Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Pancreatic cancer is a highly lethal malignancy with a low 5-year survival rate. This review focuses on natural compounds as potential therapeutics for it. Different types of natural compounds, such as polyphenols, saponins, and alkaloids, have shown anti-pancreatic cancer effects, including inhibiting tumor cell growth, inducing apoptosis, and preventing angiogenesis. They also have indirect impacts on pancreatic cancer through influencing the gut microbiota, glucose and lipid metabolism, and the endocrine system. Additionally, Chinese herbal medicines containing these compounds show promise in clinical applications. However, challenges such as target identification and low bioavailability persist. Future research trends involve interdisciplinary collaboration and the use of advanced technologies to overcome these issues.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002393013250812093213
2025-09-30
2026-02-01
Loading full text...

Full text loading...

References

  1. ZhaoJ.F. ZouF.L. ZhuJ.F. HuangC. BuF.Q. ZhuZ.M. YuanR.F. Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis.Front. Pharmacol.202213102561810.3389/fphar.2022.102561836330100
    [Google Scholar]
  2. RenL. LuR. FeiX. ChenS. LiuP. ZhuC. WangX. PanY. Unveiling the role of PYGB in pancreatic cancer: A novel diagnostic biomarker and gene therapy target.J. Cancer Res. Clin. Oncol.2024150312710.1007/s00432‑024‑05644‑238483604
    [Google Scholar]
  3. ZhaoY. ZhengY. ZhuY. DingK. ZhouM. LiuT. Co-delivery of gemcitabine and Triapine by calcium carbonate nanoparticles against chemoresistant pancreatic cancer.Int. J. Pharm.202363612284410.1016/j.ijpharm.2023.12284436925025
    [Google Scholar]
  4. SteenT.V. EspinozaI. DuranC. CasadevallG. Serrano-HervásE. CuyàsE. VerduraS. KembleG. KaufmannS.H. McWilliamsR. OsunaS. BilladeauD.D. MenendezJ.A. LupuR. Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer.Neoplasia20256210114310.1016/j.neo.2025.10114339999714
    [Google Scholar]
  5. YangH. LiuB. LiuD. YangZ. ZhangS. XuP. XingY. KutschickI. PfefferS. Britzen-LaurentN. GrützmannR. PilarskyC. Genome-wide crispr screening identifies DCK and CCNL1 as genes that contribute to gemcitabine resistance in pancreatic cancer.Cancers20221413315210.3390/cancers1413315235804923
    [Google Scholar]
  6. WangJ.P. WuC.Y. YehY.C. ShyrY.M. WuY.Y. KuoC.Y. HungY.P. ChenM.H. LeeW.P. LuoJ.C. ChaoY. LiC.P. Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: A randomized, open-label, prospective trial.Oncotarget2015620181621817310.18632/oncotarget.421626046796
    [Google Scholar]
  7. FergusonR. AughtonK. EvansA. ShawV. ArmstrongJ. WareA. BennettL. CostelloE. GreenhalfW. Mutant K-Ras in pancreatic cancer: An insight on the role of wild-type N-Ras and K-Ras-dependent cell cycle regulation.Curr. Issues Mol. Biol.20234532505252010.3390/cimb4503016436975534
    [Google Scholar]
  8. JaroszewskiB. JelonekK. KasperczykJ. Drug delivery systems of betulin and its derivatives: An overview.Biomedicines2024126116810.3390/biomedicines1206116838927375
    [Google Scholar]
  9. Kostecka-GugałaA. Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use.Antioxidants20241317110.3390/antiox1301007138247495
    [Google Scholar]
  10. BraciulieneA. JanulisV. PetrikaiteV. The chemo-sensitizing effect of doxorubicin of apple extract-enriched triterpenic complex on human colon adenocarcinoma and human glioblastoma cell lines.Pharmaceutics20221412259310.3390/pharmaceutics1412259336559087
    [Google Scholar]
  11. MudhishE.A. SiddiqueA.B. EbrahimH.Y. AbdelwahedK.S. KingJ.A. El SayedK.A. The tobacco β-cembrenediol: A prostate cancer recurrence suppressor lead and prospective scaffold via modulation of indoleamine 2,3-dioxygenase and tryptophan dioxygenase.Nutrients2022147150510.3390/nu1407150535406118
    [Google Scholar]
  12. AroraP. LiW. HuangX. YuW. HuangR. JiangQ. ChenC. Metabolic reconfiguration activates stemness and immunomodulation of PDLSCs.Int. J. Mol. Sci.2022237403810.3390/ijms2307403835409397
    [Google Scholar]
  13. YangK. ZengL. HeQ. WangS. XuH. GeJ. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products.Front. Pharmacol.202415125091810.3389/fphar.2024.125091838601463
    [Google Scholar]
  14. Garza-JuárezA. Pérez-CarrilloE. Arredondo-EspinozaE.U. IslasJ.F. Benítez-ChaoD.F. Escamilla-GarcíaE. Nutraceuticals and their contribution to preventing noncommunicable diseases.Foods20231217326210.3390/foods1217326237685194
    [Google Scholar]
  15. ZhangJ. ZhangH. XinX. ZhuY. YeY. LiD. Efficacy of flavonoids on animal models of polycystic ovary syndrome: A systematic review and meta-analysis.Nutrients20221419412810.3390/nu1419412836235780
    [Google Scholar]
  16. PintoT. AiresA. CosmeF. BacelarE. MoraisM.C. OliveiraI. Ferreira-CardosoJ. AnjosR. VilelaA. GonçalvesB. Bioactive (Poly)phenols, volatile compounds from vegetables, medicinal and aromatic plants.Foods202110110610.3390/foods1001010633419090
    [Google Scholar]
  17. LakaK. MakgooL. MbitaZ. Cholesterol-lowering phytochemicals: Targeting the mevalonate pathway for anticancer interventions.Front. Genet.20221384163910.3389/fgene.2022.84163935391801
    [Google Scholar]
  18. GóralI. WojciechowskiK. Surface activity and foaming properties of saponin-rich plants extracts.Adv. Colloid Interface Sci.202027910214510.1016/j.cis.2020.10214532229329
    [Google Scholar]
  19. Gómez de CedrónM. Navarro del HierroJ. RegueroM. WagnerS. BouzasA. Quijada-FreireA. RegleroG. MartínD. Ramírez de MolinaA. Saponin-rich extracts and their acid hydrolysates differentially target colorectal cancer metabolism in the frame of precision nutrition.Cancers20201211339910.3390/cancers1211339933212825
    [Google Scholar]
  20. YuZ. ZhangT. ZhouF. XiaoX. DingX. HeH. RangJ. QuanM. WangT. ZuoM. XiaL. Anticancer activity of saponins from Allium chinense against the B16 Melanoma and 4T1 Breast Carcinoma Cell.Evid. Based Complement. Alternat. Med.2015201511210.1155/2015/72502326146506
    [Google Scholar]
  21. GuimarãesR. MilhoC. LiberalÂ. SilvaJ. FonsecaC. BarbosaA. FerreiraI.C.F.R. AlvesM.J. BarrosL. Antibiofilm potential of medicinal plants against Candida spp. Oral biofilms: A review.Antibiotics2021109114210.3390/antibiotics1009114234572724
    [Google Scholar]
  22. KumarP. SharmaB. BakshiN. Biological activity of alkaloids from Solanum dulcamara L.Nat. Prod. Res.200923871972310.1080/1478641080226769219418354
    [Google Scholar]
  23. AndrésC.M.C. Pérez de la LastraJ.M. Bustamante MunguiraE. JuanC.A. PlouF.J. Pérez LebeñaE. Electrophilic compounds in the human diet and their role in the induction of the transcription factor NRF2.Int. J. Mol. Sci.2024256352110.3390/ijms2506352138542492
    [Google Scholar]
  24. ZhaoX. YanF. LiX.S. QuD. XuY.L. A systematic review of tea pigments: Prevention of major diseases, protection of organs, and potential mechanisms and applications.Food Sci. Nutr.202311116830684410.1002/fsn3.366637970420
    [Google Scholar]
  25. AiassaV. GarneroC. ZoppiA. LonghiM.R. Cyclodextrins and their derivatives as drug stability modifiers.Pharmaceuticals2023168107410.3390/ph1608107437630988
    [Google Scholar]
  26. RoddanR. CarterE.M. ThairB. HailesH.C. Chemoenzymatic approaches to plant natural product inspired compounds.Nat. Prod. Rep.20223971375138210.1039/D2NP00008C35343542
    [Google Scholar]
  27. GuanY. ChenS. ChenF. ChenF. JiangY. Exploring the relationship between trichome and terpene chemistry in chrysanthemum.Plants20221111141010.3390/plants1111141035684184
    [Google Scholar]
  28. ShahM.D. TaniK. YongY.S. ChingF.F. ShalehS.R.M. VairappanC.S. Venmathi MaranB.A. Antiparasitic potential of chromatographic fractions of Nephrolepis biserrata and liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis.Molecules202126249910.3390/molecules2602049933477743
    [Google Scholar]
  29. Al-HarbiL.N. PanduranganS.B. Al-DossariA.M. ShamlanG. SalamatullahA.M. AlshatwiA.A. AlotibyA.A. Beta vulgaris rubra L. (Beetroot) peel methanol extract reduces oxidative stress and stimulates cell proliferation via increasing vegf expression in H2O2 induced oxidative stressed human umbilical vein endothelial cells.Genes2021129138010.3390/genes1209138034573361
    [Google Scholar]
  30. GuX. ZhouH. MiaoM. HuD. WangX. ZhouJ. TeichmannA.T. YangY. WangC. Therapeutic potential of natural resources against endometriosis: Current advances and future perspectives.Drug Des. Devel. Ther.2024183667369610.2147/DDDT.S46491039188919
    [Google Scholar]
  31. TripathiA.M. DeviM.T. KalraS.K. GhoshalU. KalraS.K. GhoshalU. Evaluation of the antimicrobial efficacy of herbal extracts added to root canal sealers of different bases: An in vitro study.Int. J. Clin. Pediatr. Dent.201912539840410.5005/jp‑journals‑10005‑166032440044
    [Google Scholar]
  32. RizkiyahD.N. PutraN.R. YunusM.A.C. VezaI. IriantoI. AzizA.H.A. RahayuningsihS. YuniartiE. IkhwaniI. Insight into green extraction for roselle as a source of natural red pigments: A review.Molecules2023283133610.3390/molecules2803133636771003
    [Google Scholar]
  33. KiticD. MiladinovicB. RandjelovicM. SzopaA. Sharifi-RadJ. CalinaD. SeidelV. Anticancer potential and other pharmacological properties of Prunus armeniaca L.: An updated overview.Plants20221114188510.3390/plants1114188535890519
    [Google Scholar]
  34. RatajczakK. Glatzel-PlucińskaN. Ratajczak-WielgomasK. NowińskaK. BorskaS. Effect of resveratrol treatment on human pancreatic cancer cells through alterations of Bcl-2 family members.Molecules20212621656010.3390/molecules2621656034770968
    [Google Scholar]
  35. MoW. XuX. XuL. WangF. KeA. WangX. GuoC. Resveratrol inhibits proliferation and induces apoptosis through the hedgehog signaling pathway in pancreatic cancer cell.Pancreatology201111660160910.1159/00033354222301921
    [Google Scholar]
  36. SrivaniG. BeheraS.K. DariyaB. AliyaS. AlamA. NagarajuG.P. Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer.Exp. Cell Res.2020394111212610.1016/j.yexcr.2020.11212632485183
    [Google Scholar]
  37. ShankarS. NallD. TangS.N. MeekerD. PassariniJ. SharmaJ. SrivastavaR.K. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition.PLoS One2011611653010.1371/journal.pone.001653021304978
    [Google Scholar]
  38. BorskaS. PedziwiatrM. DanielewiczM. NowinskaK. PulaB. Drag-ZalesinskaM. OlbromskiM. GomulkiewiczA. DziegielP. Classical and atypical resistance of cancer cells as a target for resveratrol.Oncol. Rep.20163631562156810.3892/or.2016.493027431533
    [Google Scholar]
  39. JiangX. MaY. WangT. ZhouH. WangK. ShiW. QinL. GuanJ. LiL. LongB. WangJ. GuanX. YeH. YangJ. YuZ. JiaoZ. Targeting UBE2T potentiates gemcitabine efficacy in pancreatic cancer by regulating pyrimidine metabolism and replication stress.Gastroenterology202316471232124710.1053/j.gastro.2023.02.02536842710
    [Google Scholar]
  40. XuM. ZhongW. YangC. LiuM. YuanX. LuT. LiD. ZhangG. LiuH. ZengY. YangX. ZhouY. ZhouL. Tiliroside disrupted iron homeostasis and induced ferroptosis via directly targeting calpain-2 in pancreatic cancer cells.Phytomedicine202412715539210.1016/j.phymed.2024.15539238412575
    [Google Scholar]
  41. AsgharianP. TazekandA.P. HosseiniK. ForouhandehH. GhasemnejadT. RanjbarM. HasanM. KumarM. BeiramiS.M. TarhrizV. SoofiyaniS.R. KozhamzharovaL. Sharifi-RadJ. CalinaD. ChoW.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets.Cancer Cell Int.202222125710.1186/s12935‑022‑02677‑w35971151
    [Google Scholar]
  42. WeiR. Cortez PensoN.E. HackmanR.M. WangY. MackenzieG.G. Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of AKT pathway and epithelial–mesenchymal transition: Enhanced efficacy when combined with gemcitabine.Nutrients2019118185610.3390/nu1108185631405071
    [Google Scholar]
  43. HuL. XuX. ChenX. QiuS. LiQ. ZhangD. WangF. Epigallocatechin-3-gallate decreases hypoxia-inducible factor-1 in pancreatic cancer cells.Am. J. Chin. Med.202351376177710.1142/S0192415X2350036236867109
    [Google Scholar]
  44. SanaeiM. KavoosiF. Poursadgh SoufianiI. Effect of sodium butyrate and epigallocatechin-3-gallate on the genes expression of intrinsic apoptotic pathway on PA-TU-8902, CFPAC-1, and CAPAN-1 human pancreatic cancer cell lines: Epi-drugs and intrinsic apoptotic pathway in pancreatic cancer.Galen Med. J.202211224810.31661/gmj.v11i.224836698691
    [Google Scholar]
  45. LiY. EllisK.L. AliS. El-RayesB.F. Nedeljkovic-KurepaA. KucukO. PhilipP.A. SarkarF.H. Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-kappaB in BxPC-3 pancreatic cancer cell line.Pancreas2004284e90e9510.1097/00006676‑200405000‑0002015097869
    [Google Scholar]
  46. BanerjeeS. ZhangY. AliS. BhuiyanM. WangZ. ChiaoP.J. PhilipP.A. AbbruzzeseJ. SarkarF.H. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer.Cancer Res.200565199064907210.1158/0008‑5472.CAN‑05‑133016204081
    [Google Scholar]
  47. FerroR. AdamskaA. LattanzioR. MavrommatiI. EdlingC.E. ArifinS.A. FyffeC.A. SalaG. SacchettoL. ChiorinoG. De LaurenziV. PiantelliM. SansomO.J. MaffucciT. FalascaM. GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine.Oncogene201837496368638210.1038/s41388‑018‑0390‑130061636
    [Google Scholar]
  48. FarhanM. RizviA. AliF. AhmadA. AatifM. MalikA. AlamM.W. MuteebG. AhmadS. NoorA. SiddiquiF.A. Pomegranate juice anthocyanidins induce cell death in human cancer cells by mobilizing intracellular copper ions and producing reactive oxygen species.Front. Oncol.20221299834610.3389/fonc.2022.99834636147917
    [Google Scholar]
  49. ZhangT. LiuM. LiuQ. XiaoG.G. Wogonin increases gemcitabine sensitivity in pancreatic cancer by inhibiting Akt pathway.Front. Pharmacol.202213106885510.3389/fphar.2022.106885536618921
    [Google Scholar]
  50. JiaS. XuX. ZhouS. ChenY. DingG. CaoL. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways.Cell Death Dis.201910214210.1038/s41419‑019‑1366‑y30760707
    [Google Scholar]
  51. LouC. ZhangF. YangM. ZhaoJ. ZengW. FangX. ZhangY. ZhangC. LiangW. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells.PLoS One20127125095610.1371/journal.pone.005095623300530
    [Google Scholar]
  52. ParkH.J. ChoiY.J. LeeJ.H. NamM.J. Naringenin causes ASK1-induced apoptosis via reactive oxygen species in human pancreatic cancer cells.Food Chem. Toxicol.2017991810.1016/j.fct.2016.11.00827838343
    [Google Scholar]
  53. MotallebiM. BhiaM. RajaniH.F. BhiaI. TabarraeiH. MohammadkhaniN. Pereira-SilvaM. KasaiiM.S. Nouri-MajdS. MuellerA.L. VeigaF.J.B. Paiva-SantosA.C. ShakibaeiM. Naringenin: A potential flavonoid phytochemical for cancer therapy.Life Sci.202230512075210.1016/j.lfs.2022.12075235779626
    [Google Scholar]
  54. MaY. ZhaoY. LuoM. JiangQ. LiuS. JiaQ. BaiZ. WuF. XieJ. Advancements and challenges in pharmacokinetic and pharmacodynamic research on the traditional Chinese medicine saponins: A comprehensive review.Front. Pharmacol.202415139340910.3389/fphar.2024.139340938774213
    [Google Scholar]
  55. PalanisamyR. Indrajith KahingalageN. ArchibaldD. CasariI. FalascaM. Synergistic anticancer activity of plumbagin and xanthohumol combination on pancreatic cancer models.Int. J. Mol. Sci.2024254234010.3390/ijms2504234038397018
    [Google Scholar]
  56. AbotalebM. LiskovaA. KubatkaP. BüsselbergD. Therapeutic potential of plant phenolic acids in the treatment of cancer.Biomolecules202010222110.3390/biom1002022132028623
    [Google Scholar]
  57. Zaremba-CzogallaM. JarominA. SidorykK. ZagórskaA. CybulskiM. GubernatorJ. Evaluation of the in vitro cytotoxic activity of caffeic acid derivatives and liposomal formulation against pancreatic cancer cell lines.Materials20201324581310.3390/ma1324581333352809
    [Google Scholar]
  58. GuptaS. TakH. RathoreK. BanavathH.N. TejavathK.K. Caffeic acid, a dietary polyphenol, pre-sensitizes pancreatic ductal adenocarcinoma to chemotherapeutic drug.J. Biomol. Struct. Dyn.2024•••11510.1080/07391102.2024.231848138385452
    [Google Scholar]
  59. DuanJ. XiaokaitiY. FanS. PanY. LiX. LiX. Direct interaction between caffeic acid phenethyl ester and human neutrophil elastase inhibits the growth and migration of PANC-1 cells.Oncol. Rep.20173753019302510.3892/or.2017.551628339071
    [Google Scholar]
  60. ChenX. LiuB. TongJ. BoJ. FengM. YinL. LinX. Chlorogenic acid inhibits proliferation, migration and invasion of pancreatic cancer cells via AKT/GSK-3β/β-catenin signaling pathway.Recent Patents Anticancer Drug Discov.202419214615310.2174/157489281866623032713474638214354
    [Google Scholar]
  61. BrechtK. RiebelV. CouttetP. PaechF. WolfA. ChiboutS.D. PognanF. KrähenbühlS. UtengM. Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin.Toxicol. In Vitro201740556510.1016/j.tiv.2016.12.00127923774
    [Google Scholar]
  62. LeeW. SongG. BaeH. Matairesinol induces mitochondrial dysfunction and exerts synergistic anticancer effects with 5-fluorouracil in pancreatic cancer cells.Mar. Drugs202220847310.3390/md2008047335892941
    [Google Scholar]
  63. AroraS. BhardwajA. SrivastavaS.K. SinghS. McClellanS. WangB. SinghA.P. Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells.PLoS One2011662157310.1371/journal.pone.002157321720559
    [Google Scholar]
  64. ZhaoX. TaoX. XuL. YinL. QiY. XuY. HanX. PengJ. Dioscin induces apoptosis in human cervical carcinoma hela and SIHA cells through ros-mediated dna damage and the mitochondrial signaling pathway.Molecules201621673010.3390/molecules2106073027271587
    [Google Scholar]
  65. SonM.K. JungK.H. LeeH.S. LeeH. KimS.J. YanH.H. RyuY.L. HongS.S. SB365, Pulsatilla saponin D suppresses proliferation and induces apoptosis of pancreatic cancer cells.Oncol. Rep.201330280180810.3892/or.2013.251723733203
    [Google Scholar]
  66. LiuQ. ChenW. JiaoY. HouJ. WuQ. LiuY. QiX. Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell death and inhibits tumor growth in mouse xenograft models.J. Surg. Res.2014188238739510.1016/j.jss.2014.01.02624576780
    [Google Scholar]
  67. WangY.W. WangS.J. ZhouY.N. PanS.H. SunB. Escin augments the efficacy of gemcitabine through down-regulation of nuclear factor-κB and nuclear factor-κB-regulated gene products in pancreatic cancer both in vitro and in vivo.J. Cancer Res. Clin. Oncol.2012138578579710.1007/s00432‑012‑1152‑z22270965
    [Google Scholar]
  68. SiL. XuL. YinL. QiY. HanX. XuY. ZhaoY. LiuK. PengJ. Potent effects of dioscin against pancreatic cancer via miR‐149‐3P‐mediated inhibition of the Akt1 signalling pathway.Br. J. Pharmacol.2017174755356810.1111/bph.1371828095588
    [Google Scholar]
  69. MarEliaC.B. SharpA.E. ShemwellT.A. Clare ZhangY. BurkhardtB.R. Anemarrhena asphodeloides Bunge and its constituent timosaponin‐ AIII induce cell cycle arrest and apoptosis in pancreatic cancer cells.FEBS Open Bio2018871155116610.1002/2211‑5463.1245729988574
    [Google Scholar]
  70. ZouJ. SuH. ZouC. LiangX. FeiZ. Ginsenoside Rg3 suppresses the growth of gemcitabine‐resistant pancreatic cancer cells by upregulating lncRNA‐CASC2 and activating PTEN signaling.J. Biochem. Mol. Toxicol.20203462248010.1002/jbt.2248032104955
    [Google Scholar]
  71. XiaoM.F. [Effect of polyphyllin D on proliferation and apoptosis of human pancreatic cancer cells].Zhongguo Zhongyao Zazhi2020456141814223228135610.19540/j.cnki.cjcmm.20191230.401
    [Google Scholar]
  72. YaoL.C. WuL. WangW. ZhaiL.L. YeL. XiangF. TangZ.G. Panax notoginseng saponins promote cell death and chemosensitivity in pancreatic cancer through the apoptosis and autophagy pathways.Anticancer. Agents Med. Chem.202121131680168810.2174/187152062099920111019145933176665
    [Google Scholar]
  73. JangH.J. YangJ.H. HongE. JoE. LeeS. LeeS. ChoiJ.S. YooH.S. KangH. Chelidonine induces apoptosis via GADD45a-p53 regulation in human pancreatic cancer cells.Integr. Cancer Ther.2021201534735421100619110.1177/1534735421100619133884928
    [Google Scholar]
  74. LiuY. ZhangW. ZhouH. ChenJ. Steroidal saponins PPI/CCRIS/PSV induce cell death in pancreatic cancer cell through GSDME-dependent pyroptosis.Biochem. Biophys. Res. Commun.2023673515810.1016/j.bbrc.2023.06.06237356145
    [Google Scholar]
  75. ZhongY. LiX.Y. ZhouF. CaiY.J. SunR. LiuR.P. Ziyuglycoside II inhibits the growth of digestive system cancer cells through multiple mechanisms.Chin. J. Nat. Med.202119535136310.1016/S1875‑5364(21)60033‑X33941340
    [Google Scholar]
  76. ShenL. LuoH. FanL. TianX. TangA. WuX. DongK. SuZ. Potential immunoregulatory mechanism of plant saponins: A review.Molecules202329111310.3390/molecules2901011338202696
    [Google Scholar]
  77. XuX. CuiL. ZhangL. YangL. ZhuoY. LiC. Saikosaponin d modulates the polarization of tumor-associated macrophages by deactivating the PI3K/AKT/mTOR pathway in murine models of pancreatic cancer.Int. Immunopharmacol.202312211057910.1016/j.intimp.2023.11057937433245
    [Google Scholar]
  78. ZhongL. ZhouZ. ZhangC. FeiH. BaiY. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway.Pharmacogn. Mag.2015114469069710.4103/0973‑1296.16554826600712
    [Google Scholar]
  79. IshiiN. ArakiK. YokoboriT. HagiwaraK. GantumurD. YamanakaT. HandaT. TsukagoshiM. IgarashiT. WatanabeA. KuboN. HarimotoN. MasamuneA. UmezawaK. KuwanoH. ShirabeK. Conophylline suppresses pancreatic cancer desmoplasia and cancer‐promoting cytokines produced by cancer‐associated fibroblasts.Cancer Sci.2019110133434410.1111/cas.1384730353606
    [Google Scholar]
  80. ZhuS.L. QiM. ChenM.T. LinJ.P. HuangH.F. DengL.J. ZhouX.W. A novel DDIT3 activator dehydroevodiamine effectively inhibits tumor growth and tumor cell stemness in pancreatic cancer.Phytomedicine202412815537710.1016/j.phymed.2024.15537738503154
    [Google Scholar]
  81. AwaleS. DibweD.F. BalachandranC. FayezS. FeineisD. LombeB.K. BringmannG. Ancistrolikokine E 3, a 5,8′-coupled naphthylisoquinoline alkaloid, eliminates the tolerance of cancer cells to nutrition starvation by inhibition of the Akt/mTOR/Autophagy signaling pathway.J. Nat. Prod.201881102282229110.1021/acs.jnatprod.8b0073330303002
    [Google Scholar]
  82. MukherjeeD. ChakrabortyS. BerczL. D’AlesioL. WedigJ. TorokM.A. PfauT. LathropH. JasaniS. GuentherA. McGueJ. Adu-AmpratwumD. FuchsJ.R. FrankelT.L. PietrzakM. CulpS. StroheckerA.M. SkardalA. MaceT.A. Tomatidine targets ATF4-dependent signaling and induces ferroptosis to limit pancreatic cancer progression.iScience202326810740810.1016/j.isci.2023.10740837554459
    [Google Scholar]
  83. QinR. YouF.M. ZhaoQ. XieX. PengC. ZhanG. HanB. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: From molecular mechanisms to potential therapeutic targets.J. Hematol. Oncol.202215113310.1186/s13045‑022‑01350‑z36104717
    [Google Scholar]
  84. LiF. JiangT. LiQ. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer?Am. J. Cancer Res.201772350239429312794
    [Google Scholar]
  85. WangW. LingX. WangR. XiongH. HuL. YangZ. WangH. ZhangY. WuW. SinghP.K. WangJ. LiF. LiQ. Structure–activity relationship of fl118 platform position 7 versus position 9-derived compounds and their mechanism of action and antitumor activity.J. Med. Chem.20236624168881691610.1021/acs.jmedchem.3c0158938100041
    [Google Scholar]
  86. YagubluV. CaliskanN. LewisA.L. JesenofskyR. GasimovaL. LöhrJ.M. KeeseM. Treatment of experimental pancreatic cancer by doxorubicin-, mitoxantrone-, and irinotecan-drug eluting beads.Pancreatology2013131798710.1016/j.pan.2012.11.30523395574
    [Google Scholar]
  87. LiuA. ChenH. WeiW. YeS. LiaoW. GongJ. JiangZ. WangL. LinS. Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer.Oncol. Rep20112618189PMID:2149108810.3892/or.2011.125721491088
    [Google Scholar]
  88. LinS.Z. XuJ.B. JiX. ChenH. XuH.T. HuP. ChenL. GuoJ.Q. ChenM.Y. LuD. WangZ.H. TongH.F. Emodin inhibits angiogenesis in pancreatic cancer by regulating the transforming growth factor-β/drosophila mothers against decapentaplegic pathway and angiogenesis-associated microRNAs.Mol. Med. Rep.20151245865587110.3892/mmr.2015.415826238071
    [Google Scholar]
  89. WeiW.T. ChenH. NiZ.L. LiuH.B. TongH.F. FanL. LiuA. QiuM.X. LiuD.L. GuoH.C. WangZ.H. LinS.Z. Antitumor and apoptosis-promoting properties of emodin, an anthraquinone derivative from Rheum officinale Baill, against pancreatic cancer in mice via inhibition of Akt activation. Int. J. Oncol.201139613811390PMID: 2180503210.3892/ijo.2011.114721805032
    [Google Scholar]
  90. HuangW. DaiY. XuL. MaoY. HuangZ. JiX. DihydrotanshinoneI. Dihydrotanshinone I inhibits pancreatic cancer progression via Hedgehog/gli signal pathway.Curr. Cancer Drug Targets202323973174110.2174/156800962366623032812391537018533
    [Google Scholar]
  91. LiC. XieJ. WangJ. CaoY. PuM. GongQ. LuQ. Therapeutic effects and mechanisms of plant-derived natural compounds against intestinal mucositis.Front. Pharmacol.20221396955010.3389/fphar.2022.96955036210837
    [Google Scholar]
  92. TeradoT. KimC. UshioA. MinamiK. TambeY. KageyamaS. KawauchiA. TsunodaT. ShirasawaS. TanakaH. InoueH. Cryptotanshinone suppresses tumorigenesis by inhibiting lipogenesis and promoting reactive oxygen species production in KRAS activated pancreatic cancer cells.Int. J. Oncol.202261310810.3892/ijo.2022.539835894141
    [Google Scholar]
  93. XuZ. HouY. ZouC. LiangH. MuJ. JiaoX. ZhuY. SuL. LiuM. ChenX. QianC. ZhuX. GongW. DongQ. ZhangF. Alizarin, a nature compound, inhibits the growth of pancreatic cancer cells by abrogating NF-κB activation.Int. J. Biol. Sci.20221872759277410.7150/ijbs.7056735541911
    [Google Scholar]
  94. ShahV.M. RizviS. SmithA. TsudaM. KriegerM. PelzC. MacPhersonK. EngJ. ChinK. MunksM.W. DanielC.J. Al-FateaseA. YardimciG.G. LangerE.M. BrodyJ.R. SheppardB.C. AlaniA.W.G. SearsR.C. Micelle-formulated juglone effectively targets pancreatic cancer and remodels the tumor microenvironment.Pharmaceutics20231512265110.3390/pharmaceutics1512265138139993
    [Google Scholar]
  95. GokturkF. Erkoc-KayaD. ArikogluH. Juglone can inhibit angiogenesis and metastasis in pancreatic cancer cells by targeting Wnt/β-catenin signaling.Bratisl. Med. J.2021122213213710.4149/BLL_2021_02033502882
    [Google Scholar]
  96. PandeyK. TripathiS.K. PandaM. BiswalB.K. Prooxidative activity of plumbagin induces apoptosis in human pancreatic ductal adenocarcinoma cells via intrinsic apoptotic pathway.Toxicol. In Vitro20206510478810.1016/j.tiv.2020.10478832027944
    [Google Scholar]
  97. PanQ. ZhouR. SuM. LiR. The effects of plumbagin on pancreatic cancer: A mechanistic network pharmacology approach.Med. Sci. Monit.2019254648465410.12659/MSM.91724031230062
    [Google Scholar]
  98. ZhaoZ. LiuL. LiS. HouX. YangJ. Advances in research on the relationship between thymoquinone and pancreatic cancer.Front. Oncol.202312109202010.3389/fonc.2022.109202036686732
    [Google Scholar]
  99. AwaleS. BabaH. PhanN.D. KimM.J. ManeenetJ. SawakiK. KandaM. OkumuraT. FujiiT. OkadaT. MaruyamaT. OkadaT. ToyookaN. Targeting pancreatic cancer with novel plumbagin derivatives: Design, synthesis, molecular mechanism, in vitro and in vivo evaluation.J. Med. Chem.202366128054806510.1021/acs.jmedchem.3c0039437257133
    [Google Scholar]
  100. WangY. FengW. WangX. LiX. MouY. WangX. ZhangY. The multifaceted mechanisms of pristimerin in the treatment of tumors state-of-the-art.Biomed. Pharmacother.202215411357510.1016/j.biopha.2022.11357535988422
    [Google Scholar]
  101. BhuyanP.P. NayakR. PatraS. AbdulabbasH.S. JenaM. PradhanB. Seaweed-derived sulfated polysaccharides; the new age chemopreventives: A comprehensive review.Cancers202315371510.3390/cancers1503071536765670
    [Google Scholar]
  102. MaL.M. WangK. MengX.H. ZhengY.D. WangC.B. ChaiT. NaghaviM.R. SangC.Y. YangJ.L. Terpenoids from Nardostachys jatamansi and their cytotoxic activity against human pancreatic cancer cell lines.Phytochemistry202220011322810.1016/j.phytochem.2022.11322835561851
    [Google Scholar]
  103. LongJ. LiuZ. HuiL. Anti-tumor effect and mechanistic study of elemene on pancreatic carcinoma.BMC Complement. Altern. Med.201919113310.1186/s12906‑019‑2544‑231215421
    [Google Scholar]
  104. WangH. LiuY. WangY. XuT. XiaG. HuangX. Umbelliprenin induces autophagy and apoptosis while inhibits cancer cell stemness in pancreatic cancer cells.Cancer Med.20231214152771528810.1002/cam4.617037409635
    [Google Scholar]
  105. BianY. ZengH. TaoH. HuangL. DuZ. WangJ. DingK. A pectin-like polysaccharide from Polygala tenuifolia inhibits pancreatic cancer cell growth in vitro and in vivo by inducing apoptosis and suppressing autophagy.Int. J. Biol. Macromol.202016210711510.1016/j.ijbiomac.2020.06.05432531363
    [Google Scholar]
  106. TaoH. ChenX. DuZ. DingK. Corn silk crude polysaccharide exerts anti-pancreatic cancer activity by blocking the EGFR/PI3K/AKT/CREB signaling pathway.Food Funct.20201186961697010.1039/D0FO00403K32696775
    [Google Scholar]
  107. DingM. YangY. ZhangZ. LiuH. DaiY. WangZ. MaS. LiuY. WangQ. Structural characterization of the polysaccharide from the black crystal region of Inonotus obliquus and its effect on AsPC-1 and SW1990 pancreatic cancer cell apoptosis.Int. J. Biol. Macromol.2024268Pt 213189110.1016/j.ijbiomac.2024.13189138677687
    [Google Scholar]
  108. YaoY. ZhouL. LiaoW. ChenH. DuZ. ShaoC. WangP. DingK. HH1-1, a novel Galectin-3 inhibitor, exerts anti-pancreatic cancer activity by blocking Galectin-3/EGFR/AKT/FOXO3 signaling pathway.Carbohydr. Polym.201920411112310.1016/j.carbpol.2018.10.00830366522
    [Google Scholar]
  109. ZhangL. WangP. QinY. CongQ. ShaoC. DuZ. NiX. LiP. DingK. RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivovia blocking galectin-3 associated signaling pathways.Oncogene20173691297130810.1038/onc.2016.30627617577
    [Google Scholar]
  110. QinX. XuC. LiuM. ZengF. YaoW. DengY. XuT. SunS. SunD. MoJ. YeX.S. Synthesis of branched arabinogalactans up to a 140-mer from Panax notoginseng and their anti-pancreatic-cancer activity.Nature Synthesis20233224525510.1038/s44160‑023‑00428‑x
    [Google Scholar]
  111. ZhangP. TaoW. LuC. FanL. JiangQ. YangC. ShangE. ChengH. CheC. DuanJ. ZhaoM. Bruceine A induces cell growth inhibition and apoptosis through PFKFB4/GSK3β signaling in pancreatic cancer.Pharmacol. Res.202116910565810.1016/j.phrs.2021.10565833992797
    [Google Scholar]
  112. HuangY. ZhangR. LyuH. XiaoS. GuoD. ChenX.Z. ZhouC. TangJ. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance.Int. J. Biol. Sci.20242072698272610.7150/ijbs.9183238725864
    [Google Scholar]
  113. WuB. WangZ. LiuJ. LiN. WangX. BaiH. WangC. ShiJ. ZhangS. SongJ. LiY. NieG. Dual rectification of metabolism abnormality in pancreatic cancer by a programmed nanomedicine.Nat. Commun.20241511052610.1038/s41467‑024‑54963‑y39627234
    [Google Scholar]
  114. BiancurD.E. PauloJ.A. MałachowskaB. Quiles Del ReyM. SousaC.M. WangX. SohnA.S.W. ChuG.C. GygiS.P. HarperJ.W. FendlerW. ManciasJ.D. KimmelmanA.C. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism.Nat. Commun.2017811596510.1038/ncomms1596528671190
    [Google Scholar]
  115. YaoZ. ZhangH. HuangK. HuangG. XiP. JiangL. QinD. ChenF. LiS. WeiR. Niraparib perturbs autophagosome-lysosome fusion in pancreatic ductal adenocarcinoma and exhibits anticancer potential against gemcitabine-resistant PDAC.Transl. Oncol.20255110220610.1016/j.tranon.2024.10220639603206
    [Google Scholar]
  116. AmrutkarM. GladhaugI. Pancreatic cancer chemoresistance to gemcitabine.Cancers201791115710.3390/cancers911015729144412
    [Google Scholar]
  117. FuY. RicciardielloF. YangG. QiuJ. HuangH. XiaoJ. CaoZ. ZhaoF. LiuY. LuoW. ChenG. YouL. ChiaradonnaF. ZhengL. ZhangT. The role of mitochondria in the chemoresistance of pancreatic cancer cells.Cells202110349710.3390/cells1003049733669111
    [Google Scholar]
  118. Vergara-GómezL. BizamaC. ZhongJ. BucheggerK. SuárezF. RosaL. IliC. WeberH. ObrequeJ. EspinozaK. RepettoG. RoaJ.C. LealP. GarcíaP. A novel gemcitabine-resistant gallbladder cancer model provides insights into molecular changes occurring during acquired resistance.Int. J. Mol. Sci.2023248723810.3390/ijms2408723837108401
    [Google Scholar]
  119. MullenN.J. SinghP.K. Nucleotide metabolism: A pan-cancer metabolic dependency.Nat. Rev. Cancer202323527529410.1038/s41568‑023‑00557‑736973407
    [Google Scholar]
  120. ChenS. WangY. ZhangW.L. DongM.S. ZhangJ.H. Sclareolide enhances gemcitabine-induced cell death through mediating the NICD and Gli1 pathways in gemcitabine-resistant human pancreatic cancer.Mol. Med. Rep.20171541461147010.3892/mmr.2017.618228259943
    [Google Scholar]
  121. RozengurtE. EiblG. Central role of Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif in pancreatic cancer development.World J. Gastroenterol.201925151797181610.3748/wjg.v25.i15.179731057295
    [Google Scholar]
  122. LiuJ. LuoX. GuoR. JingW. LuH. Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism.J. Proteome Res.20201993825383610.1021/acs.jproteome.0c0039432692565
    [Google Scholar]
  123. ChengL. YanB. ChenK. JiangZ. ZhouC. CaoJ. QianW. LiJ. SunL. MaJ. MaQ. ShaH. Resveratrol‐induced downregulation of naf‐1 enhances the sensitivity of pancreatic cancer cells to gemcitabine via the ROS/Nrf2 signaling pathways.Oxid. Med. Cell. Longev.201820181948201810.1155/2018/948201829765509
    [Google Scholar]
  124. MirazimiS.M.A. DashtiF. TobeihaM. ShahiniA. JafariR. KhoddamiM. SheidaA.H. EsnaAshari, P.; Aflatoonian, A.H.; Elikaii, F.; Zakeri, M.S.; Hamblin, M.R.; Aghajani, M.; Bavarsadkarimi, M.; Mirzaei, H. Application of quercetin in the treatment of gastrointestinal cancers.Front. Pharmacol.20221386020910.3389/fphar.2022.86020935462903
    [Google Scholar]
  125. KhanS. SetuaS. KumariS. DanN. MasseyA. HafeezB.B. YallapuM.M. StilesZ.E. AlabkaaA. YueJ. GanjuA. BehrmanS. JaggiM. ChauhanS.C. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer.Biomaterials2019208839710.1016/j.biomaterials.2019.04.00530999154
    [Google Scholar]
  126. MaM.J. ShiY.H. LiuZ.D. ZhuY.Q. ZhaoG.Y. YeJ.Y. LiF.X. HuangX.T. WangX.Y. WangJ.Q. XuQ.C. YinX.Y. N6-methyladenosine modified TGFB2 triggers lipid metabolism reprogramming to confer pancreatic ductal adenocarcinoma gemcitabine resistance.Oncogene202443312405242010.1038/s41388‑024‑03092‑338914663
    [Google Scholar]
  127. ChengH. WangZ. CuiL. WenY. ChenX. GongF. YiH. Opportunities and challenges of the human microbiome in ovarian cancer.Front. Oncol.20201016310.3389/fonc.2020.0016332133297
    [Google Scholar]
  128. SobockiB.K. Kaźmierczak-SiedleckaK. FolwarskiM. HawryłkowiczV. MakarewiczW. StachowskaE. Pancreatic cancer and gut microbiome-related aspects: A comprehensive review and dietary recommendations.Nutrients20211312442510.3390/nu1312442534959977
    [Google Scholar]
  129. ZhuZ. YiB. TangZ. ChenX. LiM. XuT. ZhaoZ. TangC. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis.BMC Cancer2023231104410.1186/s12885‑023‑11557‑z37904102
    [Google Scholar]
  130. HanZ. ZhangH. LuL. LiX. ZhangC. ZhuJ. LiC. WangQ. ChenK. Research progress in intestinal microecology in pancreatic cancer diagnosis and treatment.J. Oncol.2022202211010.1155/2022/606940336510609
    [Google Scholar]
  131. JiaW. ZhouL. LiL. ZhouP. ShenZ. Nano-based drug delivery of polyphenolic compounds for cancer treatment: Progress, opportunities, and challenges.Pharmaceuticals202316110110.3390/ph1601010136678599
    [Google Scholar]
  132. LimX. OoiL. DingU. WuH.H.L. ChinnaduraiR. Gut microbiota in patients receiving dialysis: A review.Pathogens202413980110.3390/pathogens1309080139338992
    [Google Scholar]
  133. YangJ. XuR. WangC. QiuJ. RenB. YouL. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review.Cancer Commun.202141121257127410.1002/cac2.1220434331845
    [Google Scholar]
  134. ShabbirH. KausarT. NoreenS. RehmanH.U. HussainA. HuangQ. GaniA. SuS. NawazA. In vivo screening and antidiabetic potential of polyphenol extracts from guava pulp, seeds and leaves.Animals2020109171410.3390/ani10091714
    [Google Scholar]
  135. YuanQ. ShangD. ‘Inflammatory biomarkers and nanotechnology: New insights in pancreatic cancer early detection’.Int. J. Surg.202411085280528110.1097/JS9.000000000000155538716894
    [Google Scholar]
  136. ZhangY. XuY. ZhangL. ChenY. WuT. LiuR. SuiW. ZhuQ. ZhangM. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice.Food Res. Int.202215311094510.1016/j.foodres.2022.11094535227470
    [Google Scholar]
  137. ZolotovaD. TeterovskaR. BandereD. LauberteL. NiedraS. Antidiabetic properties of the root extracts of dandelion (Taraxacum officinale) and Burdock (Arctium lappa).Plants2024137102110.3390/plants1307102138611548
    [Google Scholar]
  138. SkoczylasJ. JędrszczykE. DziadekK. DacewiczE. KopećA. Basic chemical composition, antioxidant activity and selected polyphenolic compounds profile in garlic leaves and bulbs collected at various stages of development.Molecules20232818665310.3390/molecules2818665337764429
    [Google Scholar]
  139. WenJ.J. LiM.Z. ChenC.H. HongT. YangJ.R. HuangX.J. GengF. HuJ.L. NieS.P. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota.Food. Chem.2023404Pt A13459110.1016/j.foodchem.2022.13459136444016
    [Google Scholar]
  140. RenL. GuoX. ShaoX. LiH. YaoH. Endocrine gland-derived vascular endothelial growth factor modulates proliferation, apoptosis and migration in pancreatic cancer cells.Mol. Med. Rep.20151164279428410.3892/mmr.2015.334025672937
    [Google Scholar]
  141. ChoiD. LeeS.J. LeeM.H. LeeD.K. Bitter melon seed extract does not alter photoperiodic effects on reproduction of male golden hamsters.Dev. Reprod.201721221522110.12717/DR.2017.21.2.21528785742
    [Google Scholar]
  142. JangY.C. LeungC.Y. HuangH.L. Association of menopausal hormone therapy with risk of pancreatic cancer: A systematic review and meta-analysis of cohort studies.Cancer Epidemiol. Biomarkers Prev.202332111412210.1158/1055‑9965.EPI‑22‑051836306390
    [Google Scholar]
  143. KobylkaP. KucinskaM. KujawskiJ. LazewskiD. WierzchowskiM. MuriasM. Resveratrol analogues as selective estrogen signaling pathway modulators: Structure–activity relationship.Molecules20222720697310.3390/molecules2720697336296565
    [Google Scholar]
  144. SaifM.W. Is there a role for herbal medicine in the treatment of pancreatic cancer? Highlights from the “44th ASCO Annual Meeting”. Chicago, IL, USA. May 30 - June 3, 2008.JOP200894403407
    [Google Scholar]
  145. HuJ. JiangJ. LiuR. ChengM. ZhuG. HeS. ShiB. ZhaoY. HeZ. YuH. ZhangX. ZhengH. HuaB. Clinical efficacy and safety of traditional medicine preparations combined with chemotherapy for advanced pancreatic cancer: A systematic review and meta-analysis.Front. Oncol.20221282845010.3389/fonc.2022.82845035280766
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002393013250812093213
Loading
/content/journals/cdm/10.2174/0113892002393013250812093213
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test