mol. Toxicol. 2020 34 6 22480 10.1002/jbt.22480 32104955
    [Google Scholar]
  71. Xiao M.F. [Effect of polyphyllin D on proliferation and apoptosis of human pancreatic cancer cells]. Zhongguo Zhongyao Zazhi 2020 45 6 1418 1422 32281356 10.19540/j.cnki.cjcmm.20191230.401
    [Google Scholar]
  72. Yao L.C. Wu L. Wang W. Zhai L.L. Ye L. Xiang F. Tang Z.G. Panax notoginseng saponins promote cell death and chemosensitivity in pancreatic cancer through the apoptosis and autophagy pathways. Anticancer. Agents Med. Chem. 2021 21 13 1680 1688 10.2174/1871520620999201110191459 33176665
    [Google Scholar]
  73. Jang H.J. Yang J.H. Hong E. Jo E. Lee S. Lee S. Choi J.S. Yoo H.S. Kang H. Chelidonine induces apoptosis via GADD45a-p53 regulation in human pancreatic cancer cells. Integr. Cancer Ther. 2021 20 15347354211006191 10.1177/15347354211006191 33884928
    [Google Scholar]
  74. Liu Y. Zhang W. Zhou H. Chen J. Steroidal saponins PPI/CCRIS/PSV induce cell death in pancreatic cancer cell through GSDME-dependent pyroptosis. Biochem. Biophys. Res. Commun. 2023 673 51 58 10.1016/j.bbrc.2023.06.062 37356145
    [Google Scholar]
  75. Zhong Y. Li X.Y. Zhou F. Cai Y.J. Sun R. Liu R.P. Ziyuglycoside II inhibits the growth of digestive system cancer cells through multiple mechanisms. Chin. J. Nat. Med. 2021 19 5 351 363 10.1016/S1875‑5364(21)60033‑X 33941340
    [Google Scholar]
  76. Shen L. Luo H. Fan L. Tian X. Tang A. Wu X. Dong K. Su Z. Potential immunoregulatory mechanism of plant saponins: A review. Molecules 2023 29 1 113 10.3390/molecules29010113 38202696
    [Google Scholar]
  77. Xu X. Cui L. Zhang L. Yang L. Zhuo Y. Li C. Saikosaponin d modulates the polarization of tumor-associated macrophages by deactivating the PI3K/AKT/mTOR pathway in murine models of pancreatic cancer. Int. Immunopharmacol. 2023 122 110579 10.1016/j.intimp.2023.110579 37433245
    [Google Scholar]
  78. Zhong L. Zhou Z. Zhang C. Fei H. Bai Y. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway. Pharmacogn. Mag. 2015 11 44 690 697 10.4103/0973‑1296.165548 26600712
    [Google Scholar]
  79. Ishii N. Araki K. Yokobori T. Hagiwara K. Gantumur D. Yamanaka T. Handa T. Tsukagoshi M. Igarashi T. Watanabe A. Kubo N. Harimoto N. Masamune A. Umezawa K. Kuwano H. Shirabe K. Conophylline suppresses pancreatic cancer desmoplasia and cancer‐promoting cytokines produced by cancer‐associated fibroblasts. Cancer Sci. 2019 110 1 334 344 10.1111/cas.13847 30353606
    [Google Scholar]
  80. Zhu S.L. Qi M. Chen M.T. Lin J.P. Huang H.F. Deng L.J. Zhou X.W. A novel DDIT3 activator dehydroevodiamine effectively inhibits tumor growth and tumor cell stemness in pancreatic cancer. Phytomedicine 2024 128 155377 10.1016/j.phymed.2024.155377 38503154
    [Google Scholar]
  81. Awale S. Dibwe D.F. Balachandran C. Fayez S. Feineis D. Lombe B.K. Bringmann G. Ancistrolikokine E 3, a 5,8′-coupled naphthylisoquinoline alkaloid, eliminates the tolerance of cancer cells to nutrition starvation by inhibition of the Akt/mTOR/Autophagy signaling pathway. J. Nat. Prod. 2018 81 10 2282 2291 10.1021/acs.jnatprod.8b00733 30303002
    [Google Scholar]
  82. Mukherjee D. Chakraborty S. Bercz L. D’Alesio L. Wedig J. Torok M.A. Pfau T. Lathrop H. Jasani S. Guenther A. McGue J. Adu-Ampratwum D. Fuchs J.R. Frankel T.L. Pietrzak M. Culp S. Strohecker A.M. Skardal A. Mace T.A. Tomatidine targets ATF4-dependent signaling and induces ferroptosis to limit pancreatic cancer progression. iScience 2023 26 8 107408 10.1016/j.isci.2023.107408 37554459
    [Google Scholar]
  83. Qin R. You F.M. Zhao Q. Xie X. Peng C. Zhan G. Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: From molecular mechanisms to potential therapeutic targets. J. Hematol. Oncol. 2022 15 1 133 10.1186/s13045‑022‑01350‑z 36104717
    [Google Scholar]
  84. Li F. Jiang T. Li Q. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res. 2017 7 2350 2394 29312794
    [Google Scholar]
  85. Wang W. Ling X. Wang R. Xiong H. Hu L. Yang Z. Wang H. Zhang Y. Wu W. Singh P.K. Wang J. Li F. Li Q. Structure–activity relationship of fl118 platform position 7 versus position 9-derived compounds and their mechanism of action and antitumor activity. J. Med. Chem. 2023 66 24 16888 16916 10.1021/acs.jmedchem.3c01589 38100041
    [Google Scholar]
  86. Yagublu V. Caliskan N. Lewis A.L. Jesenofsky R. Gasimova L. Löhr J.M. Keese M. Treatment of experimental pancreatic cancer by doxorubicin-, mitoxantrone-, and irinotecan-drug eluting beads. Pancreatology 2013 13 1 79 87 10.1016/j.pan.2012.11.305 23395574
    [Google Scholar]
  87. Liu A. Chen H. Wei W. Ye S. Liao W. Gong J. Jiang Z. Wang L. Lin S. Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol. Rep 2011 26 1 81 89 10.3892/or.2011.1257 21491088
    [Google Scholar]
  88. Lin S.Z. Xu J.B. Ji X. Chen H. Xu H.T. Hu P. Chen L. Guo J.Q. Chen M.Y. Lu D. Wang Z.H. Tong H.F. Emodin inhibits angiogenesis in pancreatic cancer by regulating the transforming growth factor-β/drosophila mothers against decapentaplegic pathway and angiogenesis-associated microRNAs. Mol. Med. Rep. 2015 12 4 5865 5871 10.3892/mmr.2015.4158 26238071
    [Google Scholar]
  89. Wei W.T. Chen H. Ni Z.L. Liu H.B. Tong H.F. Fan L. Liu A. Qiu M.X. Liu D.L. Guo H.C. Wang Z.H. Lin S.Z. Antitumor and apoptosis-promoting properties of emodin, an anthraquinone derivative from Rheum officinale Baill, against pancreatic cancer in mice via inhibition of Akt activation. Int. J. Oncol. 2011 39 6 1381 1390 10.3892/ijo.2011.1147 21805032
    [Google Scholar]
  90. Huang W. Dai Y. Xu L. Mao Y. Huang Z. Ji X. Dihydrotanshinone I. Dihydrotanshinone I inhibits pancreatic cancer progression via Hedgehog/gli signal pathway. Curr. Cancer Drug Targets 2023 23 9 731 741 10.2174/1568009623666230328123915 37018533
    [Google Scholar]
  91. Li C. Xie J. Wang J. Cao Y. Pu M. Gong Q. Lu Q. Therapeutic effects and mechanisms of plant-derived natural compounds against intestinal mucositis. Front. Pharmacol. 2022 13 969550 10.3389/fphar.2022.969550 36210837
    [Google Scholar]
  92. Terado T. Kim C. Ushio A. Minami K. Tambe Y. Kageyama S. Kawauchi A. Tsunoda T. Shirasawa S. Tanaka H. Inoue H. Cryptotanshinone suppresses tumorigenesis by inhibiting lipogenesis and promoting reactive oxygen species production in KRAS activated pancreatic cancer cells. Int. J. Oncol. 2022 61 3 108 10.3892/ijo.2022.5398 35894141
    [Google Scholar]
  93. Xu Z. Hou Y. Zou C. Liang H. Mu J. Jiao X. Zhu Y. Su L. Liu M. Chen X. Qian C. Zhu X. Gong W. Dong Q. Zhang F. Alizarin, a nature compound, inhibits the growth of pancreatic cancer cells by abrogating NF-κB activation. Int. J. Biol. Sci. 2022 18 7 2759 2774 10.7150/ijbs.70567 35541911
    [Google Scholar]
  94. Shah V.M. Rizvi S. Smith A. Tsuda M. Krieger M. Pelz C. MacPherson K. Eng J. Chin K. Munks M.W. Daniel C.J. Al-Fatease A. Yardimci G.G. Langer E.M. Brody J.R. Sheppard B.C. Alani A.W.G. Sears R.C. Micelle-formulated juglone effectively targets pancreatic cancer and remodels the tumor microenvironment. Pharmaceutics 2023 15 12 2651 10.3390/pharmaceutics15122651 38139993
    [Google Scholar]
  95. Gokturk F. Erkoc-Kaya D. Arikoglu H. Juglone can inhibit angiogenesis and metastasis in pancreatic cancer cells by targeting Wnt/β-catenin signaling. Bratisl. Med. J. 2021 122 2 132 137 10.4149/BLL_2021_020 33502882
    [Google Scholar]
  96. Pandey K. Tripathi S.K. Panda M. Biswal B.K. Prooxidative activity of plumbagin induces apoptosis in human pancreatic ductal adenocarcinoma cells via intrinsic apoptotic pathway. Toxicol. In Vitro 2020 65 104788 10.1016/j.tiv.2020.104788 32027944
    [Google Scholar]
  97. Pan Q. Zhou R. Su M. Li R. The effects of plumbagin on pancreatic cancer: A mechanistic network pharmacology approach. Med. Sci. Monit. 2019 25 4648 4654 10.12659/MSM.917240 31230062
    [Google Scholar]
  98. Zhao Z. Liu L. Li S. Hou X. Yang J. Advances in research on the relationship between thymoquinone and pancreatic cancer. Front. Oncol. 2023 12 1092020 10.3389/fonc.2022.1092020 36686732
    [Google Scholar]
  99. Awale S. Baba H. Phan N.D. Kim M.J. Maneenet J. Sawaki K. Kanda M. Okumura T. Fujii T. Okada T. Maruyama T. Okada T. Toyooka N. Targeting pancreatic cancer with novel plumbagin derivatives: Design, synthesis, molecular mechanism, in vitro and in vivo evaluation. J. Med. Chem. 2023 66 12 8054 8065 10.1021/acs.jmedchem.3c00394 37257133
    [Google Scholar]
  100. Wang Y. Feng W. Wang X. Li X. Mou Y. Wang X. Zhang Y. The multifaceted mechanisms of pristimerin in the treatment of tumors state-of-the-art. Biomed. Pharmacother. 2022 154 113575 10.1016/j.biopha.2022.113575 35988422
    [Google Scholar]
  101. Bhuyan P.P. Nayak R. Patra S. Abdulabbas H.S. Jena M. Pradhan B. Seaweed-derived sulfated polysaccharides; the new age chemopreventives: A comprehensive review. Cancers 2023 15 3 715 10.3390/cancers15030715 36765670
    [Google Scholar]
  102. Ma L.M. Wang K. Meng X.H. Zheng Y.D. Wang C.B. Chai T. Naghavi M.R. Sang C.Y. Yang J.L. Terpenoids from Nardostachys jatamansi and their cytotoxic activity against human pancreatic cancer cell lines. Phytochemistry 2022 200 113228 10.1016/j.phytochem.2022.113228 35561851
    [Google Scholar]
  103. Long J. Liu Z. Hui L. Anti-tumor effect and mechanistic study of elemene on pancreatic carcinoma. BMC Complement. Altern. Med. 2019 19 1 133 10.1186/s12906‑019‑2544‑2 31215421
    [Google Scholar]
  104. Wang H. Liu Y. Wang Y. Xu T. Xia G. Huang X. Umbelliprenin induces autophagy and apoptosis while inhibits cancer cell stemness in pancreatic cancer cells. Cancer Med. 2023 12 14 15277 15288 10.1002/cam4.6170 37409635
    [Google Scholar]
  105. Bian Y. Zeng H. Tao H. Huang L. Du Z. Wang J. Ding K. A pectin-like polysaccharide from Polygala tenuifolia inhibits pancreatic cancer cell growth in vitro and in vivo by inducing apoptosis and suppressing autophagy. Int. J. Biol. Macromol. 2020 162 107 115 10.1016/j.ijbiomac.2020.06.054 32531363
    [Google Scholar]
  106. Tao H. Chen X. Du Z. Ding K. Corn silk crude polysaccharide exerts anti-pancreatic cancer activity by blocking the EGFR/PI3K/AKT/CREB signaling pathway. Food Funct. 2020 11 8 6961 6970 10.1039/D0FO00403K 32696775
    [Google Scholar]
  107. Ding M. Yang Y. Zhang Z. Liu H. Dai Y. Wang Z. Ma S. Liu Y. Wang Q. Structural characterization of the polysaccharide from the black crystal region of Inonotus obliquus and its effect on AsPC-1 and SW1990 pancreatic cancer cell apoptosis. Int. J. Biol. Macromol. 2024 268 Pt 2 131891 10.1016/j.ijbiomac.2024.131891 38677687
    [Google Scholar]
  108. Yao Y. Zhou L. Liao W. Chen H. Du Z. Shao C. Wang P. Ding K. HH1-1, a novel Galectin-3 inhibitor, exerts anti-pancreatic cancer activity by blocking Galectin-3/EGFR/AKT/FOXO3 signaling pathway. Carbohydr. Polym. 2019 204 111 123 10.1016/j.carbpol.2018.10.008 30366522
    [Google Scholar]
  109. Zhang L. Wang P. Qin Y. Cong Q. Shao C. Du Z. Ni X. Li P. Ding K. RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivovia blocking galectin-3 associated signaling pathways. Oncogene 2017 36 9 1297 1308 10.1038/onc.2016.306 27617577
    [Google Scholar]
  110. Qin X. Xu C. Liu M. Zeng F. Yao W. Deng Y. Xu T. Sun S. Sun D. Mo J. Ye X.S. Synthesis of branched arabinogalactans up to a 140-mer from Panax notoginseng and their anti-pancreatic-cancer activity. Nature Synthesis 2023 3 2 245 255 10.1038/s44160‑023‑00428‑x
    [Google Scholar]
  111. Zhang P. Tao W. Lu C. Fan L. Jiang Q. Yang C. Shang E. Cheng H. Che C. Duan J. Zhao M. Bruceine A induces cell growth inhibition and apoptosis through PFKFB4/GSK3β signaling in pancreatic cancer. Pharmacol. Res. 2021 169 105658 10.1016/j.phrs.2021.105658 33992797
    [Google Scholar]
  112. Huang Y. Zhang R. Lyu H. Xiao S. Guo D. Chen X.Z. Zhou C. Tang J. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance. Int. J. Biol. Sci. 2024 20 7 2698 2726 10.7150/ijbs.91832 38725864
    [Google Scholar]
  113. Wu B. Wang Z. Liu J. Li N. Wang X. Bai H. Wang C. Shi J. Zhang S. Song J. Li Y. Nie G. Dual rectification of metabolism abnormality in pancreatic cancer by a programmed nanomedicine. Nat. Commun. 2024 15 1 10526 10.1038/s41467‑024‑54963‑y 39627234
    [Google Scholar]
  114. Biancur D.E. Paulo J.A. Małachowska B. Quiles Del Rey M. Sousa C.M. Wang X. Sohn A.S.W. Chu G.C. Gygi S.P. Harper J.W. Fendler W. Mancias J.D. Kimmelman A.C. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun. 2017 8 1 15965 10.1038/ncomms15965 28671190
    [Google Scholar]
  115. Yao Z. Zhang H. Huang K. Huang G. Xi P. Jiang L. Qin D. Chen F. Li S. Wei R. Niraparib perturbs autophagosome-lysosome fusion in pancreatic ductal adenocarcinoma and exhibits anticancer potential against gemcitabine-resistant PDAC. Transl. Oncol. 2025 51 102206 10.1016/j.tranon.2024.102206 39603206
    [Google Scholar]
  116. Amrutkar M. Gladhaug I. Pancreatic cancer chemoresistance to gemcitabine. Cancers 2017 9 11 157 10.3390/cancers9110157 29144412
    [Google Scholar]
  117. Fu Y. Ricciardiello F. Yang G. Qiu J. Huang H. Xiao J. Cao Z. Zhao F. Liu Y. Luo W. Chen G. You L. Chiaradonna F. Zheng L. Zhang T. The role of mitochondria in the chemoresistance of pancreatic cancer cells. Cells 2021 10 3 497 10.3390/cells10030497 33669111
    [Google Scholar]
  118. Vergara-Gómez L. Bizama C. Zhong J. Buchegger K. Suárez F. Rosa L. Ili C. Weber H. Obreque J. Espinoza K. Repetto G. Roa J.C. Leal P. García P. A novel gemcitabine-resistant gallbladder cancer model provides insights into molecular changes occurring during acquired resistance. Int. J. Mol. Sci. 2023 24 8 7238 10.3390/ijms24087238 37108401
    [Google Scholar]
  119. Mullen N.J. Singh P.K. Nucleotide metabolism: A pan-cancer metabolic dependency. Nat. Rev. Cancer 2023 23 5 275 294 10.1038/s41568‑023‑00557‑7 36973407
    [Google Scholar]
  120. Chen S. Wang Y. Zhang W.L. Dong M.S. Zhang J.H. Sclareolide enhances gemcitabine-induced cell death through mediating the NICD and Gli1 pathways in gemcitabine-resistant human pancreatic cancer. Mol. Med. Rep. 2017 15 4 1461 1470 10.3892/mmr.2017.6182 28259943
    [Google Scholar]
  121. Rozengurt E. Eibl G. Central role of Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif in pancreatic cancer development. World J. Gastroenterol. 2019 25 15 1797 1816 10.3748/wjg.v25.i15.1797 31057295
    [Google Scholar]
  122. Liu J. Luo X. Guo R. Jing W. Lu H. Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism. J. Proteome Res. 2020 19 9 3825 3836 10.1021/acs.jproteome.0c00394 32692565
    [Google Scholar]
  123. Cheng L. Yan B. Chen K. Jiang Z. Zhou C. Cao J. Qian W. Li J. Sun L. Ma J. Ma Q. Sha H. Resveratrol‐induced downregulation of naf‐1 enhances the sensitivity of pancreatic cancer cells to gemcitabine via the ROS/Nrf2 signaling pathways. Oxid. Med. Cell. Longev. 2018 2018 1 9482018 10.1155/2018/9482018 29765509
    [Google Scholar]
  124. Mirazimi S.M.A. Dashti F. Tobeiha M. Shahini A. Jafari R. Khoddami M. Sheida A.H. EsnaAshari, P.; Aflatoonian, A.H.; Elikaii, F.; Zakeri, M.S.; Hamblin, M.R.; Aghajani, M.; Bavarsadkarimi, M.; Mirzaei, H. Application of quercetin in the treatment of gastrointestinal cancers. Front. Pharmacol. 2022 13 860209 10.3389/fphar.2022.860209 35462903
    [Google Scholar]
  125. Khan S. Setua S. Kumari S. Dan N. Massey A. Hafeez B.B. Yallapu M.M. Stiles Z.E. Alabkaa A. Yue J. Ganju A. Behrman S. Jaggi M. Chauhan S.C. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 2019 208 83 97 10.1016/j.biomaterials.2019.04.005 30999154
    [Google Scholar]
  126. Ma M.J. Shi Y.H. Liu Z.D. Zhu Y.Q. Zhao G.Y. Ye J.Y. Li F.X. Huang X.T. Wang X.Y. Wang J.Q. Xu Q.C. Yin X.Y. N6-methyladenosine modified TGFB2 triggers lipid metabolism reprogramming to confer pancreatic ductal adenocarcinoma gemcitabine resistance. Oncogene 2024 43 31 2405 2420 10.1038/s41388‑024‑03092‑3 38914663
    [Google Scholar]
  127. Cheng H. Wang Z. Cui L. Wen Y. Chen X. Gong F. Yi H. Opportunities and challenges of the human microbiome in ovarian cancer. Front. Oncol. 2020 10 163 10.3389/fonc.2020.00163 32133297
    [Google Scholar]
  128. Sobocki B.K. Kaźmierczak-Siedlecka K. Folwarski M. Hawryłkowicz V. Makarewicz W. Stachowska E. Pancreatic cancer and gut microbiome-related aspects: A comprehensive review and dietary recommendations. Nutrients 2021 13 12 4425 10.3390/nu13124425 34959977
    [Google Scholar]
  129. Zhu Z. Yi B. Tang Z. Chen X. Li M. Xu T. Zhao Z. Tang C. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis. BMC Cancer 2023 23 1 1044 10.1186/s12885‑023‑11557‑z 37904102
    [Google Scholar]
  130. Han Z. Zhang H. Lu L. Li X. Zhang C. Zhu J. Li C. Wang Q. Chen K. Research progress in intestinal microecology in pancreatic cancer diagnosis and treatment. J. Oncol. 2022 2022 1 10 10.1155/2022/6069403 36510609
    [Google Scholar]
  131. Jia W. Zhou L. Li L. Zhou P. Shen Z. Nano-based drug delivery of polyphenolic compounds for cancer treatment: Progress, opportunities, and challenges. Pharmaceuticals 2023 16 1 101 10.3390/ph16010101 36678599
    [Google Scholar]
  132. Lim X. Ooi L. Ding U. Wu H.H.L. Chinnadurai R. Gut microbiota in patients receiving dialysis: A review. Pathogens 2024 13 9 801 10.3390/pathogens13090801 39338992
    [Google Scholar]
  133. Yang J. Xu R. Wang C. Qiu J. Ren B. You L. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review. Cancer Commun. 2021 41 12 1257 1274 10.1002/cac2.12204 34331845
    [Google Scholar]
  134. Shabbir H. Kausar T. Noreen S. Rehman H.U. Hussain A. Huang Q. Gani A. Su S. Nawaz A. In vivo screening and antidiabetic potential of polyphenol extracts from guava pulp, seeds and leaves. Animals 2020 10 9 1714 10.3390/ani10091714
    [Google Scholar]
  135. Yuan Q. Shang D. ‘Inflammatory biomarkers and nanotechnology: New insights in pancreatic cancer early detection’. Int. J. Surg. 2024 110 8 5280 5281 10.1097/JS9.0000000000001555 38716894
    [Google Scholar]
  136. Zhang Y. Xu Y. Zhang L. Chen Y. Wu T. Liu R. Sui W. Zhu Q. Zhang M. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice. Food Res. Int. 2022 153 110945 10.1016/j.foodres.2022.110945 35227470
    [Google Scholar]
  137. Zolotova D. Teterovska R. Bandere D. Lauberte L. Niedra S. Antidiabetic properties of the root extracts of dandelion (Taraxacum officinale) and Burdock (Arctium lappa). Plants 2024 13 7 1021 10.3390/plants13071021 38611548
    [Google Scholar]
  138. Skoczylas J. Jędrszczyk E. Dziadek K. Dacewicz E. Kopeć A. Basic chemical composition, antioxidant activity and selected polyphenolic compounds profile in garlic leaves and bulbs collected at various stages of development. Molecules 2023 28 18 6653 10.3390/molecules28186653 37764429
    [Google Scholar]
  139. Wen J.J. Li M.Z. Chen C.H. Hong T. Yang J.R. Huang X.J. Geng F. Hu J.L. Nie S.P. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food. Chem. 2023 404 Pt A 134591 10.1016/j.foodchem.2022.134591 36444016
    [Google Scholar]
  140. Ren L. Guo X. Shao X. Li H. Yao H. Endocrine gland-derived vascular endothelial growth factor modulates proliferation, apoptosis and migration in pancreatic cancer cells. Mol. Med. Rep. 2015 11 6 4279 4284 10.3892/mmr.2015.3340 25672937
    [Google Scholar]
  141. Choi D. Lee S.J. Lee M.H. Lee D.K. Bitter melon seed extract does not alter photoperiodic effects on reproduction of male golden hamsters. Dev. Reprod. 2017 21 2 215 221 10.12717/DR.2017.21.2.215 28785742
    [Google Scholar]
  142. Jang Y.C. Leung C.Y. Huang H.L. Association of menopausal hormone therapy with risk of pancreatic cancer: A systematic review and meta-analysis of cohort studies. Cancer Epidemiol. Biomarkers Prev. 2023 32 1 114 122 10.1158/1055‑9965.EPI‑22‑0518 36306390
    [Google Scholar]
  143. Kobylka P. Kucinska M. Kujawski J. Lazewski D. Wierzchowski M. Murias M. Resveratrol analogues as selective estrogen signaling pathway modulators: Structure–activity relationship. Molecules 2022 27 20 6973 10.3390/molecules27206973 36296565
    [Google Scholar]
  144. Saif M.W. Is there a role for herbal medicine in the treatment of pancreatic cancer? Highlights from the “44th ASCO Annual Meeting”. Chicago, IL, USA. May 30 - June 3, 2008. JOP 2008 9 4 403 407
    [Google Scholar]
  145. Hu J. Jiang J. Liu R. Cheng M. Zhu G. He S. Shi B. Zhao Y. He Z. Yu H. Zhang X. Zheng H. Hua B. Clinical efficacy and safety of traditional medicine preparations combined with chemotherapy for advanced pancreatic cancer: A systematic review and meta-analysis. Front. Oncol. 2022 12 828450 10.3389/fonc.2022.828450 35280766
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002393013250812093213
Loading
/content/journals/cdm/10.2174/0113892002393013250812093213
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Pancreatic cancer ; chemoresistance ; natural compounds ; antitumor activity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test