Skip to content
2000
image of Application of Physiologically Based Pharmacokinetic Modeling in the Research of Anti-HIV Drugs

Abstract

Physiologically based pharmacokinetic (PBPK) modeling is a computational technique that uses the physicochemical properties of drugs and physiological information to simulate plasma and tissue concentrations. PBPK modeling has become a mainstream approach in drug research and development, frequently employed to support regulatory packages for new drug applications. Understanding the pharmacokinetic characteristics of anti-HIV drugs is essential for successful treatment. In recent decades, PBPK modeling has been commonly used in the development and clinical therapy of anti-HIV medications. This review discusses the prevalence and application of PBPK modeling in the pharmacokinetics of anti-HIV drugs. Among the articles retrieved for this review, PBPK modeling was predominantly employed for anti-HIV drugs in contexts, such as pregnancy, drug–drug interactions, and pediatrics. The most commonly used software programs for this model are Simcyp, MATLAB, and PK-sim. This review will provide insights for researchers in applying PBPK models to manage patients with HIV infection, aiming to enhance the efficacy of anti-HIV drug therapy and prevent undesirable adverse effects.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002392579250902053006
2025-09-17
2025-11-05
Loading full text...

Full text loading...

References

  1. Ogutu S. Mohammed M. Mwambi H. Cytokine profiles as predictors of HIV incidence using machine learning survival models and statistical interpretable techniques. Sci. Rep. 2024 14 1 29895 10.1038/s41598‑024‑81510‑y 39622992
    [Google Scholar]
  2. Abebe M. Asgedom Y.S. Gebrekidan A.Y. Wondimagegne Y.A. Hareru H.E. Tebeje T.M. Factors associated with HIV testing among young women in Tanzania: Insights from the 2022 tanzanian demographic and health survey using anderson’s behavioral model. Front. Public Health 2025 12 1518314 10.3389/fpubh.2024.1518314 39845685
    [Google Scholar]
  3. Menéndez-Arias L. Delgado R. Update and latest advances in antiretroviral therapy. Trends Pharmacol. Sci. 2022 43 1 16 29 10.1016/j.tips.2021.10.004 34742581
    [Google Scholar]
  4. Desai N. Burns L. Gong Y. Zhi K. Kumar A. Summers N. Kumar S. Cory T.J. An update on drug–drug interactions between antiretroviral therapies and drugs of abuse in HIV systems. Expert Opin. Drug Metab. Toxicol. 2020 16 11 1005 1018 10.1080/17425255.2020.1814737 32842791
    [Google Scholar]
  5. Hamers R.L. Rinke de Wit T.F. Holmes C.B. HIV drug resistance in low-income and middle-income countries. Lancet HIV 2018 5 10 e588 e596 10.1016/S2352‑3018(18)30173‑5 30193863
    [Google Scholar]
  6. Cottura N. Kinvig H. Grañana-Castillo S. Wood A. Siccardi M. Drug-drug interactions in people living with HIV at risk of hepatic and renal impairment: Current status and future perspectives. J. Clin. Pharmacol. 2022 62 7 835 846 10.1002/jcph.2025 34990024
    [Google Scholar]
  7. Devanathan A.S. Anderson D.J.C. Cottrell M.L. Burgunder E.M. Saunders A.C. Kashuba A.D.M. Contemporary drug-drug interactions in HIV treatment. Clin. Pharmacol. Ther. 2019 105 6 1362 1377 10.1002/cpt.1393 30739315
    [Google Scholar]
  8. Nhean S. Tseng A. Back D. The intersection of drug interactions and adverse reactions in contemporary antiretroviral therapy. Curr. Opin. HIV AIDS 2021 16 6 292 302 10.1097/COH.0000000000000701 34459470
    [Google Scholar]
  9. Hazenberg P. Navaratnam K. Busuulwa P. Waitt C. Anti-infective dosing in special populations: Pregnancy. Clin. Pharmacol. Ther. 2021 109 4 977 986 10.1002/cpt.2192 33548055
    [Google Scholar]
  10. Rowland Yeo K. Gil Berglund E. Chen Y. Dose optimization informed by PBPK modeling: State-of-the art and future. Clin. Pharmacol. Ther. 2024 116 3 563 576 10.1002/cpt.3289 38686708
    [Google Scholar]
  11. Moss D.M. Marzolini C. Rajoli R.K.R. Siccardi M. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies. Expert Opin. Drug Metab. Toxicol. 2015 11 8 1203 1217 10.1517/17425255.2015.1037278 25872900
    [Google Scholar]
  12. Costa B. Gouveia M.J. Vale N. Safety and efficacy of antiviral drugs and vaccines in pregnant women: Insights from physiologically based pharmacokinetic modeling and integration of viral infection dynamics. Vaccines 2024 12 7 782 10.3390/vaccines12070782 39066420
    [Google Scholar]
  13. Riedmaier A.E. DeMent K. Huckle J. Bransford P. Stillhart C. Lloyd R. Alluri R. Basu S. Chen Y. Dhamankar V. Dodd S. Kulkarni P. Olivares-Morales A. Peng C.C. Pepin X. Ren X. Tran T. Tistaert C. Heimbach T. Kesisoglou F. Wagner C. Parrott N. Use of physiologically based pharmacokinetic (PBPK) modeling for predicting drug-food interactions: An industry perspective. AAPS J. 2020 22 6 123 10.1208/s12248‑020‑00508‑2 32981010
    [Google Scholar]
  14. Grimstein M. Yang Y. Zhang X. Grillo J. Huang S.M. Zineh I. Wang Y. Physiologically based pharmacokinetic modeling in regulatory science: An update from the U.S. Food and Drug Administration’s office of clinical pharmacology. J. Pharm. Sci. 2019 108 1 21 25 10.1016/j.xphs.2018.10.033 30385284
    [Google Scholar]
  15. Cole S. Kerwash E. Andersson A. A summary of the current drug interaction guidance from the European Medicines Agency and considerations of future updates. Drug Metab. Pharmacokinet. 2020 35 1 2 11 10.1016/j.dmpk.2019.11.005 31996310
    [Google Scholar]
  16. Lin W. Chen Y. Unadkat J.D. Zhang X. Wu D. Heimbach T. Applications, challenges, and outlook for PBPK modeling and simulation: A regulatory, industrial and academic perspective. Pharm. Res. 2022 39 8 1701 1731 10.1007/s11095‑022‑03274‑2 35552967
    [Google Scholar]
  17. Abla N. Howgate E. Rowland-Yeo K. Dickins M. Bergagnini-Kolev M.C. Chen K.F. McFeely S. Bonner J.J. Santos L.G.A. Gobeau N. Burt H. Barter Z. Jones H.M. Wesche D. Charman S.A. Möhrle J.J. Burrows J.N. Almond L.M. Development and application of a PBPK modeling strategy to support antimalarial drug development. CPT Pharmacometrics Syst. Pharmacol. 2023 12 9 1335 1346 10.1002/psp4.13013 37587640
    [Google Scholar]
  18. Perry C. Davis G. Conner T.M. Zhang T. Utilization of physiologically based pharmacokinetic modeling in clinical pharmacology and therapeutics: An overview. Curr. Pharmacol. Rep. 2020 6 3 71 84 10.1007/s40495‑020‑00212‑x 32399388
    [Google Scholar]
  19. Wei L. Mansoor N. Khan R.A. Czejka M. Ahmad T. Ahmed M. Ali M. Yang D.H. WB‐PBPK approach in predicting zidovudine pharmacokinetics in preterm neonates. Biopharm. Drug Dispos. 2019 40 9 341 349 10.1002/bdd.2208 31693190
    [Google Scholar]
  20. von Kleist M. Huisinga W. Pharmacokinetic–pharmacodynamic relationship of NRTIs and its connection to viral escape: An example based on zidovudine. Eur. J. Pharm. Sci. 2009 36 4-5 532 543 10.1016/j.ejps.2008.12.010 19150497
    [Google Scholar]
  21. Sy S.K.B. Malmberg R. Matsushima A. Asin-Prieto E. Rosenkranz B. Cotton M.F. Derendorf H. Innes S. Effect of reducing the paediatric stavudine dose by half: A physiologically-based pharmacokinetic model. Int. J. Antimicrob. Agents 2015 45 4 413 419 10.1016/j.ijantimicag.2014.12.016 25697412
    [Google Scholar]
  22. Zazo H. Colino C.I. Gutiérrez-Millán C. Cordero A.A. Bartneck M. Lanao J.M. Physiologically based pharmacokinetic (PBPK) model of gold nanoparticle-based drug delivery system for stavudine biodistribution. Pharmaceutics 2022 14 2 406 10.3390/pharmaceutics14020406 35214138
    [Google Scholar]
  23. Jacobs T.G. de Hoop-Sommen M.A. Nieuwenstein T. van der Heijden J.E.M. de Wildt S.N. Burger D.M. Colbers A. Freriksen J.J.M. Lamivudine and emtricitabine dosing proposal for children with HIV and chronic kidney disease, supported by physiologically based pharmacokinetic modelling. Pharmaceutics 2023 15 5 1424 10.3390/pharmaceutics15051424 37242665
    [Google Scholar]
  24. Abduljalil K. Pansari A. Ning J. Jamei M. Prediction of maternal and fetal acyclovir, emtricitabine, lamivudine, and metformin concentrations during pregnancy using a physiologically based pharmacokinetic modeling approach. Clin. Pharmacokinet. 2022 61 5 725 748 10.1007/s40262‑021‑01103‑0 35067869
    [Google Scholar]
  25. De Sousa Mendes M. Hirt D. Urien S. Valade E. Bouazza N. Foissac F. Blanche S. Treluyer J.M. Benaboud S. Physiologically‐based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. Br. J. Clin. Pharmacol. 2015 80 5 1031 1041 10.1111/bcp.12685 26011128
    [Google Scholar]
  26. De Sousa Mendes M. Chetty M. Are standard doses of renally-excreted antiretrovirals in older patients appropriate: A PBPK study comparing exposures in the elderly population with those in renal impairment. Drugs R D. 2019 19 4 339 350 10.1007/s40268‑019‑00285‑0 31602556
    [Google Scholar]
  27. Fischetti B. Shah K. Taft D.R. Berkowitz L. Bakshi A. Cha A. Real-world experience with higher-than-recommended doses of lamivudine in patients with varying degrees of renal impairment. Open Forum Infect. Dis. 2018 5 10 ofy225 10.1093/ofid/ofy225 30302352
    [Google Scholar]
  28. Shah K. Fischetti B. Cha A. Taft D.R. Using PBPK modeling to predict drug exposure and support dosage adjustments in patients with renal impairment: An example with lamivudine. Curr. Drug Discov. Technol. 2020 17 3 387 396 10.2174/1570163816666190214164916 30767745
    [Google Scholar]
  29. Chang S.Y. Huang W. Chapron A. Quiñones A.J.L. Wang J. Isoherranen N. Shen D.D. Kelly E.J. Himmelfarb J. Yeung C.K. Incorporating uremic solute-mediated inhibition of OAT1/3 improves PBPK prediction of tenofovir renal and systemic disposition in patients with severe kidney disease. Pharm. Res. 2023 40 11 2597 2606 10.1007/s11095‑023‑03594‑x 37704895
    [Google Scholar]
  30. Zhang X. Luo T. Yang H. Ma W.Y. He Q. Xu M. Yang Y. Physiologically-based pharmacokinetic modeling of tenofovir disoproxil fumarate in pregnant women. Curr. Drug Metab. 2022 23 14 1115 1123 10.2174/1389200224666230130093314 36718061
    [Google Scholar]
  31. De Sousa Mendes M. Hirt D. Vinot C. Valade E. Lui G. Pressiat C. Bouazza N. Foissac F. Blanche S. Lê M.P. Peytavin G. Treluyer J.M. Urien S. Benaboud S. Prediction of human fetal pharmacokinetics using ex vivo human placenta perfusion studies and physiologically based models. Br. J. Clin. Pharmacol. 2016 81 4 646 657 10.1111/bcp.12815 26518984
    [Google Scholar]
  32. Scholz E.M.B. Cao Y. Kashuba A.D.M. A cross-species comparison of antiretroviral penetration into lymph nodes using novel physiologically based pharmacokinetic models. J. Antimicrob. Chemother. 2021 76 11 2890 2893 10.1093/jac/dkab298 34374767
    [Google Scholar]
  33. Rajoli R.K.R. Demkovich Z.R. Flexner C. Owen A. Siccardi M. Predicting pharmacokinetics of a tenofovir alafenamide subcutaneous implant using physiologically based pharmacokinetic modelling. Antimicrob. Agents Chemother. 2020 64 8 e00155 e20 10.1128/AAC.00155‑20 32423957
    [Google Scholar]
  34. Moss D.M. Domanico P. Watkins M. Park S. Randolph R. Wring S. Rajoli R.K.R. Hobson J. Rannard S. Siccardi M. Owen A. Simulating intestinal transporter and enzyme activity in a physiologically based pharmacokinetic model for tenofovir disoproxil fumarate. Antimicrob. Agents Chemother. 2017 61 7 e00105 e00117 10.1128/AAC.00105‑17 28416547
    [Google Scholar]
  35. Rajoli R.K.R. Back D.J. Rannard S. Freel Meyers C.L. Flexner C. Owen A. Siccardi M. Physiologically based pharmacokinetic modelling to inform development of intramuscular long-acting nanoformulations for HIV. Clin. Pharmacokinet. 2015 54 6 639 650 10.1007/s40262‑014‑0227‑1 25523214
    [Google Scholar]
  36. Duan P. Fisher J.W. Yoshida K. Zhang L. Burckart G.J. Wang J. Physiologically based pharmacokinetic prediction of linezolid and emtricitabine in neonates and infants. Clin. Pharmacokinet. 2017 56 4 383 394 10.1007/s40262‑016‑0445‑9 27596256
    [Google Scholar]
  37. Liu X.I. van den Anker J.N. Burckart G.J. Dallmann A. Evalua-tion of physiologically based pharmacokinetic models to predict the absorption of BCS class I drugs in different pediatric age groups. J. Clin. Pharmacol. 2021 61 S1 S94 S107 (Suppl. 1) 10.1002/jcph.1845 34185902
    [Google Scholar]
  38. Liu X.I. Green D.J. van den Anker J.N. Rakhmanina N.Y. Ahmadzia H.K. Momper J.D. Park K. Burckart G.J. Dallmann A. Mechanistic modeling of placental drug transfer in humans: How do differences in maternal/fetal fraction of unbound drug and placental influx/efflux transfer rates affect fetal pharmacokinetics? Front Pediatr. 2021 9 723006 10.3389/fped.2021.723006 34733804
    [Google Scholar]
  39. Liu X.I. Momper J.D. Rakhmanina N. van den Anker J.N. Green D.J. Burckart G.J. Best B.M. Mirochnick M. Capparelli E.V. Dallmann A. Physiologically based pharmacokinetic models to predict maternal pharmacokinetics and fetal exposure to emtricitabine and acyclovir. J. Clin. Pharmacol. 2020 60 2 240 255 10.1002/jcph.1515 31489678
    [Google Scholar]
  40. Xia B. Heimbach T. Gollen R. Nanavati C. He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013 15 4 1012 1024 10.1208/s12248‑013‑9505‑3 23835676
    [Google Scholar]
  41. De Sousa Mendes M. Lui G. Zheng Y. Pressiat C. Hirt D. Valade E. Bouazza N. Foissac F. Blanche S. Treluyer J.M. Urien S. Benaboud S. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin. Pharmacokinet. 2017 56 5 537 550 10.1007/s40262‑016‑0457‑5 27766562
    [Google Scholar]
  42. Costa B. Gouveia M.J. Vale N. PBPK modeling of lamotrigine and efavirenz during pregnancy: Implications for personalized dosing and drug-drug interaction management. Pharmaceutics 2024 16 9 1163 10.3390/pharmaceutics16091163 39339201
    [Google Scholar]
  43. Coppola P. Butler A. Cole S. Kerwash E. Total and free blood and plasma concentration changes in pregnancy for medicines highly bound to plasma proteins: Application of physiologically based pharmacokinetic modelling to understand the impact on efficacy. Pharmaceutics 2023 15 10 2455 10.3390/pharmaceutics15102455 37896215
    [Google Scholar]
  44. Shenkoya B. Atoyebi S. Eniayewu I. Akinloye A. Olagunju A. Mechanistic modeling of maternal lymphoid and fetal plasma antiretroviral exposure during the third trimester. Front Pediatr. 2021 9 734122 10.3389/fped.2021.734122 34616699
    [Google Scholar]
  45. Rajoli R.K.R. Curley P. Chiong J. Back D. Flexner C. Owen A. Siccardi M. Predicting drug-drug interactions between rifampicin and long-acting cabotegravir and rilpivirine using physiologically based pharmacokinetic modeling. J. Infect. Dis. 2019 219 11 1735 1742 10.1093/infdis/jiy726 30566691
    [Google Scholar]
  46. Pan X. Rowland Yeo K. Physiologically based pharmacokinetic modeling to determine the impact of CYP2B6 genotype on efavirenz exposure in children, mothers and breastfeeding infants. Clin. Pharmacol. Ther. 2023 114 1 182 191 10.1002/cpt.2912 37078251
    [Google Scholar]
  47. Chetty M. Danckwerts M.P. Julsing A. Prediction of the exposure to a 400-mg daily dose of efavirenz in pregnancy: Is this dose adequate in extensive metabolisers of CYP2B6? Eur. J. Clin. Pharmacol. 2020 76 8 1143 1150 10.1007/s00228‑020‑02890‑4 32377759
    [Google Scholar]
  48. Chetty M. Cain T. Wedagedera J. Rostami-Hodjegan A. Jamei M. Application of physiologically based pharmacokinetic (PBPK) modeling within a bayesian framework to identify poor metabolizers of efavirenz (PM), using a test dose of efavirenz. Front. Pharmacol. 2018 9 247 10.3389/fphar.2018.00247 29636682
    [Google Scholar]
  49. Curley P. Rajoli R.K.R. Moss D.M. Liptrott N.J. Letendre S. Owen A. Siccardi M. Efavirenz is predicted to accumulate in brain tissue: An in silico, in vitro, and in vivo investigation. Antimicrob. Agents Chemother. 2017 61 1 e01841 e16 10.1128/AAC.01841‑16 27799216
    [Google Scholar]
  50. De Roche M. Siccardi M. Stoeckle M. Livio F. Back D. Battegay M. Marzolini C. Efavirenz in an obese HIV-infected patient--a report and an in vitro-in vivo extrapolation model indicate risk of underdosing. Antivir. Ther. 2012 17 7 1381 1384 10.3851/IMP2107 22910127
    [Google Scholar]
  51. Siccardi M. Martin P. Smith D. Curley P. McDonald T. Giardiello M. Liptrott N. Rannard S. Owen A. Towards a rational design of solid drug nanoparticles with optimised pharmacological properties. J. Interdiscip. Nanomed. 2016 1 3 110 123 10.1002/jin2.21 27774308
    [Google Scholar]
  52. Berton M. Bettonte S. Stader F. Decosterd L. Tarr P.E. Livio F. Cavassini M. Braun D.L. Kusejko K. Hachfeld A. Bernasconi E. Calmy A. Schmid P. Battegay M. Marzolini C. Abela I. Aebi-Popp K. Anagnostopoulos A. Battegay M. Bernasconi E. Braun D.L. Bucher H. Calmy A. Cavassini M. Ciuffi A. Dollenmaier G. Egger M. Elzi L. Fehr J. Fellay J. Furrer H. Fux C. Günthard H. Hachfeld A. Haerry D. Hasse B. Hirsch H. Hoffmann M. Hösli I. Huber M. Jackson-Perry D. Kahlert C. Kaiser L. Keiser O. Klimkait T. Kouyos R.D. Kovari H. Kusejko K. Labhardt N. Leuzinger K. de Tejada B.M. Marzolini C. Metzner K.J. Müller N. Nemeth J. Nicca D. Notter J. Paioni P. Pantaleo G. Perreau M. Rauch A. Salazar-Vizcaya L. Schmid P. Speck R. Stöckle M. Tarr P. Trkola A. Wandeler G. Weisser M. Yerly S. Antiretroviral drug exposure and response in obese and morbidly obese people with human immunodeficiency virus (HIV): A study combining modelling and swiss HIV cohort data. Clin. Infect. Dis. 2024 78 1 98 110 10.1093/cid/ciad495 37602428
    [Google Scholar]
  53. Litou C. Turner D.B. Holmstock N. Ceulemans J. Box K.J. Kostewicz E. Kuentz M. Holm R. Dressman J. Combining biorelevant in vitro and in silico tools to investigate the in vivo performance of the amorphous solid dispersion formulation of etravirine in the fed state. Eur. J. Pharm. Sci. 2020 149 105297 10.1016/j.ejps.2020.105297 32151705
    [Google Scholar]
  54. Bettonte S. Berton M. Stader F. Battegay M. Marzolini C. Drug exposure of long-acting cabotegravir and rilpivirine in older people with human immunodeficiency virus: A pharmacokinetic modeling study. Open Forum Infect. Dis. 2024 11 4 ofae171 10.1093/ofid/ofae171 38595957
    [Google Scholar]
  55. Atoyebi S. Bunglawala F. Cottura N. Grañana-Castillo S. Montanha M.C. Olagunju A. Siccardi M. Waitt C. Physiologically‐based pharmacokinetic modelling of long‐acting injectable cabotegravir and rilpivirine in pregnancy. Br. J. Clin. Pharmacol. 2025 91 4 989 1002 10.1111/bcp.16006 38340019
    [Google Scholar]
  56. Bettonte S. Berton M. Stader F. Battegay M. Marzolini C. Effect of obesity on the exposure of long-acting cabotegravir and rilpivirine: A modelling study. Clin. Infect. Dis. 2024 79 2 477 486 10.1093/cid/ciae060 38309958
    [Google Scholar]
  57. Bettonte S. Berton M. Stader F. Battegay M. Marzolini C. Management of drug-drug interactions between long-acting cabotegravir and rilpivirine and comedications with inducing properties: A modeling study. Clin. Infect. Dis. 2023 76 7 1225 1236 10.1093/cid/ciac901 36377436
    [Google Scholar]
  58. Bettonte S. Berton M. Stader F. Battegay M. Marzolini C. Intramuscular cabotegravir and rilpivirine concentrations after switching from efavirenz‐containing regimen. Br. J. Clin. Pharmacol. 2023 89 12 3618 3628 10.1111/bcp.15867 37522811
    [Google Scholar]
  59. Grañana-Castillo S. Montanha M.C. Bearon R. Khoo S. Siccardi M. Evaluation of drug-drug interaction between rilpivirine and rifapentine using PBPK modelling. Front. Pharmacol. 2022 13 1076266 10.3389/fphar.2022.1076266 36588698
    [Google Scholar]
  60. Rajoli R.K.R. Back D.J. Rannard S. Meyers C.F. Flexner C. Owen A. Siccardi M. In silico dose prediction for long-acting rilpivirine and cabotegravir administration to children and adolescents. Clin. Pharmacokinet. 2018 57 2 255 266 10.1007/s40262‑017‑0557‑x 28540638
    [Google Scholar]
  61. Rajoli R.K.R. Flexner C. Chiong J. Owen A. Donnelly R.F. Larrañeta E. Siccardi M. Modelling the intradermal delivery of microneedle array patches for long-acting antiretrovirals using PBPK. Eur. J. Pharm. Biopharm. 2019 144 101 109 10.1016/j.ejpb.2019.09.011 31525446
    [Google Scholar]
  62. Bukkems V.E. van Hove H. Roelofsen D. Freriksen J.J.M. van Ewijk-Beneken Kolmer E.W.J. Burger D.M. van Drongelen J. Svensson E.M. Greupink R. Colbers A. Prediction of maternal and fetal doravirine exposure by integrating physiologically based pharmacokinetic modeling and human placenta perfusion experiments. Clin. Pharmacokinet. 2022 61 8 1129 1141 10.1007/s40262‑022‑01127‑0 35579825
    [Google Scholar]
  63. Yee K.L. Cabalu T.D. Kuo Y. Fillgrove K.L. Liu Y. Triantafyllou I. McClain S. Dreyer D. Wenning L. Stoch S.A. Iwamoto M. Sanchez R.I. Khalilieh S.G. Physiologically based pharmacokinetic modeling of doravirine and its major metabolite to support dose adjustment with rifabutin. J. Clin. Pharmacol. 2021 61 3 394 405 10.1002/jcph.1747 32989795
    [Google Scholar]
  64. Arora S. Pansari A. Kilford P. Jamei M. Gardner I. Turner D.B. Biopharmaceutic in vitro in vivo extrapolation (IVIV_E) informed physiologically-based pharmacokinetic model of ritonavir norvir tablet absorption in humans under fasted and fed state conditions. Mol. Pharm. 2020 17 7 2329 2344 10.1021/acs.molpharmaceut.0c00043 32427480
    [Google Scholar]
  65. Colbers A. Greupink R. Litjens C. Burger D. Russel F.G.M. Physiologically based modelling of darunavir/ritonavir pharmacokinetics during pregnancy. Clin. Pharmacokinet. 2016 55 3 381 396 10.1007/s40262‑015‑0325‑8 26369773
    [Google Scholar]
  66. Shono Y. Jantratid E. Dressman J.B. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: Case example nelfinavir. Eur. J. Pharm. Biopharm. 2011 79 2 349 356 10.1016/j.ejpb.2011.04.005 21527341
    [Google Scholar]
  67. Salerno S.N. Capparelli E.V. McIlleron H. Gerhart J.G. Dumond J.B. Kashuba A.D.M. Denti P. Gonzalez D. Leveraging physiologically based pharmacokinetic modeling to optimize dosing for lopinavir/ritonavir with rifampin in pediatric patients. Pharmacotherapy 2023 43 7 638 649 10.1002/phar.2703 35607886
    [Google Scholar]
  68. Wagner C. Zhao P. Arya V. Mullick C. Struble K. Au S. Physiologically based pharmacokinetic modeling for predicting the effect of intrinsic and extrinsic factors on darunavir or lopinavir exposure coadministered with ritonavir. J. Clin. Pharmacol. 2017 57 10 1295 1304 10.1002/jcph.936 28569994
    [Google Scholar]
  69. Atoyebi S. Montanha M.C. Nakijoba R. Orrell C. Mugerwa H. Siccardi M. Denti P. Waitt C. Physiologically based pharmacokinetic modeling of drug–drug interactions between ritonavir‐boosted atazanavir and rifampicin in pregnancy. CPT Pharmacometrics Syst. Pharmacol. 2024 13 11 1967 1977 10.1002/psp4.13268 39517110
    [Google Scholar]
  70. Montanha M.C. Fabrega F. Howarth A. Cottura N. Kinvig H. Bunglawala F. Lloyd A. Denti P. Waitt C. Siccardi M. Predicting drug-drug interactions between rifampicin and ritonavir-boosted atazanavir using PBPK modelling. Clin. Pharmacokinet. 2022 61 3 375 386 10.1007/s40262‑021‑01067‑1 34635995
    [Google Scholar]
  71. Berlin M. Ruff A. Kesisoglou F. Xu W. Wang M.H. Dressman J.B. Advances and challenges in PBPK modeling – Analysis of factors contributing to the oral absorption of atazanavir, a poorly soluble weak base. Eur. J. Pharm. Biopharm. 2015 93 267 280 10.1016/j.ejpb.2015.03.031 25872159
    [Google Scholar]
  72. Dong Z. Li J. Wu F. Zhao P. Lee S.C. Zhang L. Seo P. Zhang L. Application of physiologically-based pharmacokinetic modeling to predict gastric pH-dependent drug-drug interactions for weak base drugs. CPT Pharmacometrics Syst. Pharmacol. 2020 9 8 456 465 10.1002/psp4.12541 32633893
    [Google Scholar]
  73. Schalkwijk S. Buaben A.O. Freriksen J.J.M. Colbers A.P. Burger D.M. Greupink R. Russel F.G.M. Prediction of fetal darunavir exposure by integrating human ex-vivo placental transfer and physiologically based pharmacokinetic modeling. Clin. Pharmacokinet. 2018 57 6 705 716 10.1007/s40262‑017‑0583‑8 28744795
    [Google Scholar]
  74. Segregur D. Mann J. Moir A. Karlsson E.M. Dressman J. Biorelevant in vitro tools and in silico modeling to assess pH-dependent drug-drug interactions for salts of weak acids: Case example potassium raltegravir. J. Pharm. Sci. 2022 111 2 517 528 10.1016/j.xphs.2021.09.037 34597624
    [Google Scholar]
  75. Moreira F.L. Tarozzo M.M.B. Nardotto G.H.B. Gonçalves J.C.S. Schmidt S. de-Moraes N.V. Assessing the contribution of UGT isoforms on raltegravir drug disposition through PBPK modeling. Eur. J. Pharm. Sci. 2022 179 106309 10.1016/j.ejps.2022.106309 36265816
    [Google Scholar]
  76. Moss D.M. Siccardi M. Back D.J. Owen A. Predicting intestinal absorption of raltegravir using a population-based ADME simulation. J. Antimicrob. Chemother. 2013 68 7 1627 1634 10.1093/jac/dkt084 23515248
    [Google Scholar]
  77. Ning J. Pansari A. Rowland Yeo K. Heikkinen A.T. Waitt C. Almond L.M. Using PBPK modeling to supplement clinical data and support the safe and effective use of dolutegravir in pregnant and lactating women. CPT Pharmacometrics Syst. Pharmacol. 2024 13 11 1924 1938 10.1002/psp4.13251 39478302
    [Google Scholar]
  78. Freriksen J.J.M. Schalkwijk S. Colbers A.P. Abduljalil K. Russel F.G.M. Burger D.M. Greupink R. Assessment of maternal and fetal dolutegravir exposure by integrating ex vivo placental perfusion data and physiologically-based pharmacokinetic modeling. Clin. Pharmacol. Ther. 2020 107 6 1352 1361 10.1002/cpt.1748 31868223
    [Google Scholar]
  79. Dallmann A. van den Anker J. Ahmadzia H.K. Rakhmanina N. Mechanistic modeling of the drug-drug interaction between efavi-renz and dolutegravir: Is this interaction clinically relevant when switching from efavirenz to dolutegravir during pregnancy? J. Clin. Pharmacol. 2023 63 S1 S81 S95 (Suppl. 1) 10.1002/jcph.2225 37317489
    [Google Scholar]
  80. Berton M. Bettonte S. Stader F. Battegay M. Marzolini C. Impact of obesity on the drug-drug interaction between dolutegravir and rifampicin or any other strong inducers. Open Forum Infect. Dis. 2023 10 7 ofad361 10.1093/ofid/ofad361 37496606
    [Google Scholar]
  81. Bunglawala F. Rajoli R.K.R. Mirochnick M. Owen A. Siccardi M. Prediction of dolutegravir pharmacokinetics and dose optimization in neonates via physiologically based pharmacokinetic (PBPK) modelling. J. Antimicrob. Chemother. 2020 75 3 640 647 10.1093/jac/dkz506 31860112
    [Google Scholar]
  82. Stader F. Courlet P. Decosterd L.A. Battegay M. Marzolini C. Physiologically-based pharmacokinetic modeling combined with swiss HIV cohort study data supports no dose adjustment of bictegravir in elderly individuals living with HIV. Clin. Pharmacol. Ther. 2021 109 4 1025 1029 10.1002/cpt.2178 33521960
    [Google Scholar]
  83. Stader F. Battegay M. Marzolini C. Physiologically-based pharmacokinetic modeling to support the clinical management of drug-drug interactions with bictegravir. Clin. Pharmacol. Ther. 2021 110 5 1231 1239 10.1002/cpt.2221 33626178
    [Google Scholar]
  84. Kinvig H. Rajoli R.K.R. Pertinez H. Vora L.K. Volpe-Zanutto F. Donnelly R.F. Rannard S. Flexner C. Siccardi M. Owen A. Physiologically based pharmacokinetic modelling of cabotegravir microarray patches in rats and humans. Pharmaceutics 2023 15 12 2709 10.3390/pharmaceutics15122709 38140050
    [Google Scholar]
  85. Kimoto E. Vourvahis M. Scialis R.J. Eng H. Rodrigues A.D. Varma M.V.S. Mechanistic evaluation of the complex drug-drug interactions of maraviroc: Contribution of cytochrome P450 3A, P-glycoprotein and organic anion transporting polypeptide 1B1. Drug Metab. Dispos. 2019 47 5 493 503 10.1124/dmd.118.085241 30862625
    [Google Scholar]
  86. Hyland R. Dickins M. Collins C. Jones H. Jones B. Maraviroc: in vitro assessment of drug–drug interaction potential. Br. J. Clin. Pharmacol. 2008 66 4 498 507 10.1111/j.1365‑2125.2008.03198.x 18647303
    [Google Scholar]
  87. Salem F. Nguyen D. Bush M. Moore K.P. Mudunuru J. Stamatopoulos K. Thakkar N. Taskar K.S. Development of a physiologically based pharmacokinetic model of fostemsavir and its pivotal application to support dosing in pregnancy. CPT Pharmacometrics Syst. Pharmacol. 2024 13 11 1881 1892 10.1002/psp4.13156 38690782
    [Google Scholar]
  88. Nguyen D. Miao X. Taskar K. Magee M. Gorycki P. Moore K. Tai G. No dose adjustment of metformin or substrates of organic cation transporters (OCT)1 and OCT2 and multidrug and toxin extrusion protein (MATE)1/2K with fostemsavir coadministration based on modeling approaches. Pharmacol. Res. Perspect. 2024 12 4 e1238 10.1002/prp2.1238 38988092
    [Google Scholar]
  89. Pan X. Stader F. Abduljalil K. Gill K.L. Johnson T.N. Gardner I. Jamei M. Development and application of a physiologically-based pharmacokinetic model to predict the pharmacokinetics of therapeutic proteins from full-term neonates to adolescents. AAPS J 2020 22 4 76 http://dx.doi.org/ARTN 7610.1208/s12248-020-00460-1 10.1208/s12248‑020‑00460‑1 32449129
    [Google Scholar]
  90. Abduljalil K. Badhan R.K.S. Drug dosing during pregnancy—opportunities for physiologically based pharmacokinetic models. J. Pharmacokinet. Pharmacodyn. 2020 47 4 319 340 10.1007/s10928‑020‑09698‑w 32592111
    [Google Scholar]
  91. Berezowska M. Sharma P. Pilla Reddy V. Coppola P. Physiologically Based Pharmacokinetic modelling of drugs in pregnancy: A mini‐review on availability and limitations. Fundam. Clin. Pharmacol. 2024 38 3 402 409 10.1111/fcp.12967 37968879
    [Google Scholar]
  92. Boyle A. Hodge D. Marzolini C. Khoo S. Clinical pharmacodynamics, pharmacokinetics, and drug interaction profile of doravirine. Clin. Pharmacokinet. 2019 58 12 1553 1565 10.1007/s40262‑019‑00806‑9 31388941
    [Google Scholar]
  93. Reznicek J. Ceckova M. Cerveny L. Müller F. Staud F. Emtricitabine is a substrate of MATE1 but not of OCT1, OCT2, P-gp, BCRP or MRP2 transporters. Xenobiotica 2017 47 1 77 85 10.3109/00498254.2016.1158886 27052107
    [Google Scholar]
  94. Eke A.C. Shoji K. Best B.M. Momper J.D. Stek A.M. Cressey T.R. Mirochnick M. Capparelli E.V. Population pharmacokinetics of tenofovir in pregnant and postpartum women using tenofovir disoproxil fumarate. Antimicrob. Agents Chemother. 2021 65 3 e02168 e20 10.1128/AAC.02168‑20 33318014
    [Google Scholar]
  95. Tsirizani L. Mohsenian Naghani S. Waalewijn H. Szubert A. Mulenga V. Chabala C. Bwakura-Dangarembizi M. Chitsamatanga M. Rutebarika D.A. Musiime V. Kasozi M. Lugemwa A. Monkiewicz L.N. McIlleron H.M. Burger D.M. Gibb D.M. Denti P. Wasmann R.E. Colbers A. Pharmacokinetics of once-daily darunavir/ritonavir in second-line treatment in African children with HIV. J. Antimicrob. Chemother. 2024 79 11 2990 2998 10.1093/jac/dkae319 39302766
    [Google Scholar]
  96. Enioutina E.Y. Constance J.E. Stockmann C. Linakis M.W. Yu T. Rower J.E. Balch A.H. Sherwin C.M. Pharmacokinetic considerations in the use of antivirals in neonates. Expert Opin. Drug Metab. Toxicol. 2015 11 12 1861 1878 10.1517/17425255.2015.1108963 26535960
    [Google Scholar]
  97. Zhang W. Zhang Q. Cao Z. Zheng L. Hu W. Physiologically based pharmacokinetic modeling in neonates: Current status and future perspectives. Pharmaceutics 2023 15 12 2765 10.3390/pharmaceutics15122765 38140105
    [Google Scholar]
  98. Huang X. Wang G. Huang J. Liang W. Guan H. Liu H. Deng Y. You Y. Zhang B. Bioequivalence and pharmacokinetics study of two zidovudine/lamivudine tablets in Chinese healthy volunteers. Clin. Pharmacol. Drug Dev. 2024 13 1 14 20 10.1002/cpdd.1335 37986709
    [Google Scholar]
  99. Clarke D.F. Penazzato M. Capparelli E. Cressey T.R. Siberry G. Sugandhi N. Mirochnick M. Group W.H.O.P.A.W. Prevention and treatment of HIV infection in neonates: Evidence base for existing WHO dosing recommendations and implementation considerations. Expert Rev. Clin. Pharmacol. 2018 11 1 83 93 10.1080/17512433.2018.1393331 29039686
    [Google Scholar]
  100. Mulligan N. Best B.M. Wang J. Capparelli E.V. Stek A. Barr E. Buschur S.L. Acosta E.P. Smith E. Chakhtoura N. Burchett S. Mirochnick M. Team I.P.P. Dolutegravir pharmacokinetics in pregnant and postpartum women living with HIV. AIDS 2018 32 6 729 737 10.1097/QAD.0000000000001755 29369162
    [Google Scholar]
  101. Stader F. Kinvig H. Penny M.A. Battegay M. Siccardi M. Marzolini C. Physiologically based pharmacokinetic modelling to identify pharmacokinetic parameters driving drug exposure changes in the elderly. Clin. Pharmacokinet. 2020 59 3 383 401 10.1007/s40262‑019‑00822‑9 31583609
    [Google Scholar]
  102. Schlender J.F. Meyer M. Thelen K. Krauss M. Willmann S. Eissing T. Jaehde U. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin. Pharmacokinet. 2016 55 12 1573 1589 10.1007/s40262‑016‑0422‑3 27351180
    [Google Scholar]
  103. Wu X. Sia J.E.V. Hai M. Lai X. Li H. Cui C. Liu D. Physiologically based pharmacokinetic model for older adults and its application in geriatric drug research. Curr. Drug Metab. 2023 24 3 211 222 10.2174/1389200224666230509104404 37165496
    [Google Scholar]
  104. Thoueille P. Alves Saldanha S. Desfontaine V. Kusejko K. Courlet P. Andre P. Cavassini M. Decosterd L.A. Buclin T. Guidi M. Swiss H.I.V.C.S. Population pharmacokinetic modelling to characterize the effect of chronic kidney disease on tenofovir exposure after tenofovir alafenamide administration. J. Antimicrob. Chemother. 2023 78 6 1433 1443 10.1093/jac/dkad103 37042359
    [Google Scholar]
  105. Zeuli J. Rizza S. Bhatia R. Temesgen Z. Bictegravir, a novel integrase inhibitor for the treatment of HIV infection. Drugs Today (Barc) 2019 55 11 669 682 10.1358/dot.2019.55.11.3068796 31840682
    [Google Scholar]
  106. Yu J. Wang Y. Ragueneau-Majlessi I. Strong pharmacokinetic drug-drug interactions with drugs approved by the US Food and Drug Administration in 2021: Mechanisms and clinical implications. Clin. Ther. 2022 44 11 1536 1544 10.1016/j.clinthera.2022.09.009 36210218
    [Google Scholar]
  107. Foti R.S. Utility of PBPK modeling in predicting and characterizing clinical drug interactions. Drug Metab. Dispos. 2024 53 1 100021 10.1124/dmd.123.001384 39884811
    [Google Scholar]
  108. Heydari M. Foroozanfar Z. Bazmi S. Mohammadi Z. Joulaei H. Ansari G. The prevalence of antiretroviral drug interactions with other drugs used in women living with HIV and its association with HIV drug change and patient compliance. BMC Infect. Dis. 2024 24 1 1123 10.1186/s12879‑024‑09958‑x 39379848
    [Google Scholar]
  109. Ridge S. Yang X. Madabushi R. Ramamoorthy A. Addressing drug-drug interaction knowledge gaps at the time of approval: An analysis of FDA postmarketing requirements and commitments from 2009 to 2023. J. Clin. Pharmacol. 2025 65 3 378 388 10.1002/jcph.6142 39363538
    [Google Scholar]
  110. Sun Z. Zhao N. Zhao X. Wang Z. Liu Z. Cui Y. Application of physiologically based pharmacokinetic modeling of novel drugs approved by the U.S. food and drug administration. Eur. J. Pharm. Sci. 2024 200 106838 10.1016/j.ejps.2024.106838 38960205
    [Google Scholar]
  111. Min J.S. Bae S.K. Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch. Pharm. Res. 2017 40 12 1356 1379 10.1007/s12272‑017‑0976‑0 29079968
    [Google Scholar]
  112. Sanchez R.I. Fillgrove K.L. Yee K.L. Liang Y. Lu B. Tatavarti A. Liu R. Anderson M.S. Behm M.O. Fan L. Li Y. Butterton J.R. Iwamoto M. Khalilieh S.G. Characterisation of the absorption, distribution, metabolism, excretion and mass balance of doravirine, a non-nucleoside reverse transcriptase inhibitor in humans. Xenobiotica 2019 49 4 422 432 10.1080/00498254.2018.1451667 29557716
    [Google Scholar]
  113. Khalilieh S.G. Yee K.L. Sanchez R.I. Liu R. Fan L. Martell M. Jordan H. Iwamoto M. Multiple doses of rifabutin reduce exposure of doravirine in healthy subjects. J. Clin. Pharmacol. 2018 58 8 1044 1052 10.1002/jcph.1103 29723418
    [Google Scholar]
  114. Hodge D. Back D.J. Gibbons S. Khoo S.H. Marzolini C. Pharmacokinetics and drug-drug interactions of long-acting intramuscular cabotegravir and rilpivirine. Clin. Pharmacokinet. 2021 60 7 835 853 10.1007/s40262‑021‑01005‑1 33830459
    [Google Scholar]
  115. Kis O. Zastre J.A. Hoque M.T. Walmsley S.L. Bendayan R. Role of drug efflux and uptake transporters in atazanavir intestinal permeability and drug-drug interactions. Pharm. Res. 2013 30 4 1050 1064 10.1007/s11095‑012‑0942‑y 23224979
    [Google Scholar]
  116. Tupova L. Ceckova M. Ambrus C. Sorf A. Ptackova Z. Gaborik Z. Staud F. Interactions between maraviroc and the ABCB1, ABCG2, and ABCC2 transporters: An important role in transplacental pharmacokinetics. Drug Metab. Dispos. 2019 47 9 954 960 10.1124/dmd.119.087684 31266750
    [Google Scholar]
  117. Vourvahis M. Plotka A. Kantaridis C. Fang A. Heera J. The effects of boceprevir and telaprevir on the pharmacokinetics of maraviroc: An open-label, fixed-sequence study in healthy volunteers. J. Acquir. Immune Defic. Syndr. 2014 65 5 564 570 10.1097/QAI.0000000000000090 24346637
    [Google Scholar]
  118. Viviani R. Berres J. Stingl J.C. Phenotypic models of drug-drug-gene interactions mediated by cytochrome drug-metabolizing enzymes. Clin. Pharmacol. Ther. 2024 116 3 592 601 10.1002/cpt.3188 38318716
    [Google Scholar]
  119. Zondo N.M. Sobia P. Sivro A. Ngcapu S. Ramsuran V. Archary D. Pharmacogenomics of drug transporters for antiretroviral long-acting pre-exposure prophylaxis for HIV. Front. Genet. 2022 13 940661 10.3389/fgene.2022.940661 36246609
    [Google Scholar]
  120. Wang P.F. Neiner A. Kharasch E.D. Efavirenz metabolism: Influence of polymorphic CYP2B6 variants and stereochemistry. Drug Metab. Dispos. 2019 47 10 1195 1205 10.1124/dmd.119.086348 31324697
    [Google Scholar]
  121. Vo T.T. Varghese Gupta S. Role of cytochrome P450 2B6 pharmacogenomics in determining efavirenz-mediated central nervous system toxicity, treatment outcomes, and dosage adjustments in patients with human immunodeficiency virus infection. Pharmacotherapy 2016 36 12 1245 1254 10.1002/phar.1852 27779789
    [Google Scholar]
  122. Cattaneo D. Gervasoni C. Meraviglia P. Landonio S. Fucile S. Cozzi V. Baldelli S. Pellegrini M. Galli M. Clementi E. Inter- and intra-patient variability of raltegravir pharmacokinetics in HIV-1-infected subjects. J. Antimicrob. Chemother. 2012 67 2 460 464 10.1093/jac/dkr498 22127581
    [Google Scholar]
  123. Belkhir L. Seguin-Devaux C. Elens L. Pauly C. Gengler N. Schneider S. Ruelle J. Haufroid V. Vandercam B. Impact of UGT1A1 polymorphisms on Raltegravir and its glucuronide plasma concentrations in a cohort of HIV-1 infected patients. Sci. Rep. 2018 8 1 7359 10.1038/s41598‑018‑25803‑z 29743555
    [Google Scholar]
  124. Lucas A. Wyatt C.M. HIV at 40: Kidney disease in HIV treatment, prevention, and cure. Kidney Int. 2022 102 4 740 749 10.1016/j.kint.2022.06.021 35850290
    [Google Scholar]
  125. Drak D. Shamu T. Heron J.E. Chimbetete C. Dahwa R. Gracey D.M. Renal function and associated mortality risk in adults commencing HIV antiretroviral therapy in Zimbabwe. AIDS 2022 36 5 631 636 10.1097/QAD.0000000000003153 34923518
    [Google Scholar]
  126. Malik P.R.V. Yeung C.H.T. Ismaeil S. Advani U. Djie S. Edginton A.N. A physiological approach to pharmacokinetics in chronic kidney disease. J. Clin. Pharmacol. 2020 60 S1 S52 S62 (Suppl. 1) 10.1002/jcph.1713 33205424
    [Google Scholar]
  127. Rowland Yeo K. Hatley O. Small B.G. Johnson T.N. Physiologically based pharmacokinetic modelling to predict imatinib exposures in cancer patients with renal dysfunction: A case study. Pharmaceutics 2023 15 7 1922 10.3390/pharmaceutics15071922 37514108
    [Google Scholar]
  128. Zamir A. Alqahtani F. Rasool M.F. Chronic kidney disease and physiologically based pharmacokinetic modeling: A critical review of existing models. Expert Opin. Drug Metab. Toxicol. 2024 20 1-2 95 105 10.1080/17425255.2024.2311154 38270999
    [Google Scholar]
  129. Cattaneo D. Capetti A. Rizzardini G. Drug–drug interactions of a two-drug regimen of dolutegravir and lamivudine for HIV treatment. Expert Opin. Drug Metab. Toxicol. 2019 15 3 245 252 10.1080/17425255.2019.1577821 30704313
    [Google Scholar]
  130. Bailin S.S. Gabriel C.L. Wanjalla C.N. Koethe J.R. Obesity and weight gain in persons with HIV. Curr. HIV/AIDS Rep. 2020 17 2 138 150 10.1007/s11904‑020‑00483‑5 32072466
    [Google Scholar]
  131. Zino L. Stalenhoef J. Colbers A. Burger D.M. Outcomes of modern antiretroviral therapy in obese individuals living with HIV. J. Antimicrob. Chemother. 2022 77 12 3215 3220 10.1093/jac/dkac368 36322474
    [Google Scholar]
  132. De Nicolò A. Palermiti A. Dispinseri S. Marchetti G. Trunfio M. De Vivo E. D’Avolio A. Muscatello A. Gori A. Rusconi S. Bruzzesi E. Gabrieli A. Bernasconi D.P. Bandera A. Nozza S. Calcagno A. Plasma, intracellular and lymph node antiretroviral concentrations and HIV DNA change during primary HIV infection: Results from the INACTION P25 study. Int. J. Antimicrob. Agents 2024 64 2 107200 10.1016/j.ijantimicag.2024.107200 38768738
    [Google Scholar]
  133. Wong A. Chu Y. Chen H. Feng W. Ji L. Qin C. Stocks M.J. Marlow M. Gershkovich P. Distribution of lamivudine into lymph node HIV reservoir. Int. J. Pharm. 2023 648 123574 10.1016/j.ijpharm.2023.123574 37935311
    [Google Scholar]
  134. Sánchez Martín A. Cabrera Figueroa S. Cruz Guerrero R. Hurtado L.P. Hurlé A.D.G. Carracedo Álvarez Á. Impact of pharmacogenetics on CNS side effects related to efavirenz. Pharmacogenomics 2013 14 10 1167 1178 10.2217/pgs.13.111 23859571
    [Google Scholar]
  135. Ranzani A. Castelli F. Di Biagio A. d’Arminio Monforte A. D’Avolio A. Soria A. Bai F. Focà E. Taramasso L. Calcagno A. Bresciani E. Torsello A. Bonfanti P. Lapadula G. Influence of efavirenz and 8‐hydroxy‐efavirenz plasma levels on cognition and central nervous system side effects. HIV Med. 2024 25 4 491 497 10.1111/hiv.13600 38104964
    [Google Scholar]
  136. Neary M. Owen A. Olagunju A. Pharmacokinetics of HIV therapies in pregnant patients: An update. Expert Opin. Drug Metab. Toxicol. 2020 16 6 449 461 10.1080/17425255.2020.1754792 32271621
    [Google Scholar]
  137. Isoherranen N. Physiologically based pharmacokinetic modeling of small molecules: How much progress have we made? Drug Metab. Dispos. 2025 53 1 100013 10.1124/dmd.123.000960 39884807
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002392579250902053006
Loading
/content/journals/cdm/10.2174/0113892002392579250902053006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test