Skip to content
2000
image of Synthesis and Antimicrobial Activity of Silver/Copper Oxide/Clay Hybrid Nanocomposites Against Gram-Positive and Gram-Negative Bacteria

Abstract

Background

The rapid surge in bacterial resistance to classical antibiotics and antimicrobial agents has driven researchers to identify new classes of antimicrobial agents. At the nanoscale, nanotechnological progress has strongly underscored the application of silver and copper since they present high antimicrobial activities toward gram-positive and gram-negative bacteria. Nanostructures containing these two elements-all the more so for hybrid nanocomposites—have been scantily the subject of investigated. The present work aims to develop and study a silver/copper oxide/clay hybrid nanocomposite.

Methods

Nanocomposites of silver, copper oxide, and their hybrid with clay were synthesized chemical precipitation under controlled pH (9-11) and temperature (60–90°C) conditions. The antibacterial activity was assessed using standard 0.5 McFarland-adjusted bacterial inocula. Characterization was performed using FTIR, XRD, FESEM, and TEM techniques. MIC and MBC were determined through serial dilution, and data were analyzed using one-way ANOVA and Tukey’s test (SPSS v26).

Results

The results indicated that the fabricated nanocomposite was impure, with nanosilver particles measuring 30–40 nm and copper oxide particles measuring 200–250 nm. The morphological properties of synthesized Ag/CuO/clay nanocomposites were evaluated using X-ray diffractometer analysis. The minimum inhibitory concentration (MIC) of the hybrid nanocomposite against and was 1024 μg/ml, and for and 2048 μg/ml. The minimum bactericidal concentration (MBC) against and was 4096 μg/ml, and for 4096 μg/ml, and 8192 μg/ml.

Conclusion

These results showed that the antimicrobial property of silver/copper/clay hybrid nanocomposite was better than copper/silver and clay nanocomposite against gram-positive bacteria, while showing a similar effect against gram-negative bacteria.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002392051250612052515
2025-06-24
2025-09-15
Loading full text...

Full text loading...

References

  1. Roberts CA Buikstra JE Bacterial Infections. Ortner's Identification of Pathological Conditions in Human Skeletal Remains London, UK Academic Press 2019 321 439 10.1016/B978‑0‑12‑809738‑0.00011‑9
    [Google Scholar]
  2. Ruan Z. Yu Y. Feng Y. The global dissemination of bacterial infections necessitates the study of reverse genomic epidemiology. Brief. Bioinform. 2020 21 2 741 750 10.1093/bib/bbz010 30715167
    [Google Scholar]
  3. Doron S. Gorbach S.L. Bacterial Infections: Overview International Encyclopedia of Public Health London, UK Academic Press 2008 273 282 10.1016/B978‑012373960‑5.00011‑5
    [Google Scholar]
  4. Kloprogge J.T.T. Hartman H. Clays and the origin of life: The experiments. Life 2022 12 2 259 10.3390/life12020259 35207546
    [Google Scholar]
  5. Pollak H. Degiacomi M.T. Erastova V. Modeling realistic Clay systems with ClayCode. J. Chem. Theory Comput. 2024 20 21 9606 9617 10.1021/acs.jctc.4c00987 39404473
    [Google Scholar]
  6. Nomicisio C. Ruggeri M. Bianchi E. Vigani B. Valentino C. Aguzzi C. Viseras C. Rossi S. Sandri G. Natural and synthetic clay minerals in the pharmaceutical and biomedical fields. Pharmaceutics 2023 15 5 1368 10.3390/pharmaceutics15051368 37242610
    [Google Scholar]
  7. Kim M.H. Choi G. Elzatahry A. Vinu A. Choy Y.B. Choy J.H. Review of clay-drug hybrid materials for biomedical applications: administration routes. Clays Clay Miner. 2016 64 2 115 130 10.1346/CCMN.2016.0640204 32218609
    [Google Scholar]
  8. Mohanraj V.J. Chen Y.J. Nanoparticles-a review. Trop. J. Pharm. Res. 2006 5 1 561 573
    [Google Scholar]
  9. Tsao T.M. Chen Y.M. Wang M.K. Origin, separation and identification of environmental nanoparticles: a review. J. Environ. Monit. 2011 13 5 1156 1163 10.1039/c1em10013k 21505694
    [Google Scholar]
  10. Saravanan A. Kumar P.S. Karishma S. Vo D.V.N. Jeevanantham S. Yaashikaa P.R. George C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021 264 Pt 2 128580 10.1016/j.chemosphere.2020.128580 33059285
    [Google Scholar]
  11. Ayalew A.A. A critical review on clay-based nanocomposite particles for application of wastewater treatment. Water Sci. Technol. 2022 85 10 3002 3022 10.2166/wst.2022.150 35638802
    [Google Scholar]
  12. Dong J. Cheng Z. Tan S. Zhu Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin. Drug Deliv. 2021 18 6 695 714 10.1080/17425247.2021.1862792 33301349
    [Google Scholar]
  13. Tariq A Bhawani SA Asaruddin MR Alotaibi KM Introduction to nanocomposites. Polysaccharide-based nanocomposites for gene delivery and tissue engineering . Woodhead Publishing 2019 15 31
    [Google Scholar]
  14. Omanović-Mikličanin E. Badnjević A. Kazlagić A. Hajlovac M. Nanocomposites: A brief review. Health Technol. (Berl.) 2020 10 1 51 59 10.1007/s12553‑019‑00380‑x
    [Google Scholar]
  15. Kedir W.M. Deresa E.M. Diriba T.F. Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites. Heliyon 2022 8 9 e10654 10.1016/j.heliyon.2022.e10654 36164543
    [Google Scholar]
  16. Fan X. Yahia L.H. Sacher E. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 2021 10 2 137 10.3390/biology10020137 33578705
    [Google Scholar]
  17. Williams L.B. Metge D.W. Eberl D.D. Harvey R.W. Turner A.G. Prapaipong P. Poret-Peterson A.T. What makes a natural clay antibacterial? Environ. Sci. Technol. 2011 45 8 3768 3773 10.1021/es1040688 21413758
    [Google Scholar]
  18. Mokhtar A. Ahmed A.B. Asli B. Boukoussa B. Hachemaoui M. Sassi M. Abboud M. Recent advances in antibacterial metallic species supported on montmorillonite clay mineral: a review. Minerals 2023 13 10 1268 10.3390/min13101268
    [Google Scholar]
  19. Ma X. Zhou S. Xu X. Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front. Surg. 2022 9 905892 10.3389/fsurg.2022.905892 35990090
    [Google Scholar]
  20. Ozdal M. Gurkok S. A Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 2022 10 2 115 129 10.5599/admet.1172 35350114
    [Google Scholar]
  21. Sharma D. Gautam S. Singh S. Srivastava N. Khan A.M. Bisht D. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology. Front. Microbiol. 2025 15 1391345 10.3389/fmicb.2024.1391345 39850130
    [Google Scholar]
  22. Khairnar S.V. Das A. Oupický D. Sadykov M. Romanova S. Strategies to overcome antibiotic resistance: silver nanoparticles and vancomycin in pathogen eradication. RSC Pharm 2025
    [Google Scholar]
  23. Asamoah R.B. Annan E. Mensah B. Nbelayim P. Apalangya V. Onwona-Agyeman B. Yaya A. A comparative study of antibacterial activity of CuO/Ag and ZnO/Ag nanocomposites. Adv. Mater. Sci. Eng. 2020 2020 1 7814324 10.1155/2020/7814324
    [Google Scholar]
  24. Vasiliev G. Kubo A.L. Vija H. Kahru A. Bondar D. Karpichev Y. Bondarenko O. Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action. Sci. Rep. 2023 13 1 9202 10.1038/s41598‑023‑36460‑2 37280318
    [Google Scholar]
  25. Ikuta K.S. Swetschinski L.R. Robles Aguilar G. Sharara F. Mestrovic T. Gray A.P. Davis Weaver N. Wool E.E. Han C. Gershberg Hayoon A. Aali A. Abate S.M. Abbasi-Kangevari M. Abbasi-Kangevari Z. Abd-Elsalam S. Abebe G. Abedi A. Abhari A.P. Abidi H. Aboagye R.G. Absalan A. Abubaker Ali H. Acuna J.M. Adane T.D. Addo I.Y. Adegboye O.A. Adnan M. Adnani Q.E.S. Afzal M.S. Afzal S. Aghdam Z.B. Ahinkorah B.O. Ahmad A. Ahmad A.R. Ahmad R. Ahmad S. Ahmad S. Ahmadi S. Ahmed A. Ahmed H. Ahmed J.Q. Ahmed Rashid T. Ajami M. Aji B. Akbarzadeh-Khiavi M. Akunna C.J. Al Hamad H. Alahdab F. Al-Aly Z. Aldeyab M.A. Aleman A.V. Alhalaiqa F.A.N. Alhassan R.K. Ali B.A. Ali L. Ali S.S. Alimohamadi Y. Alipour V. Alizadeh A. Aljunid S.M. Allel K. Almustanyir S. Ameyaw E.K. Amit A.M.L. Anandavelane N. Ancuceanu R. Andrei C.L. Andrei T. Anggraini D. Ansar A. Anyasodor A.E. Arabloo J. Aravkin A.Y. Areda D. Aripov T. Artamonov A.A. Arulappan J. Aruleba R.T. Asaduzzaman M. Ashraf T. Athari S.S. Atlaw D. Attia S. Ausloos M. Awoke T. Ayala Quintanilla B.P. Ayana T.M. Azadnajafabad S. Azari Jafari A. B D.B. Badar M. Badiye A.D. Baghcheghi N. Bagherieh S. Baig A.A. Banerjee I. Barac A. Bardhan M. Barone-Adesi F. Barqawi H.J. Barrow A. Baskaran P. Basu S. Batiha A-M.M. Bedi N. Belete M.A. Belgaumi U.I. Bender R.G. Bhandari B. Bhandari D. Bhardwaj P. Bhaskar S. Bhattacharyya K. Bhattarai S. Bitaraf S. Buonsenso D. Butt Z.A. Caetano dos Santos F.L. Cai J. Calina D. Camargos P. Cámera L.A. Cárdenas R. Cevik M. Chadwick J. Charan J. Chaurasia A. Ching P.R. Choudhari S.G. Chowdhury E.K. Chowdhury F.R. Chu D-T. Chukwu I.S. Dadras O. Dagnaw F.T. Dai X. Das S. Dastiridou A. Debela S.A. Demisse F.W. Demissie S. Dereje D. Derese M. Desai H.D. Dessalegn F.N. Dessalegni S.A.A. Desye B. Dhaduk K. Dhimal M. Dhingra S. Diao N. Diaz D. Djalalinia S. Dodangeh M. Dongarwar D. Dora B.T. Dorostkar F. Dsouza H.L. Dubljanin E. Dunachie S.J. Durojaiye O.C. Edinur H.A. Ejigu H.B. Ekholuenetale M. Ekundayo T.C. El-Abid H. Elhadi M. Elmonem M.A. Emami A. Engelbert Bain L. Enyew D.B. Erkhembayar R. Eshrati B. Etaee F. Fagbamigbe A.F. Falahi S. Fallahzadeh A. Faraon E.J.A. Fatehizadeh A. Fekadu G. Fernandes J.C. Ferrari A. Fetensa G. Filip I. Fischer F. Foroutan M. Gaal P.A. Gadanya M.A. Gaidhane A.M. Ganesan B. Gebrehiwot M. Ghanbari R. Ghasemi Nour M. Ghashghaee A. Gholamrezanezhad A. Gholizadeh A. Golechha M. Goleij P. Golinelli D. Goodridge A. Gunawardane D.A. Guo Y. Gupta R.D. Gupta S. Gupta V.B. Gupta V.K. Guta A. Habibzadeh P. Haddadi Avval A. Halwani R. Hanif A. Hannan M.A. Harapan H. Hassan S. Hassankhani H. Hayat K. Heibati B. Heidari G. Heidari M. Heidari-Soureshjani R. Herteliu C. Heyi D.Z. Hezam K. Hoogar P. Horita N. Hossain M.M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Hoveidamanesh S. Huang J. Hussain S. Hussein N.R. Ibitoye S.E. Ilesanmi O.S. Ilic I.M. Ilic M.D. Imam M.T. Immurana M. Inbaraj L.R. Iradukunda A. Ismail N.E. Iwu C.C.D. Iwu C.J. J L.M. Jakovljevic M. Jamshidi E. Javaheri T. Javanmardi F. Javidnia J. Jayapal S.K. Jayarajah U. Jebai R. Jha R.P. Joo T. Joseph N. Joukar F. Jozwiak J.J. Kacimi S.E.O. Kadashetti V. Kalankesh L.R. Kalhor R. Kamal V.K. Kandel H. Kapoor N. Karkhah S. Kassa B.G. Kassebaum N.J. Katoto P.D.M.C. Keykhaei M. Khajuria H. Khan A. Khan I.A. Khan M. Khan M.N. Khan M.A.B. Khatatbeh M.M. Khater M.M. Khayat Kashani H.R. Khubchandani J. Kim H. Kim M.S. Kimokoti R.W. Kissoon N. Kochhar S. Kompani F. Kosen S. Koul P.A. Koulmane Laxminarayana S.L. Krapp Lopez F. Krishan K. Krishnamoorthy V. Kulkarni V. Kumar N. Kurmi O.P. Kuttikkattu A. Kyu H.H. Lal D.K. Lám J. Landires I. Lasrado S. Lee S. Lenzi J. Lewycka S. Li S. Lim S.S. Liu W. Lodha R. Loftus M.J. Lohiya A. Lorenzovici L. Lotfi M. Mahmoodpoor A. Mahmoud M.A. Mahmoudi R. Majeed A. Majidpoor J. Makki A. Mamo G.A. Manla Y. Martorell M. Matei C.N. McManigal B. Mehrabi Nasab E. Mehrotra R. Melese A. Mendoza-Cano O. Menezes R.G. Mentis A-F.A. Micha G. Michalek I.M. Micheletti Gomide Nogueira de Sá A.C. Milevska Kostova N. Mir S.A. Mirghafourvand M. Mirmoeeni S. Mirrakhimov E.M. Mirza-Aghazadeh-Attari M. Misganaw A.S. Misganaw A. Misra S. Mohammadi E. Mohammadi M. Mohammadian-Hafshejani A. Mohammed S. Mohan S. Mohseni M. Mokdad A.H. Momtazmanesh S. Monasta L. Moore C.E. Moradi M. Moradi Sarabi M. Morrison S.D. Motaghinejad M. Mousavi Isfahani H. Mousavi Khaneghah A. Mousavi-Aghdas S.A. Mubarik S. Mulita F. Mulu G.B.B. Munro S.B. Muthupandian S. Nair T.S. Naqvi A.A. Narang H. Natto Z.S. Naveed M. Nayak B.P. Naz S. Negoi I. Nejadghaderi S.A. Neupane Kandel S. Ngwa C.H. Niazi R.K. Nogueira de Sá A.T. Noroozi N. Nouraei H. Nowroozi A. Nuñez-Samudio V. Nutor J.J. Nzoputam C.I. Nzoputam O.J. Oancea B. Obaidur R.M. Ojha V.A. Okekunle A.P. Okonji O.C. Olagunju A.T. Olusanya B.O. Omar Bali A. Omer E. Otstavnov N. Oumer B. P A M. Padubidri J.R. Pakshir K. Palicz T. Pana A. Pardhan S. Paredes J.L. Parekh U. Park E-C. Park S. Pathak A. Paudel R. Paudel U. Pawar S. Pazoki Toroudi H. Peng M. Pensato U. Pepito V.C.F. Pereira M. Peres M.F.P. Perico N. Petcu I-R. Piracha Z.Z. Podder I. Pokhrel N. Poluru R. Postma M.J. Pourtaheri N. Prashant A. Qattea I. Rabiee M. Rabiee N. Radfar A. Raeghi S. Rafiei S. Raghav P.R. Rahbarnia L. Rahimi-Movaghar V. Rahman M. Rahman M.A. Rahmani A.M. Rahmanian V. Ram P. Ranjha M.M.A.N. Rao S.J. Rashidi M-M. Rasul A. Ratan Z.A. Rawaf S. Rawassizadeh R. Razeghinia M.S. Redwan E.M.M. Regasa M.T. Remuzzi G. Reta M.A. Rezaei N. Rezapour A. Riad A. Ripon R.K. Rudd K.E. Saddik B. Sadeghian S. Saeed U. Safaei M. Safary A. Safi S.Z. Sahebazzamani M. Sahebkar A. Sahoo H. Salahi S. Salahi S. Salari H. Salehi S. Samadi Kafil H. Samy A.M. Sanadgol N. Sankararaman S. Sanmarchi F. Sathian B. Sawhney M. Saya G.K. Senthilkumaran S. Seylani A. Shah P.A. Shaikh M.A. Shaker E. Shakhmardanov M.Z. Sharew M.M. Sharifi-Razavi A. Sharma P. Sheikhi R.A. Sheikhy A. Shetty P.H. Shigematsu M. Shin J.I. Shirzad-Aski H. Shivakumar K.M. Shobeiri P. Shorofi S.A. Shrestha S. Sibhat M.M. Sidemo N.B. Sikder M.K. Silva L.M.L.R. Singh J.A. Singh P. Singh S. Siraj M.S. Siwal S.S. Skryabin V.Y. Skryabina A.A. Socea B. Solomon D.D. Song Y. Sreeramareddy C.T. Suleman M. Suliankatchi Abdulkader R. Sultana S. Szócska M. Tabatabaeizadeh S-A. Tabish M. Taheri M. Taki E. Tan K-K. Tandukar S. Tat N.Y. Tat V.Y. Tefera B.N. Tefera Y.M. Temesgen G. Temsah M-H. Tharwat S. Thiyagarajan A. Tleyjeh I.I. Troeger C.E. Umapathi K.K. Upadhyay E. Valadan Tahbaz S. Valdez P.R. Van den Eynde J. van Doorn H.R. Vaziri S. Verras G-I. Viswanathan H. Vo B. Waris A. Wassie G.T. Wickramasinghe N.D. Yaghoubi S. Yahya G.A.T.Y. Yahyazadeh Jabbari S.H. Yigit A. Yiğit V. Yon D.K. Yonemoto N. Zahir M. Zaman B.A. Zaman S.B. Zangiabadian M. Zare I. Zastrozhin M.S. Zhang Z-J. Zheng P. Zhong C. Zoladl M. Zumla A. Hay S.I. Dolecek C. Sartorius B. Murray C.J.L. Naghavi M. GBD 2019 Antimicrobial Resistance Collaborators Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022 400 10369 2221 2248 10.1016/S0140‑6736(22)02185‑7 36423648
    [Google Scholar]
  26. Püntener U. Booth S.G. Perry V.H. Teeling J.L. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J. Neuroinflammation 2012 9 1 146 10.1186/1742‑2094‑9‑146 22738332
    [Google Scholar]
  27. Lozano G.E. Beatriz S.R. Cervantes F.M. María G.N.P. Francisco J.M.C. Low accuracy of the McFarland method for estimation of bacterial populations. Afr. J. Microbiol. Res. 2018 12 31 736 740 10.5897/AJMR2018.8893
    [Google Scholar]
  28. Gayathiri E. Bharathi B. Priya K. Study of the enumeration of twelve clinical important bacterial populations at 0.5 McFarland standard. Int. J. Creat. Res. Thoughts 2018 6 2 880 893
    [Google Scholar]
  29. Maruthupandy M. Muneeswaran T. Chackaravarthi G. Vennila T. Anand M. Cho W.S. Quero F. Synthesis of chitosan/SnO2 nanocomposites by chemical precipitation for enhanced visible light photocatalytic degradation efficiency of congo red and rhodamine-B dye molecules. J. Photochem. Photobiol. Chem. 2022 430 113972 10.1016/j.jphotochem.2022.113972
    [Google Scholar]
  30. Dcruz D.A. Synthesis of NiO nanoparticles by chemical precipitation method. SSRN 3684208 2020 10.2139/ssrn.3684208
    [Google Scholar]
  31. Parvekar P. Palaskar J. Metgud S. Maria R. Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020 7 1 105 109 10.1080/26415275.2020.1796674 32939454
    [Google Scholar]
  32. Rai M.K. Deshmukh S.D. Ingle A.P. Gade A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012 112 5 841 852 10.1111/j.1365‑2672.2012.05253.x 22324439
    [Google Scholar]
  33. Rai M. Yadav A. Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009 27 1 76 83 10.1016/j.biotechadv.2008.09.002 18854209
    [Google Scholar]
  34. Singh J. Dutta T. Kim K.H. Rawat M. Samddar P. Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology 2018 16 1 84 10.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  35. Sirelkhatim A. Mahmud S. Seeni A. Kaus N.H.M. Ann L.C. Bakhori S.K.M. Hasan H. Mohamad D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015 7 3 219 242 10.1007/s40820‑015‑0040‑x 30464967
    [Google Scholar]
  36. Kumar V. Sharma N. Maitra S.S. In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett. 2017 7 4 243 256 10.1007/s40089‑017‑0221‑3
    [Google Scholar]
  37. Zhao X. Liu W. Cai Z. Han B. Qian T. Zhao D. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 2016 100 245 266 10.1016/j.watres.2016.05.019 27206054
    [Google Scholar]
  38. Li X. Choy W.C.H. Lu H. Sha W.E.I. Ho A.H.P. Efficiency enhancement of organic solar cells by using shape‐dependent broadband plasmonic absorption in metallic nanoparticles. Adv. Funct. Mater. 2013 23 21 2728 2735 10.1002/adfm.201202476
    [Google Scholar]
  39. El-Nahhal I.M. Elmanama A.A. Amara N. Qodih F.S. Selmane M. Chehimi M.M. The efficacy of surfactants in stabilizing coating of nano-structured CuO particles onto the surface of cotton fibers and their antimicrobial activity. Mater. Chem. Phys. 2018 215 221 228 10.1016/j.matchemphys.2018.05.012
    [Google Scholar]
  40. Ding K. Cullen D.A. Zhang L. Cao Z. Roy A.D. Ivanov I.N. Cao D. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 2018 362 6414 560 564 10.1126/science.aau4414 30385572
    [Google Scholar]
  41. Park T.J. Lee K.G. Lee S.Y. Advances in microbial biosynthesis of metal nanoparticles. Appl. Microbiol. Biotechnol. 2016 100 2 521 534 10.1007/s00253‑015‑6904‑7 26300292
    [Google Scholar]
  42. Wu J. Zheng Y. Song W. Luan J. Wen X. Wu Z. Chen X. Wang Q. Guo S. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 2014 102 762 771 10.1016/j.carbpol.2013.10.093 24507345
    [Google Scholar]
  43. Zheng J. Song F. Wang X.L. Wang Y.Z. In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles. Cellulose 2014 21 4 3097 3105 10.1007/s10570‑014‑0324‑1
    [Google Scholar]
  44. Hariram M. Ganesan V. Muthuramkumar S. Vivekanandhan S. Functionalization of kaolin clay with silver nanoparticles by Murraya koenigii fruit extract-mediated bioreduction process for antimicrobial applications. J. Australian Ceramic Society 2021 57 2 505 513 10.1007/s41779‑020‑00545‑2
    [Google Scholar]
  45. Zhu S. Wang S. Yang X. Tufail S. Chen C. Wang X. Shang J. Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism. J. Clean. Prod. 2020 276 123009 10.1016/j.jclepro.2020.123009
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002392051250612052515
Loading
/content/journals/cdm/10.2174/0113892002392051250612052515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test