Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Physiologically based pharmacokinetic (PBPK) modeling is a computational technique that uses the physicochemical properties of drugs and physiological information to simulate plasma and tissue concentrations. PBPK modeling has become a mainstream approach in drug research and development, frequently employed to support regulatory packages for new drug applications. Understanding the pharmacokinetic characteristics of anti-HIV drugs is essential for successful treatment. In recent decades, PBPK modeling has been commonly used in the development and clinical therapy of anti-HIV medications. This review discusses the prevalence and application of PBPK modeling in the pharmacokinetics of anti-HIV drugs. Among the articles retrieved for this review, PBPK modeling was predominantly employed for anti-HIV drugs in contexts, such as pregnancy, drug–drug interactions, and pediatrics. The most commonly used software programs for this model are Simcyp, MATLAB, and PK-sim. This review will provide insights for researchers in applying PBPK models to manage patients with HIV infection, aiming to enhance the efficacy of anti-HIV drug therapy and prevent undesirable adverse effects.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002392579250902053006
2025-09-17
2026-01-31
Loading full text...

Full text loading...

References

  1. OgutuS. MohammedM. MwambiH. Cytokine profiles as predictors of HIV incidence using machine learning survival models and statistical interpretable techniques.Sci. Rep.20241412989510.1038/s41598‑024‑81510‑y39622992
    [Google Scholar]
  2. AbebeM. AsgedomY.S. GebrekidanA.Y. WondimagegneY.A. HareruH.E. TebejeT.M. Factors associated with HIV testing among young women in Tanzania: Insights from the 2022 tanzanian demographic and health survey using anderson’s behavioral model.Front. Public Health202512151831410.3389/fpubh.2024.151831439845685
    [Google Scholar]
  3. Menéndez-AriasL. DelgadoR. Update and latest advances in antiretroviral therapy.Trends Pharmacol. Sci.2022431162910.1016/j.tips.2021.10.00434742581
    [Google Scholar]
  4. DesaiN. BurnsL. GongY. ZhiK. KumarA. SummersN. KumarS. CoryT.J. An update on drug–drug interactions between antiretroviral therapies and drugs of abuse in HIV systems.Expert Opin. Drug Metab. Toxicol.202016111005101810.1080/17425255.2020.181473732842791
    [Google Scholar]
  5. HamersR.L. Rinke de WitT.F. HolmesC.B. HIV drug resistance in low-income and middle-income countries.Lancet HIV2018510e588e59610.1016/S2352‑3018(18)30173‑530193863
    [Google Scholar]
  6. CotturaN. KinvigH. Grañana-CastilloS. WoodA. SiccardiM. Drug-drug interactions in people living with HIV at risk of hepatic and renal impairment: Current status and future perspectives.J. Clin. Pharmacol.202262783584610.1002/jcph.202534990024
    [Google Scholar]
  7. DevanathanA.S. AndersonD.J.C. CottrellM.L. BurgunderE.M. SaundersA.C. KashubaA.D.M. Contemporary drug-drug interactions in HIV treatment.Clin. Pharmacol. Ther.201910561362137710.1002/cpt.139330739315
    [Google Scholar]
  8. NheanS. TsengA. BackD. The intersection of drug interactions and adverse reactions in contemporary antiretroviral therapy.Curr. Opin. HIV AIDS202116629230210.1097/COH.000000000000070134459470
    [Google Scholar]
  9. HazenbergP. NavaratnamK. BusuulwaP. WaittC. Anti-infective dosing in special populations: Pregnancy.Clin. Pharmacol. Ther.2021109497798610.1002/cpt.219233548055
    [Google Scholar]
  10. Rowland YeoK. Gil BerglundE. ChenY. Dose optimization informed by PBPK modeling: State-of-the art and future.Clin. Pharmacol. Ther.2024116356357610.1002/cpt.328938686708
    [Google Scholar]
  11. MossD.M. MarzoliniC. RajoliR.K.R. SiccardiM. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies.Expert Opin. Drug Metab. Toxicol.20151181203121710.1517/17425255.2015.103727825872900
    [Google Scholar]
  12. CostaB. GouveiaM.J. ValeN. Safety and efficacy of antiviral drugs and vaccines in pregnant women: Insights from physiologically based pharmacokinetic modeling and integration of viral infection dynamics.Vaccines202412778210.3390/vaccines1207078239066420
    [Google Scholar]
  13. RiedmaierA.E. DeMentK. HuckleJ. BransfordP. StillhartC. LloydR. AlluriR. BasuS. ChenY. DhamankarV. DoddS. KulkarniP. Olivares-MoralesA. PengC.C. PepinX. RenX. TranT. TistaertC. HeimbachT. KesisoglouF. WagnerC. ParrottN. Use of physiologically based pharmacokinetic (PBPK) modeling for predicting drug-food interactions: An industry perspective.AAPS J.202022612310.1208/s12248‑020‑00508‑232981010
    [Google Scholar]
  14. GrimsteinM. YangY. ZhangX. GrilloJ. HuangS.M. ZinehI. WangY. Physiologically based pharmacokinetic modeling in regulatory science: An update from the U.S. Food and Drug Administration’s office of clinical pharmacology.J. Pharm. Sci.20191081212510.1016/j.xphs.2018.10.03330385284
    [Google Scholar]
  15. ColeS. KerwashE. AnderssonA. A summary of the current drug interaction guidance from the European Medicines Agency and considerations of future updates.Drug Metab. Pharmacokinet.202035121110.1016/j.dmpk.2019.11.00531996310
    [Google Scholar]
  16. LinW. ChenY. UnadkatJ.D. ZhangX. WuD. HeimbachT. Applications, challenges, and outlook for PBPK modeling and simulation: A regulatory, industrial and academic perspective.Pharm. Res.20223981701173110.1007/s11095‑022‑03274‑235552967
    [Google Scholar]
  17. AblaN. HowgateE. Rowland-YeoK. DickinsM. Bergagnini-KolevM.C. ChenK.F. McFeelyS. BonnerJ.J. SantosL.G.A. GobeauN. BurtH. BarterZ. JonesH.M. WescheD. CharmanS.A. MöhrleJ.J. BurrowsJ.N. AlmondL.M. Development and application of a PBPK modeling strategy to support antimalarial drug development.CPT Pharmacometrics Syst. Pharmacol.20231291335134610.1002/psp4.1301337587640
    [Google Scholar]
  18. PerryC. DavisG. ConnerT.M. ZhangT. Utilization of physiologically based pharmacokinetic modeling in clinical pharmacology and therapeutics: An overview.Curr. Pharmacol. Rep.202063718410.1007/s40495‑020‑00212‑x32399388
    [Google Scholar]
  19. WeiL. MansoorN. KhanR.A. CzejkaM. AhmadT. AhmedM. AliM. YangD.H. WB‐PBPK approach in predicting zidovudine pharmacokinetics in preterm neonates.Biopharm. Drug Dispos.201940934134910.1002/bdd.220831693190
    [Google Scholar]
  20. von KleistM. HuisingaW. Pharmacokinetic–pharmacodynamic relationship of NRTIs and its connection to viral escape: An example based on zidovudine.Eur. J. Pharm. Sci.2009364-553254310.1016/j.ejps.2008.12.01019150497
    [Google Scholar]
  21. SyS.K.B. MalmbergR. MatsushimaA. Asin-PrietoE. RosenkranzB. CottonM.F. DerendorfH. InnesS. Effect of reducing the paediatric stavudine dose by half: A physiologically-based pharmacokinetic model.Int. J. Antimicrob. Agents201545441341910.1016/j.ijantimicag.2014.12.01625697412
    [Google Scholar]
  22. ZazoH. ColinoC.I. Gutiérrez-MillánC. CorderoA.A. BartneckM. LanaoJ.M. Physiologically based pharmacokinetic (PBPK) model of gold nanoparticle-based drug delivery system for stavudine biodistribution.Pharmaceutics202214240610.3390/pharmaceutics1402040635214138
    [Google Scholar]
  23. JacobsT.G. de Hoop-SommenM.A. NieuwensteinT. van der HeijdenJ.E.M. de WildtS.N. BurgerD.M. ColbersA. FreriksenJ.J.M. Lamivudine and emtricitabine dosing proposal for children with HIV and chronic kidney disease, supported by physiologically based pharmacokinetic modelling.Pharmaceutics2023155142410.3390/pharmaceutics1505142437242665
    [Google Scholar]
  24. AbduljalilK. PansariA. NingJ. JameiM. Prediction of maternal and fetal acyclovir, emtricitabine, lamivudine, and metformin concentrations during pregnancy using a physiologically based pharmacokinetic modeling approach.Clin. Pharmacokinet.202261572574810.1007/s40262‑021‑01103‑035067869
    [Google Scholar]
  25. De Sousa MendesM. HirtD. UrienS. ValadeE. BouazzaN. FoissacF. BlancheS. TreluyerJ.M. BenaboudS. Physiologically‐based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women.Br. J. Clin. Pharmacol.20158051031104110.1111/bcp.1268526011128
    [Google Scholar]
  26. De Sousa MendesM. ChettyM. Are standard doses of renally-excreted antiretrovirals in older patients appropriate: A PBPK study comparing exposures in the elderly population with those in renal impairment.Drugs R D.201919433935010.1007/s40268‑019‑00285‑031602556
    [Google Scholar]
  27. FischettiB. ShahK. TaftD.R. BerkowitzL. BakshiA. ChaA. Real-world experience with higher-than-recommended doses of lamivudine in patients with varying degrees of renal impairment.Open Forum Infect. Dis.2018510ofy22510.1093/ofid/ofy22530302352
    [Google Scholar]
  28. ShahK. FischettiB. ChaA. TaftD.R. Using PBPK modeling to predict drug exposure and support dosage adjustments in patients with renal impairment: An example with lamivudine.Curr. Drug Discov. Technol.202017338739610.2174/157016381666619021416491630767745
    [Google Scholar]
  29. ChangS.Y. HuangW. ChapronA. QuiñonesA.J.L. WangJ. IsoherranenN. ShenD.D. KellyE.J. HimmelfarbJ. YeungC.K. Incorporating uremic solute-mediated inhibition of OAT1/3 improves PBPK prediction of tenofovir renal and systemic disposition in patients with severe kidney disease.Pharm. Res.202340112597260610.1007/s11095‑023‑03594‑x37704895
    [Google Scholar]
  30. ZhangX. LuoT. YangH. MaW.Y. HeQ. XuM. YangY. Physiologically-based pharmacokinetic modeling of tenofovir disoproxil fumarate in pregnant women.Curr. Drug Metab.202223141115112310.2174/138920022466623013009331436718061
    [Google Scholar]
  31. De Sousa MendesM. HirtD. VinotC. ValadeE. LuiG. PressiatC. BouazzaN. FoissacF. BlancheS. LêM.P. PeytavinG. TreluyerJ.M. UrienS. BenaboudS. Prediction of human fetal pharmacokinetics using ex vivo human placenta perfusion studies and physiologically based models.Br. J. Clin. Pharmacol.201681464665710.1111/bcp.1281526518984
    [Google Scholar]
  32. ScholzE.M.B. CaoY. KashubaA.D.M. A cross-species comparison of antiretroviral penetration into lymph nodes using novel physiologically based pharmacokinetic models.J. Antimicrob. Chemother.202176112890289310.1093/jac/dkab29834374767
    [Google Scholar]
  33. RajoliR.K.R. DemkovichZ.R. FlexnerC. OwenA. SiccardiM. Predicting pharmacokinetics of a tenofovir alafenamide subcutaneous implant using physiologically based pharmacokinetic modelling.Antimicrob. Agents Chemother.2020648e001552010.1128/AAC.00155‑2032423957
    [Google Scholar]
  34. MossD.M. DomanicoP. WatkinsM. ParkS. RandolphR. WringS. RajoliR.K.R. HobsonJ. RannardS. SiccardiM. OwenA. Simulating intestinal transporter and enzyme activity in a physiologically based pharmacokinetic model for tenofovir disoproxil fumarate.Antimicrob. Agents Chemother.2017617e001051710.1128/AAC.00105‑1728416547
    [Google Scholar]
  35. RajoliR.K.R. BackD.J. RannardS. Freel MeyersC.L. FlexnerC. OwenA. SiccardiM. Physiologically based pharmacokinetic modelling to inform development of intramuscular long-acting nanoformulations for HIV.Clin. Pharmacokinet.201554663965010.1007/s40262‑014‑0227‑125523214
    [Google Scholar]
  36. DuanP. FisherJ.W. YoshidaK. ZhangL. BurckartG.J. WangJ. Physiologically based pharmacokinetic prediction of linezolid and emtricitabine in neonates and infants.Clin. Pharmacokinet.201756438339410.1007/s40262‑016‑0445‑927596256
    [Google Scholar]
  37. LiuX.I. van den AnkerJ.N. BurckartG.J. DallmannA. Evaluation of physiologically based pharmacokinetic models to predict the absorption of BCS class I drugs in different pediatric age groups.J. Clin. Pharmacol.202161S1S94S107(Suppl. 1)10.1002/jcph.184534185902
    [Google Scholar]
  38. LiuX.I. GreenD.J. van den AnkerJ.N. RakhmaninaN.Y. AhmadziaH.K. MomperJ.D. ParkK. BurckartG.J. DallmannA. Mechanistic modeling of placental drug transfer in humans: How do differences in maternal/fetal fraction of unbound drug and placental influx/efflux transfer rates affect fetal pharmacokinetics?Front Pediatr.2021972300610.3389/fped.2021.72300634733804
    [Google Scholar]
  39. LiuX.I. MomperJ.D. RakhmaninaN. van den AnkerJ.N. GreenD.J. BurckartG.J. BestB.M. MirochnickM. CapparelliE.V. DallmannA. Physiologically based pharmacokinetic models to predict maternal pharmacokinetics and fetal exposure to emtricitabine and acyclovir.J. Clin. Pharmacol.202060224025510.1002/jcph.151531489678
    [Google Scholar]
  40. XiaB. HeimbachT. GollenR. NanavatiC. HeH. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy.AAPS J.20131541012102410.1208/s12248‑013‑9505‑323835676
    [Google Scholar]
  41. De Sousa MendesM. LuiG. ZhengY. PressiatC. HirtD. ValadeE. BouazzaN. FoissacF. BlancheS. TreluyerJ.M. UrienS. BenaboudS. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways.Clin. Pharmacokinet.201756553755010.1007/s40262‑016‑0457‑527766562
    [Google Scholar]
  42. CostaB. GouveiaM.J. ValeN. PBPK modeling of lamotrigine and efavirenz during pregnancy: Implications for personalized dosing and drug-drug interaction management.Pharmaceutics2024169116310.3390/pharmaceutics1609116339339201
    [Google Scholar]
  43. CoppolaP. ButlerA. ColeS. KerwashE. Total and free blood and plasma concentration changes in pregnancy for medicines highly bound to plasma proteins: Application of physiologically based pharmacokinetic modelling to understand the impact on efficacy.Pharmaceutics20231510245510.3390/pharmaceutics1510245537896215
    [Google Scholar]
  44. ShenkoyaB. AtoyebiS. EniayewuI. AkinloyeA. OlagunjuA. Mechanistic modeling of maternal lymphoid and fetal plasma antiretroviral exposure during the third trimester.Front Pediatr.2021973412210.3389/fped.2021.73412234616699
    [Google Scholar]
  45. RajoliR.K.R. CurleyP. ChiongJ. BackD. FlexnerC. OwenA. SiccardiM. Predicting drug-drug interactions between rifampicin and long-acting cabotegravir and rilpivirine using physiologically based pharmacokinetic modeling.J. Infect. Dis.2019219111735174210.1093/infdis/jiy72630566691
    [Google Scholar]
  46. PanX. Rowland YeoK. Physiologically based pharmacokinetic modeling to determine the impact of CYP2B6 genotype on efavirenz exposure in children, mothers and breastfeeding infants.Clin. Pharmacol. Ther.2023114118219110.1002/cpt.291237078251
    [Google Scholar]
  47. ChettyM. DanckwertsM.P. JulsingA. Prediction of the exposure to a 400-mg daily dose of efavirenz in pregnancy: Is this dose adequate in extensive metabolisers of CYP2B6?Eur. J. Clin. Pharmacol.20207681143115010.1007/s00228‑020‑02890‑432377759
    [Google Scholar]
  48. ChettyM. CainT. WedagederaJ. Rostami-HodjeganA. JameiM. Application of physiologically based pharmacokinetic (PBPK) modeling within a bayesian framework to identify poor metabolizers of efavirenz (PM), using a test dose of efavirenz.Front. Pharmacol.2018924710.3389/fphar.2018.0024729636682
    [Google Scholar]
  49. CurleyP. RajoliR.K.R. MossD.M. LiptrottN.J. LetendreS. OwenA. SiccardiM. Efavirenz is predicted to accumulate in brain tissue: An in silico, in vitro, and in vivo investigation.Antimicrob. Agents Chemother.2017611e01841e1610.1128/AAC.01841‑1627799216
    [Google Scholar]
  50. De RocheM. SiccardiM. StoeckleM. LivioF. BackD. BattegayM. MarzoliniC. Efavirenz in an obese HIV-infected patient--a report and an in vitro-in vivo extrapolation model indicate risk of underdosing.Antivir. Ther.20121771381138410.3851/IMP210722910127
    [Google Scholar]
  51. SiccardiM. MartinP. SmithD. CurleyP. McDonaldT. GiardielloM. LiptrottN. RannardS. OwenA. Towards a rational design of solid drug nanoparticles with optimised pharmacological properties.J. Interdiscip. Nanomed.20161311012310.1002/jin2.2127774308
    [Google Scholar]
  52. BertonM. BettonteS. StaderF. DecosterdL. TarrP.E. LivioF. CavassiniM. BraunD.L. KusejkoK. HachfeldA. BernasconiE. CalmyA. SchmidP. BattegayM. MarzoliniC. AbelaI. Aebi-PoppK. AnagnostopoulosA. BattegayM. BernasconiE. BraunD.L. BucherH. CalmyA. CavassiniM. CiuffiA. DollenmaierG. EggerM. ElziL. FehrJ. FellayJ. FurrerH. FuxC. GünthardH. HachfeldA. HaerryD. HasseB. HirschH. HoffmannM. HösliI. HuberM. Jackson-PerryD. KahlertC. KaiserL. KeiserO. KlimkaitT. KouyosR.D. KovariH. KusejkoK. LabhardtN. LeuzingerK. de TejadaB.M. MarzoliniC. MetznerK.J. MüllerN. NemethJ. NiccaD. NotterJ. PaioniP. PantaleoG. PerreauM. RauchA. Salazar-VizcayaL. SchmidP. SpeckR. StöckleM. TarrP. TrkolaA. WandelerG. WeisserM. YerlyS. Antiretroviral drug exposure and response in obese and morbidly obese people with human immunodeficiency virus (HIV): A study combining modelling and swiss HIV cohort data.Clin. Infect. Dis.20247819811010.1093/cid/ciad49537602428
    [Google Scholar]
  53. LitouC. TurnerD.B. HolmstockN. CeulemansJ. BoxK.J. KostewiczE. KuentzM. HolmR. DressmanJ. Combining biorelevant in vitro and in silico tools to investigate the in vivo performance of the amorphous solid dispersion formulation of etravirine in the fed state.Eur. J. Pharm. Sci.202014910529710.1016/j.ejps.2020.10529732151705
    [Google Scholar]
  54. BettonteS. BertonM. StaderF. BattegayM. MarzoliniC. Drug exposure of long-acting cabotegravir and rilpivirine in older people with human immunodeficiency virus: A pharmacokinetic modeling study.Open Forum Infect. Dis.2024114ofae17110.1093/ofid/ofae17138595957
    [Google Scholar]
  55. AtoyebiS. BunglawalaF. CotturaN. Grañana-CastilloS. MontanhaM.C. OlagunjuA. SiccardiM. WaittC. Physiologically‐based pharmacokinetic modelling of long‐acting injectable cabotegravir and rilpivirine in pregnancy.Br. J. Clin. Pharmacol.2025914989100210.1111/bcp.1600638340019
    [Google Scholar]
  56. BettonteS. BertonM. StaderF. BattegayM. MarzoliniC. Effect of obesity on the exposure of long-acting cabotegravir and rilpivirine: A modelling study.Clin. Infect. Dis.202479247748610.1093/cid/ciae06038309958
    [Google Scholar]
  57. BettonteS. BertonM. StaderF. BattegayM. MarzoliniC. Management of drug-drug interactions between long-acting cabotegravir and rilpivirine and comedications with inducing properties: A modeling study.Clin. Infect. Dis.20237671225123610.1093/cid/ciac90136377436
    [Google Scholar]
  58. BettonteS. BertonM. StaderF. BattegayM. MarzoliniC. Intramuscular cabotegravir and rilpivirine concentrations after switching from efavirenz‐containing regimen.Br. J. Clin. Pharmacol.202389123618362810.1111/bcp.1586737522811
    [Google Scholar]
  59. Grañana-CastilloS. MontanhaM.C. BearonR. KhooS. SiccardiM. Evaluation of drug-drug interaction between rilpivirine and rifapentine using PBPK modelling.Front. Pharmacol.202213107626610.3389/fphar.2022.107626636588698
    [Google Scholar]
  60. RajoliR.K.R. BackD.J. RannardS. MeyersC.F. FlexnerC. OwenA. SiccardiM. In silico dose prediction for long-acting rilpivirine and cabotegravir administration to children and adolescents.Clin. Pharmacokinet.201857225526610.1007/s40262‑017‑0557‑x28540638
    [Google Scholar]
  61. RajoliR.K.R. FlexnerC. ChiongJ. OwenA. DonnellyR.F. LarrañetaE. SiccardiM. Modelling the intradermal delivery of microneedle array patches for long-acting antiretrovirals using PBPK.Eur. J. Pharm. Biopharm.201914410110910.1016/j.ejpb.2019.09.01131525446
    [Google Scholar]
  62. BukkemsV.E. van HoveH. RoelofsenD. FreriksenJ.J.M. van Ewijk-Beneken KolmerE.W.J. BurgerD.M. van DrongelenJ. SvenssonE.M. GreupinkR. ColbersA. Prediction of maternal and fetal doravirine exposure by integrating physiologically based pharmacokinetic modeling and human placenta perfusion experiments.Clin. Pharmacokinet.20226181129114110.1007/s40262‑022‑01127‑035579825
    [Google Scholar]
  63. YeeK.L. CabaluT.D. KuoY. FillgroveK.L. LiuY. TriantafyllouI. McClainS. DreyerD. WenningL. StochS.A. IwamotoM. SanchezR.I. KhaliliehS.G. Physiologically based pharmacokinetic modeling of doravirine and its major metabolite to support dose adjustment with rifabutin.J. Clin. Pharmacol.202161339440510.1002/jcph.174732989795
    [Google Scholar]
  64. AroraS. PansariA. KilfordP. JameiM. GardnerI. TurnerD.B. Biopharmaceutic in vitro in vivo extrapolation (IVIV_E) informed physiologically-based pharmacokinetic model of ritonavir norvir tablet absorption in humans under fasted and fed state conditions.Mol. Pharm.20201772329234410.1021/acs.molpharmaceut.0c0004332427480
    [Google Scholar]
  65. ColbersA. GreupinkR. LitjensC. BurgerD. RusselF.G.M. Physiologically based modelling of darunavir/ritonavir pharmacokinetics during pregnancy.Clin. Pharmacokinet.201655338139610.1007/s40262‑015‑0325‑826369773
    [Google Scholar]
  66. ShonoY. JantratidE. DressmanJ.B. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: Case example nelfinavir.Eur. J. Pharm. Biopharm.201179234935610.1016/j.ejpb.2011.04.00521527341
    [Google Scholar]
  67. SalernoS.N. CapparelliE.V. McIlleronH. GerhartJ.G. DumondJ.B. KashubaA.D.M. DentiP. GonzalezD. Leveraging physiologically based pharmacokinetic modeling to optimize dosing for lopinavir/ritonavir with rifampin in pediatric patients.Pharmacotherapy202343763864910.1002/phar.270335607886
    [Google Scholar]
  68. WagnerC. ZhaoP. AryaV. MullickC. StrubleK. AuS. Physiologically based pharmacokinetic modeling for predicting the effect of intrinsic and extrinsic factors on darunavir or lopinavir exposure coadministered with ritonavir.J. Clin. Pharmacol.201757101295130410.1002/jcph.93628569994
    [Google Scholar]
  69. AtoyebiS. MontanhaM.C. NakijobaR. OrrellC. MugerwaH. SiccardiM. DentiP. WaittC. Physiologically based pharmacokinetic modeling of drug–drug interactions between ritonavir‐boosted atazanavir and rifampicin in pregnancy.CPT Pharmacometrics Syst. Pharmacol.202413111967197710.1002/psp4.1326839517110
    [Google Scholar]
  70. MontanhaM.C. FabregaF. HowarthA. CotturaN. KinvigH. BunglawalaF. LloydA. DentiP. WaittC. SiccardiM. Predicting drug-drug interactions between rifampicin and ritonavir-boosted atazanavir using PBPK modelling.Clin. Pharmacokinet.202261337538610.1007/s40262‑021‑01067‑134635995
    [Google Scholar]
  71. BerlinM. RuffA. KesisoglouF. XuW. WangM.H. DressmanJ.B. Advances and challenges in PBPK modeling – Analysis of factors contributing to the oral absorption of atazanavir, a poorly soluble weak base.Eur. J. Pharm. Biopharm.20159326728010.1016/j.ejpb.2015.03.03125872159
    [Google Scholar]
  72. DongZ. LiJ. WuF. ZhaoP. LeeS.C. ZhangL. SeoP. ZhangL. Application of physiologically-based pharmacokinetic modeling to predict gastric pH-dependent drug-drug interactions for weak base drugs.CPT Pharmacometrics Syst. Pharmacol.20209845646510.1002/psp4.1254132633893
    [Google Scholar]
  73. SchalkwijkS. BuabenA.O. FreriksenJ.J.M. ColbersA.P. BurgerD.M. GreupinkR. RusselF.G.M. Prediction of fetal darunavir exposure by integrating human ex-vivo placental transfer and physiologically based pharmacokinetic modeling.Clin. Pharmacokinet.201857670571610.1007/s40262‑017‑0583‑828744795
    [Google Scholar]
  74. SegregurD. MannJ. MoirA. KarlssonE.M. DressmanJ. Biorelevant in vitro tools and in silico modeling to assess pH-dependent drug-drug interactions for salts of weak acids: Case example potassium raltegravir.J. Pharm. Sci.2022111251752810.1016/j.xphs.2021.09.03734597624
    [Google Scholar]
  75. MoreiraF.L. TarozzoM.M.B. NardottoG.H.B. GonçalvesJ.C.S. SchmidtS. de-MoraesN.V. Assessing the contribution of UGT isoforms on raltegravir drug disposition through PBPK modeling.Eur. J. Pharm. Sci.202217910630910.1016/j.ejps.2022.10630936265816
    [Google Scholar]
  76. MossD.M. SiccardiM. BackD.J. OwenA. Predicting intestinal absorption of raltegravir using a population-based ADME simulation.J. Antimicrob. Chemother.20136871627163410.1093/jac/dkt08423515248
    [Google Scholar]
  77. NingJ. PansariA. Rowland YeoK. HeikkinenA.T. WaittC. AlmondL.M. Using PBPK modeling to supplement clinical data and support the safe and effective use of dolutegravir in pregnant and lactating women.CPT Pharmacometrics Syst. Pharmacol.202413111924193810.1002/psp4.1325139478302
    [Google Scholar]
  78. FreriksenJ.J.M. SchalkwijkS. ColbersA.P. AbduljalilK. RusselF.G.M. BurgerD.M. GreupinkR. Assessment of maternal and fetal dolutegravir exposure by integrating ex vivo placental perfusion data and physiologically-based pharmacokinetic modeling.Clin. Pharmacol. Ther.202010761352136110.1002/cpt.174831868223
    [Google Scholar]
  79. DallmannA. van den AnkerJ. AhmadziaH.K. RakhmaninaN. Mechanistic modeling of the drug-drug interaction between efavirenz and dolutegravir: Is this interaction clinically relevant when switching from efavirenz to dolutegravir during pregnancy?J. Clin. Pharmacol.202363S1S81S95(Suppl. 1)10.1002/jcph.222537317489
    [Google Scholar]
  80. BertonM. BettonteS. StaderF. BattegayM. MarzoliniC. Impact of obesity on the drug-drug interaction between dolutegravir and rifampicin or any other strong inducers.Open Forum Infect. Dis.2023107ofad36110.1093/ofid/ofad36137496606
    [Google Scholar]
  81. BunglawalaF. RajoliR.K.R. MirochnickM. OwenA. SiccardiM. Prediction of dolutegravir pharmacokinetics and dose optimization in neonates via physiologically based pharmacokinetic (PBPK) modelling.J. Antimicrob. Chemother.202075364064710.1093/jac/dkz50631860112
    [Google Scholar]
  82. StaderF. CourletP. DecosterdL.A. BattegayM. MarzoliniC. Physiologically-based pharmacokinetic modeling combined with swiss HIV cohort study data supports no dose adjustment of bictegravir in elderly individuals living with HIV.Clin. Pharmacol. Ther.202110941025102910.1002/cpt.217833521960
    [Google Scholar]
  83. StaderF. BattegayM. MarzoliniC. Physiologically-based pharmacokinetic modeling to support the clinical management of drug-drug interactions with bictegravir.Clin. Pharmacol. Ther.202111051231123910.1002/cpt.222133626178
    [Google Scholar]
  84. KinvigH. RajoliR.K.R. PertinezH. VoraL.K. Volpe-ZanuttoF. DonnellyR.F. RannardS. FlexnerC. SiccardiM. OwenA. Physiologically based pharmacokinetic modelling of cabotegravir microarray patches in rats and humans.Pharmaceutics20231512270910.3390/pharmaceutics1512270938140050
    [Google Scholar]
  85. KimotoE. VourvahisM. ScialisR.J. EngH. RodriguesA.D. VarmaM.V.S. Mechanistic evaluation of the complex drug-drug interactions of maraviroc: Contribution of cytochrome P450 3A, P-glycoprotein and organic anion transporting polypeptide 1B1.Drug Metab. Dispos.201947549350310.1124/dmd.118.08524130862625
    [Google Scholar]
  86. HylandR. DickinsM. CollinsC. JonesH. JonesB. Maraviroc: in vitro assessment of drug–drug interaction potential.Br. J. Clin. Pharmacol.200866449850710.1111/j.1365‑2125.2008.03198.x18647303
    [Google Scholar]
  87. SalemF. NguyenD. BushM. MooreK.P. MudunuruJ. StamatopoulosK. ThakkarN. TaskarK.S. Development of a physiologically based pharmacokinetic model of fostemsavir and its pivotal application to support dosing in pregnancy.CPT Pharmacometrics Syst. Pharmacol.202413111881189210.1002/psp4.1315638690782
    [Google Scholar]
  88. NguyenD. MiaoX. TaskarK. MageeM. GoryckiP. MooreK. TaiG. No dose adjustment of metformin or substrates of organic cation transporters (OCT)1 and OCT2 and multidrug and toxin extrusion protein (MATE)1/2K with fostemsavir coadministration based on modeling approaches.Pharmacol. Res. Perspect.2024124e123810.1002/prp2.123838988092
    [Google Scholar]
  89. PanX. StaderF. AbduljalilK. GillK.L. JohnsonT.N. GardnerI. JameiM. Development and application of a physiologically-based pharmacokinetic model to predict the pharmacokinetics of therapeutic proteins from full-term neonates to adolescents.AAPS J.20202247610.1208/s12248‑020‑00460‑132449129
    [Google Scholar]
  90. AbduljalilK. BadhanR.K.S. Drug dosing during pregnancy—opportunities for physiologically based pharmacokinetic models.J. Pharmacokinet. Pharmacodyn.202047431934010.1007/s10928‑020‑09698‑w32592111
    [Google Scholar]
  91. BerezowskaM. SharmaP. Pilla ReddyV. CoppolaP. Physiologically Based Pharmacokinetic modelling of drugs in pregnancy: A mini‐review on availability and limitations.Fundam. Clin. Pharmacol.202438340240910.1111/fcp.1296737968879
    [Google Scholar]
  92. BoyleA. HodgeD. MarzoliniC. KhooS. Clinical pharmacodynamics, pharmacokinetics, and drug interaction profile of doravirine.Clin. Pharmacokinet.201958121553156510.1007/s40262‑019‑00806‑931388941
    [Google Scholar]
  93. ReznicekJ. CeckovaM. CervenyL. MüllerF. StaudF. Emtricitabine is a substrate of MATE1 but not of OCT1, OCT2, P-gp, BCRP or MRP2 transporters.Xenobiotica2017471778510.3109/00498254.2016.115888627052107
    [Google Scholar]
  94. EkeA.C. ShojiK. BestB.M. MomperJ.D. StekA.M. CresseyT.R. MirochnickM. CapparelliE.V. Population pharmacokinetics of tenofovir in pregnant and postpartum women using tenofovir disoproxil fumarate.Antimicrob. Agents Chemother.2021653e021682010.1128/AAC.02168‑2033318014
    [Google Scholar]
  95. TsirizaniL. Mohsenian NaghaniS. WaalewijnH. SzubertA. MulengaV. ChabalaC. Bwakura-DangarembiziM. ChitsamatangaM. RutebarikaD.A. MusiimeV. KasoziM. LugemwaA. MonkiewiczL.N. McIlleronH.M. BurgerD.M. GibbD.M. DentiP. WasmannR.E. ColbersA. Pharmacokinetics of once-daily darunavir/ritonavir in second-line treatment in African children with HIV.J. Antimicrob. Chemother.202479112990299810.1093/jac/dkae31939302766
    [Google Scholar]
  96. EnioutinaE.Y. ConstanceJ.E. StockmannC. LinakisM.W. YuT. RowerJ.E. BalchA.H. SherwinC.M. Pharmacokinetic considerations in the use of antivirals in neonates.Expert Opin. Drug Metab. Toxicol.201511121861187810.1517/17425255.2015.110896326535960
    [Google Scholar]
  97. ZhangW. ZhangQ. CaoZ. ZhengL. HuW. Physiologically based pharmacokinetic modeling in neonates: Current status and future perspectives.Pharmaceutics20231512276510.3390/pharmaceutics1512276538140105
    [Google Scholar]
  98. HuangX. WangG. HuangJ. LiangW. GuanH. LiuH. DengY. YouY. ZhangB. Bioequivalence and pharmacokinetics study of two zidovudine/lamivudine tablets in Chinese healthy volunteers.Clin. Pharmacol. Drug Dev.2024131142010.1002/cpdd.133537986709
    [Google Scholar]
  99. ClarkeD.F. PenazzatoM. CapparelliE. CresseyT.R. SiberryG. SugandhiN. MirochnickM. GroupW.H.O.P.A.W. Prevention and treatment of HIV infection in neonates: Evidence base for existing WHO dosing recommendations and implementation considerations.Expert Rev. Clin. Pharmacol.2018111839310.1080/17512433.2018.139333129039686
    [Google Scholar]
  100. MulliganN. BestB.M. WangJ. CapparelliE.V. StekA. BarrE. BuschurS.L. AcostaE.P. SmithE. ChakhtouraN. BurchettS. MirochnickM. TeamI.P.P. Dolutegravir pharmacokinetics in pregnant and postpartum women living with HIV.AIDS201832672973710.1097/QAD.000000000000175529369162
    [Google Scholar]
  101. StaderF. KinvigH. PennyM.A. BattegayM. SiccardiM. MarzoliniC. Physiologically based pharmacokinetic modelling to identify pharmacokinetic parameters driving drug exposure changes in the elderly.Clin. Pharmacokinet.202059338340110.1007/s40262‑019‑00822‑931583609
    [Google Scholar]
  102. SchlenderJ.F. MeyerM. ThelenK. KraussM. WillmannS. EissingT. JaehdeU. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals.Clin. Pharmacokinet.201655121573158910.1007/s40262‑016‑0422‑327351180
    [Google Scholar]
  103. WuX. SiaJ.E.V. HaiM. LaiX. LiH. CuiC. LiuD. Physiologically based pharmacokinetic model for older adults and its application in geriatric drug research.Curr. Drug Metab.202324321122210.2174/138920022466623050910440437165496
    [Google Scholar]
  104. ThoueilleP. Alves SaldanhaS. DesfontaineV. KusejkoK. CourletP. AndreP. CavassiniM. DecosterdL.A. BuclinT. GuidiM. SwissH.I.V.C.S. Population pharmacokinetic modelling to characterize the effect of chronic kidney disease on tenofovir exposure after tenofovir alafenamide administration.J. Antimicrob. Chemother.20237861433144310.1093/jac/dkad10337042359
    [Google Scholar]
  105. ZeuliJ. RizzaS. BhatiaR. TemesgenZ. Bictegravir, a novel integrase inhibitor for the treatment of HIV infection.Drugs Today (Barc)2019551166968210.1358/dot.2019.55.11.306879631840682
    [Google Scholar]
  106. YuJ. WangY. Ragueneau-MajlessiI. Strong pharmacokinetic drug-drug interactions with drugs approved by the US Food and Drug Administration in 2021: Mechanisms and clinical implications.Clin. Ther.202244111536154410.1016/j.clinthera.2022.09.00936210218
    [Google Scholar]
  107. FotiR.S. Utility of PBPK modeling in predicting and characterizing clinical drug interactions.Drug Metab. Dispos.202453110002110.1124/dmd.123.00138439884811
    [Google Scholar]
  108. HeydariM. ForoozanfarZ. BazmiS. MohammadiZ. JoulaeiH. AnsariG. The prevalence of antiretroviral drug interactions with other drugs used in women living with HIV and its association with HIV drug change and patient compliance.BMC Infect. Dis.2024241112310.1186/s12879‑024‑09958‑x39379848
    [Google Scholar]
  109. RidgeS. YangX. MadabushiR. RamamoorthyA. Addressing drug-drug interaction knowledge gaps at the time of approval: An analysis of FDA postmarketing requirements and commitments from 2009 to 2023.J. Clin. Pharmacol.202565337838810.1002/jcph.614239363538
    [Google Scholar]
  110. SunZ. ZhaoN. ZhaoX. WangZ. LiuZ. CuiY. Application of physiologically based pharmacokinetic modeling of novel drugs approved by the U.S. food and drug administration.Eur. J. Pharm. Sci.202420010683810.1016/j.ejps.2024.10683838960205
    [Google Scholar]
  111. MinJ.S. BaeS.K. Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling.Arch. Pharm. Res.201740121356137910.1007/s12272‑017‑0976‑029079968
    [Google Scholar]
  112. SanchezR.I. FillgroveK.L. YeeK.L. LiangY. LuB. TatavartiA. LiuR. AndersonM.S. BehmM.O. FanL. LiY. ButtertonJ.R. IwamotoM. KhaliliehS.G. Characterisation of the absorption, distribution, metabolism, excretion and mass balance of doravirine, a non-nucleoside reverse transcriptase inhibitor in humans.Xenobiotica201949442243210.1080/00498254.2018.145166729557716
    [Google Scholar]
  113. KhaliliehS.G. YeeK.L. SanchezR.I. LiuR. FanL. MartellM. JordanH. IwamotoM. Multiple doses of rifabutin reduce exposure of doravirine in healthy subjects.J. Clin. Pharmacol.20185881044105210.1002/jcph.110329723418
    [Google Scholar]
  114. HodgeD. BackD.J. GibbonsS. KhooS.H. MarzoliniC. Pharmacokinetics and drug-drug interactions of long-acting intramuscular cabotegravir and rilpivirine.Clin. Pharmacokinet.202160783585310.1007/s40262‑021‑01005‑133830459
    [Google Scholar]
  115. KisO. ZastreJ.A. HoqueM.T. WalmsleyS.L. BendayanR. Role of drug efflux and uptake transporters in atazanavir intestinal permeability and drug-drug interactions.Pharm. Res.20133041050106410.1007/s11095‑012‑0942‑y23224979
    [Google Scholar]
  116. TupovaL. CeckovaM. AmbrusC. SorfA. PtackovaZ. GaborikZ. StaudF. Interactions between maraviroc and the ABCB1, ABCG2, and ABCC2 transporters: An important role in transplacental pharmacokinetics.Drug Metab. Dispos.201947995496010.1124/dmd.119.08768431266750
    [Google Scholar]
  117. VourvahisM. PlotkaA. KantaridisC. FangA. HeeraJ. The effects of boceprevir and telaprevir on the pharmacokinetics of maraviroc: An open-label, fixed-sequence study in healthy volunteers.J. Acquir. Immune Defic. Syndr.201465556457010.1097/QAI.000000000000009024346637
    [Google Scholar]
  118. VivianiR. BerresJ. StinglJ.C. Phenotypic models of drug-drug-gene interactions mediated by cytochrome drug-metabolizing enzymes.Clin. Pharmacol. Ther.2024116359260110.1002/cpt.318838318716
    [Google Scholar]
  119. ZondoN.M. SobiaP. SivroA. NgcapuS. RamsuranV. ArcharyD. Pharmacogenomics of drug transporters for antiretroviral long-acting pre-exposure prophylaxis for HIV.Front. Genet.20221394066110.3389/fgene.2022.94066136246609
    [Google Scholar]
  120. WangP.F. NeinerA. KharaschE.D. Efavirenz metabolism: Influence of polymorphic CYP2B6 variants and stereochemistry.Drug Metab. Dispos.201947101195120510.1124/dmd.119.08634831324697
    [Google Scholar]
  121. VoT.T. Varghese GuptaS. Role of cytochrome P450 2B6 pharmacogenomics in determining efavirenz-mediated central nervous system toxicity, treatment outcomes, and dosage adjustments in patients with human immunodeficiency virus infection.Pharmacotherapy201636121245125410.1002/phar.185227779789
    [Google Scholar]
  122. CattaneoD. GervasoniC. MeravigliaP. LandonioS. FucileS. CozziV. BaldelliS. PellegriniM. GalliM. ClementiE. Inter- and intra-patient variability of raltegravir pharmacokinetics in HIV-1-infected subjects.J. Antimicrob. Chemother.201267246046410.1093/jac/dkr49822127581
    [Google Scholar]
  123. BelkhirL. Seguin-DevauxC. ElensL. PaulyC. GenglerN. SchneiderS. RuelleJ. HaufroidV. VandercamB. Impact of UGT1A1 polymorphisms on Raltegravir and its glucuronide plasma concentrations in a cohort of HIV-1 infected patients.Sci. Rep.201881735910.1038/s41598‑018‑25803‑z29743555
    [Google Scholar]
  124. LucasA. WyattC.M. HIV at 40: Kidney disease in HIV treatment, prevention, and cure.Kidney Int.2022102474074910.1016/j.kint.2022.06.02135850290
    [Google Scholar]
  125. DrakD. ShamuT. HeronJ.E. ChimbeteteC. DahwaR. GraceyD.M. Renal function and associated mortality risk in adults commencing HIV antiretroviral therapy in Zimbabwe.AIDS202236563163610.1097/QAD.000000000000315334923518
    [Google Scholar]
  126. MalikP.R.V. YeungC.H.T. IsmaeilS. AdvaniU. DjieS. EdgintonA.N. A physiological approach to pharmacokinetics in chronic kidney disease.J. Clin. Pharmacol202060S1S52S62(Suppl. 1)10.1002/jcph.171333205424
    [Google Scholar]
  127. Rowland YeoK. HatleyO. SmallB.G. JohnsonT.N. Physiologically based pharmacokinetic modelling to predict imatinib exposures in cancer patients with renal dysfunction: A case study.Pharmaceutics2023157192210.3390/pharmaceutics1507192237514108
    [Google Scholar]
  128. ZamirA. AlqahtaniF. RasoolM.F. Chronic kidney disease and physiologically based pharmacokinetic modeling: A critical review of existing models.Expert Opin. Drug Metab. Toxicol.2024201-29510510.1080/17425255.2024.231115438270999
    [Google Scholar]
  129. CattaneoD. CapettiA. RizzardiniG. Drug–drug interactions of a two-drug regimen of dolutegravir and lamivudine for HIV treatment.Expert Opin. Drug Metab. Toxicol.201915324525210.1080/17425255.2019.157782130704313
    [Google Scholar]
  130. BailinS.S. GabrielC.L. WanjallaC.N. KoetheJ.R. Obesity and weight gain in persons with HIV.Curr. HIV/AIDS Rep.202017213815010.1007/s11904‑020‑00483‑532072466
    [Google Scholar]
  131. ZinoL. StalenhoefJ. ColbersA. BurgerD.M. Outcomes of modern antiretroviral therapy in obese individuals living with HIV.J. Antimicrob. Chemother.202277123215322010.1093/jac/dkac36836322474
    [Google Scholar]
  132. De NicolòA. PalermitiA. DispinseriS. MarchettiG. TrunfioM. De VivoE. D’AvolioA. MuscatelloA. GoriA. RusconiS. BruzzesiE. GabrieliA. BernasconiD.P. BanderaA. NozzaS. CalcagnoA. Plasma, intracellular and lymph node antiretroviral concentrations and HIV DNA change during primary HIV infection: Results from the INACTION P25 study.Int. J. Antimicrob. Agents202464210720010.1016/j.ijantimicag.2024.10720038768738
    [Google Scholar]
  133. WongA. ChuY. ChenH. FengW. JiL. QinC. StocksM.J. MarlowM. GershkovichP. Distribution of lamivudine into lymph node HIV reservoir.Int. J. Pharm.202364812357410.1016/j.ijpharm.2023.12357437935311
    [Google Scholar]
  134. Sánchez MartínA. Cabrera FigueroaS. Cruz GuerreroR. HurtadoL.P. HurléA.D.G. Carracedo ÁlvarezÁ. Impact of pharmacogenetics on CNS side effects related to efavirenz.Pharmacogenomics201314101167117810.2217/pgs.13.11123859571
    [Google Scholar]
  135. RanzaniA. CastelliF. Di BiagioA. d’Arminio MonforteA. D’AvolioA. SoriaA. BaiF. FocàE. TaramassoL. CalcagnoA. BrescianiE. TorselloA. BonfantiP. LapadulaG. Influence of efavirenz and 8‐hydroxy‐efavirenz plasma levels on cognition and central nervous system side effects.HIV Med.202425449149710.1111/hiv.1360038104964
    [Google Scholar]
  136. NearyM. OwenA. OlagunjuA. Pharmacokinetics of HIV therapies in pregnant patients: An update.Expert Opin. Drug Metab. Toxicol.202016644946110.1080/17425255.2020.175479232271621
    [Google Scholar]
  137. IsoherranenN. Physiologically based pharmacokinetic modeling of small molecules: How much progress have we made?Drug Metab. Dispos.202553110001310.1124/dmd.123.00096039884807
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002392579250902053006
Loading
/content/journals/cdm/10.2174/0113892002392579250902053006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test