Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

The rapid surge in bacterial resistance to classical antibiotics and antimicrobial agents has driven researchers to identify new classes of antimicrobial agents. At the nanoscale, nanotechnological progress has strongly underscored the application of silver and copper since they present high antimicrobial activities toward gram-positive and gram-negative bacteria. Nanostructures containing these two elements-all the more so for hybrid nanocomposites—have been scantily the subject of investigated. The present work aims to develop and study a silver/copper oxide/clay hybrid nanocomposite.

Methods

Nanocomposites of silver, copper oxide, and their hybrid with clay were synthesized chemical precipitation under controlled pH (9-11) and temperature (60–90°C) conditions. The antibacterial activity was assessed using standard 0.5 McFarland-adjusted bacterial inocula. Characterization was performed using FTIR, XRD, FESEM, and TEM techniques. MIC and MBC were determined through serial dilution, and data were analyzed using one-way ANOVA and Tukey’s test (SPSS v26).

Results

The results indicated that the fabricated nanocomposite was impure, with nanosilver particles measuring 30–40 nm and copper oxide particles measuring 200–250 nm. The morphological properties of synthesized Ag/CuO/clay nanocomposites were evaluated using X-ray diffractometer analysis. The minimum inhibitory concentration (MIC) of the hybrid nanocomposite against and was 1024 μg/ml, and for and 2048 μg/ml. The minimum bactericidal concentration (MBC) against and was 4096 μg/ml, and for 4096 μg/ml, and 8192 μg/ml.

Discussion

Silver/copper oxide/clay hybrid nanocomposite exhibited more intensive antibacterial activities towards gram-positive bacteria in the absence of single-component nanocomposites, validating the synergistic effect of silver and copper in aid of clay. Its small efficacy on gram-negative strains also points at the necessity for additional optimization as well as extension. Such outcomes indicate the potential of the hybrid nanocomposite as an aspiring candidate for eventual antimicrobial applications.

Conclusion

These results showed that the antimicrobial property of silver/copper/clay hybrid nanocomposite was better than copper/silver and clay nanocomposite against gram-positive bacteria, while showing a similar effect against gram-negative bacteria.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002392051250612052515
2025-06-24
2026-02-02
Loading full text...

Full text loading...

References

  1. RobertsCA BuikstraJE Bacterial Infections.Ortner's Identification of Pathological Conditions in Human Skeletal RemainsLondon, UKAcademic Press201932143910.1016/B978‑0‑12‑809738‑0.00011‑9
    [Google Scholar]
  2. RuanZ. YuY. FengY. The global dissemination of bacterial infections necessitates the study of reverse genomic epidemiology.Brief. Bioinform.202021274175010.1093/bib/bbz01030715167
    [Google Scholar]
  3. DoronS. GorbachS.L. Bacterial Infections: OverviewInternational Encyclopedia of Public HealthLondon, UKAcademic Press200827328210.1016/B978‑012373960‑5.00011‑5
    [Google Scholar]
  4. KloproggeJ.T.T. HartmanH. Clays and the origin of life: The experiments.Life202212225910.3390/life1202025935207546
    [Google Scholar]
  5. PollakH. DegiacomiM.T. ErastovaV. Modeling realistic Clay systems with ClayCode.J. Chem. Theory Comput.202420219606961710.1021/acs.jctc.4c0098739404473
    [Google Scholar]
  6. NomicisioC. RuggeriM. BianchiE. ViganiB. ValentinoC. AguzziC. ViserasC. RossiS. SandriG. Natural and synthetic clay minerals in the pharmaceutical and biomedical fields.Pharmaceutics2023155136810.3390/pharmaceutics1505136837242610
    [Google Scholar]
  7. KimM.H. ChoiG. ElzatahryA. VinuA. ChoyY.B. ChoyJ.H. Review of clay-drug hybrid materials for biomedical applications: administration routes.Clays Clay Miner.201664211513010.1346/CCMN.2016.064020432218609
    [Google Scholar]
  8. MohanrajV.J. ChenY.J. Nanoparticles-a review.Trop. J. Pharm. Res.200651561573
    [Google Scholar]
  9. TsaoT.M. ChenY.M. WangM.K. Origin, separation and identification of environmental nanoparticles: a review.J. Environ. Monit.20111351156116310.1039/c1em10013k21505694
    [Google Scholar]
  10. SaravananA. KumarP.S. KarishmaS. VoD.V.N. JeevananthamS. YaashikaaP.R. GeorgeC.S. A review on biosynthesis of metal nanoparticles and its environmental applications.Chemosphere2021264Pt 212858010.1016/j.chemosphere.2020.12858033059285
    [Google Scholar]
  11. AyalewA.A. A critical review on clay-based nanocomposite particles for application of wastewater treatment.Water Sci. Technol.202285103002302210.2166/wst.2022.15035638802
    [Google Scholar]
  12. DongJ. ChengZ. TanS. ZhuQ. Clay nanoparticles as pharmaceutical carriers in drug delivery systems.Expert Opin. Drug Deliv.202118669571410.1080/17425247.2021.186279233301349
    [Google Scholar]
  13. TariqA BhawaniSA AsaruddinMR AlotaibiKM Introduction to nanocomposites.Polysaccharide-based nanocomposites for gene delivery and tissue engineering .Woodhead Publishing20191531
    [Google Scholar]
  14. Omanović-MikličaninE. BadnjevićA. KazlagićA. HajlovacM. Nanocomposites: A brief review.Health Technol. (Berl.)2020101515910.1007/s12553‑019‑00380‑x
    [Google Scholar]
  15. KedirW.M. DeresaE.M. DiribaT.F. Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites.Heliyon202289e1065410.1016/j.heliyon.2022.e1065436164543
    [Google Scholar]
  16. FanX. YahiaL.H. SacherE. Antimicrobial properties of the Ag, Cu nanoparticle system.Biology 202110213710.3390/biology1002013733578705
    [Google Scholar]
  17. WilliamsL.B. MetgeD.W. EberlD.D. HarveyR.W. TurnerA.G. PrapaipongP. Poret-PetersonA.T. What makes a natural clay antibacterial?Environ. Sci. Technol.20114583768377310.1021/es104068821413758
    [Google Scholar]
  18. MokhtarA. AhmedA.B. AsliB. BoukoussaB. HachemaouiM. SassiM. AbboudM. Recent advances in antibacterial metallic species supported on montmorillonite clay mineral: a review.Minerals 20231310126810.3390/min13101268
    [Google Scholar]
  19. MaX. ZhouS. XuX. DuQ. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review.Front. Surg.2022990589210.3389/fsurg.2022.90589235990090
    [Google Scholar]
  20. OzdalM. GurkokS. A Recent advances in nanoparticles as antibacterial agent.ADMET DMPK202210211512910.5599/admet.117235350114
    [Google Scholar]
  21. SharmaD. GautamS. SinghS. SrivastavaN. KhanA.M. BishtD. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology.Front. Microbiol.202515139134510.3389/fmicb.2024.139134539850130
    [Google Scholar]
  22. KhairnarS.V. DasA. OupickýD. SadykovM. RomanovaS. Strategies to overcome antibiotic resistance: silver nanoparticles and vancomycin in pathogen eradication.RSC Pharm2025
    [Google Scholar]
  23. AsamoahR.B. AnnanE. MensahB. NbelayimP. ApalangyaV. Onwona-AgyemanB. YayaA. A comparative study of antibacterial activity of CuO/Ag and ZnO/Ag nanocomposites.Adv. Mater. Sci. Eng.202020201781432410.1155/2020/7814324
    [Google Scholar]
  24. VasilievG. KuboA.L. VijaH. KahruA. BondarD. KarpichevY. BondarenkoO. Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action.Sci. Rep.2023131920210.1038/s41598‑023‑36460‑237280318
    [Google Scholar]
  25. IkutaK.S. SwetschinskiL.R. Robles AguilarG. ShararaF. MestrovicT. GrayA.P. Davis WeaverN. WoolE.E. HanC. Gershberg HayoonA. AaliA. AbateS.M. Abbasi-KangevariM. Abbasi-KangevariZ. Abd-ElsalamS. AbebeG. AbediA. AbhariA.P. AbidiH. AboagyeR.G. AbsalanA. Abubaker AliH. AcunaJ.M. AdaneT.D. AddoI.Y. AdegboyeO.A. AdnanM. AdnaniQ.E.S. AfzalM.S. AfzalS. AghdamZ.B. AhinkorahB.O. AhmadA. AhmadA.R. AhmadR. AhmadS. AhmadS. AhmadiS. AhmedA. AhmedH. AhmedJ.Q. Ahmed RashidT. AjamiM. AjiB. Akbarzadeh-KhiaviM. AkunnaC.J. Al HamadH. AlahdabF. Al-AlyZ. AldeyabM.A. AlemanA.V. AlhalaiqaF.A.N. AlhassanR.K. AliB.A. AliL. AliS.S. AlimohamadiY. AlipourV. AlizadehA. AljunidS.M. AllelK. AlmustanyirS. AmeyawE.K. AmitA.M.L. AnandavelaneN. AncuceanuR. AndreiC.L. AndreiT. AnggrainiD. AnsarA. AnyasodorA.E. ArablooJ. AravkinA.Y. AredaD. AripovT. ArtamonovA.A. ArulappanJ. ArulebaR.T. AsaduzzamanM. AshrafT. AthariS.S. AtlawD. AttiaS. AusloosM. AwokeT. Ayala QuintanillaB.P. AyanaT.M. AzadnajafabadS. Azari JafariA. BD.B. BadarM. BadiyeA.D. BaghcheghiN. BagheriehS. BaigA.A. BanerjeeI. BaracA. BardhanM. Barone-AdesiF. BarqawiH.J. BarrowA. BaskaranP. BasuS. BatihaA-M.M. BediN. BeleteM.A. BelgaumiU.I. BenderR.G. BhandariB. BhandariD. BhardwajP. BhaskarS. BhattacharyyaK. BhattaraiS. BitarafS. BuonsensoD. ButtZ.A. Caetano dos SantosF.L. CaiJ. CalinaD. CamargosP. CámeraL.A. CárdenasR. CevikM. ChadwickJ. CharanJ. ChaurasiaA. ChingP.R. ChoudhariS.G. ChowdhuryE.K. ChowdhuryF.R. ChuD-T. ChukwuI.S. DadrasO. DagnawF.T. DaiX. DasS. DastiridouA. DebelaS.A. DemisseF.W. DemissieS. DerejeD. DereseM. DesaiH.D. DessalegnF.N. DessalegniS.A.A. DesyeB. DhadukK. DhimalM. DhingraS. DiaoN. DiazD. DjalaliniaS. DodangehM. DongarwarD. DoraB.T. DorostkarF. DsouzaH.L. DubljaninE. DunachieS.J. DurojaiyeO.C. EdinurH.A. EjiguH.B. EkholuenetaleM. EkundayoT.C. El-AbidH. ElhadiM. ElmonemM.A. EmamiA. Engelbert BainL. EnyewD.B. ErkhembayarR. EshratiB. EtaeeF. FagbamigbeA.F. FalahiS. FallahzadehA. FaraonE.J.A. FatehizadehA. FekaduG. FernandesJ.C. FerrariA. FetensaG. FilipI. FischerF. ForoutanM. GaalP.A. GadanyaM.A. GaidhaneA.M. GanesanB. GebrehiwotM. GhanbariR. Ghasemi NourM. GhashghaeeA. GholamrezanezhadA. GholizadehA. GolechhaM. GoleijP. GolinelliD. GoodridgeA. GunawardaneD.A. GuoY. GuptaR.D. GuptaS. GuptaV.B. GuptaV.K. GutaA. HabibzadehP. Haddadi AvvalA. HalwaniR. HanifA. HannanM.A. HarapanH. HassanS. HassankhaniH. HayatK. HeibatiB. HeidariG. HeidariM. Heidari-SoureshjaniR. HerteliuC. HeyiD.Z. HezamK. HoogarP. HoritaN. HossainM.M. HosseinzadehM. HostiucM. HostiucS. HoveidamaneshS. HuangJ. HussainS. HusseinN.R. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. ImamM.T. ImmuranaM. InbarajL.R. IradukundaA. IsmailN.E. IwuC.C.D. IwuC.J. JL.M. JakovljevicM. JamshidiE. JavaheriT. JavanmardiF. JavidniaJ. JayapalS.K. JayarajahU. JebaiR. JhaR.P. JooT. JosephN. JoukarF. JozwiakJ.J. KacimiS.E.O. KadashettiV. KalankeshL.R. KalhorR. KamalV.K. KandelH. KapoorN. KarkhahS. KassaB.G. KassebaumN.J. KatotoP.D.M.C. KeykhaeiM. KhajuriaH. KhanA. KhanI.A. KhanM. KhanM.N. KhanM.A.B. KhatatbehM.M. KhaterM.M. Khayat KashaniH.R. KhubchandaniJ. KimH. KimM.S. KimokotiR.W. KissoonN. KochharS. KompaniF. KosenS. KoulP.A. Koulmane LaxminarayanaS.L. Krapp LopezF. KrishanK. KrishnamoorthyV. KulkarniV. KumarN. KurmiO.P. KuttikkattuA. KyuH.H. LalD.K. LámJ. LandiresI. LasradoS. LeeS. LenziJ. LewyckaS. LiS. LimS.S. LiuW. LodhaR. LoftusM.J. LohiyaA. LorenzoviciL. LotfiM. MahmoodpoorA. MahmoudM.A. MahmoudiR. MajeedA. MajidpoorJ. MakkiA. MamoG.A. ManlaY. MartorellM. MateiC.N. McManigalB. Mehrabi NasabE. MehrotraR. MeleseA. Mendoza-CanoO. MenezesR.G. MentisA-F.A. MichaG. MichalekI.M. Micheletti Gomide Nogueira de SáA.C. Milevska KostovaN. MirS.A. MirghafourvandM. MirmoeeniS. MirrakhimovE.M. Mirza-Aghazadeh-AttariM. MisganawA.S. MisganawA. MisraS. MohammadiE. MohammadiM. Mohammadian-HafshejaniA. MohammedS. MohanS. MohseniM. MokdadA.H. MomtazmaneshS. MonastaL. MooreC.E. MoradiM. Moradi SarabiM. MorrisonS.D. MotaghinejadM. Mousavi IsfahaniH. Mousavi KhaneghahA. Mousavi-AghdasS.A. MubarikS. MulitaF. MuluG.B.B. MunroS.B. MuthupandianS. NairT.S. NaqviA.A. NarangH. NattoZ.S. NaveedM. NayakB.P. NazS. NegoiI. NejadghaderiS.A. Neupane KandelS. NgwaC.H. NiaziR.K. Nogueira de SáA.T. NorooziN. NouraeiH. NowrooziA. Nuñez-SamudioV. NutorJ.J. NzoputamC.I. NzoputamO.J. OanceaB. ObaidurR.M. OjhaV.A. OkekunleA.P. OkonjiO.C. OlagunjuA.T. OlusanyaB.O. Omar BaliA. OmerE. OtstavnovN. OumerB. P AM. PadubidriJ.R. PakshirK. PaliczT. PanaA. PardhanS. ParedesJ.L. ParekhU. ParkE-C. ParkS. PathakA. PaudelR. PaudelU. PawarS. Pazoki ToroudiH. PengM. PensatoU. PepitoV.C.F. PereiraM. PeresM.F.P. PericoN. PetcuI-R. PirachaZ.Z. PodderI. PokhrelN. PoluruR. PostmaM.J. PourtaheriN. PrashantA. QatteaI. RabieeM. RabieeN. RadfarA. RaeghiS. RafieiS. RaghavP.R. RahbarniaL. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RahmanianV. RamP. RanjhaM.M.A.N. RaoS.J. RashidiM-M. RasulA. RatanZ.A. RawafS. RawassizadehR. RazeghiniaM.S. RedwanE.M.M. RegasaM.T. RemuzziG. RetaM.A. RezaeiN. RezapourA. RiadA. RiponR.K. RuddK.E. SaddikB. SadeghianS. SaeedU. SafaeiM. SafaryA. SafiS.Z. SahebazzamaniM. SahebkarA. SahooH. SalahiS. SalahiS. SalariH. SalehiS. Samadi KafilH. SamyA.M. SanadgolN. SankararamanS. SanmarchiF. SathianB. SawhneyM. SayaG.K. SenthilkumaranS. SeylaniA. ShahP.A. ShaikhM.A. ShakerE. ShakhmardanovM.Z. SharewM.M. Sharifi-RazaviA. SharmaP. SheikhiR.A. SheikhyA. ShettyP.H. ShigematsuM. ShinJ.I. Shirzad-AskiH. ShivakumarK.M. ShobeiriP. ShorofiS.A. ShresthaS. SibhatM.M. SidemoN.B. SikderM.K. SilvaL.M.L.R. SinghJ.A. SinghP. SinghS. SirajM.S. SiwalS.S. SkryabinV.Y. SkryabinaA.A. SoceaB. SolomonD.D. SongY. SreeramareddyC.T. SulemanM. Suliankatchi AbdulkaderR. SultanaS. SzócskaM. TabatabaeizadehS-A. TabishM. TaheriM. TakiE. TanK-K. TandukarS. TatN.Y. TatV.Y. TeferaB.N. TeferaY.M. TemesgenG. TemsahM-H. TharwatS. ThiyagarajanA. TleyjehI.I. TroegerC.E. UmapathiK.K. UpadhyayE. Valadan TahbazS. ValdezP.R. Van den EyndeJ. van DoornH.R. VaziriS. VerrasG-I. ViswanathanH. VoB. WarisA. WassieG.T. WickramasingheN.D. YaghoubiS. YahyaG.A.T.Y. Yahyazadeh JabbariS.H. YigitA. YiğitV. YonD.K. YonemotoN. ZahirM. ZamanB.A. ZamanS.B. ZangiabadianM. ZareI. ZastrozhinM.S. ZhangZ-J. ZhengP. ZhongC. ZoladlM. ZumlaA. HayS.I. DolecekC. SartoriusB. MurrayC.J.L. NaghaviM. GBD 2019 Antimicrobial Resistance Collaborators Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet2022400103692221224810.1016/S0140‑6736(22)02185‑736423648
    [Google Scholar]
  26. PüntenerU. BoothS.G. PerryV.H. TeelingJ.L. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia.J. Neuroinflammation20129114610.1186/1742‑2094‑9‑14622738332
    [Google Scholar]
  27. LozanoG.E. BeatrizS.R. CervantesF.M. MaríaG.N.P. FranciscoJ.M.C. Low accuracy of the McFarland method for estimation of bacterial populations.Afr. J. Microbiol. Res.2018123173674010.5897/AJMR2018.8893
    [Google Scholar]
  28. GayathiriE. BharathiB. PriyaK. Study of the enumeration of twelve clinical important bacterial populations at 0.5 McFarland standard.Int. J. Creat. Res. Thoughts201862880893
    [Google Scholar]
  29. MaruthupandyM. MuneeswaranT. ChackaravarthiG. VennilaT. AnandM. ChoW.S. QueroF. Synthesis of chitosan/SnO2 nanocomposites by chemical precipitation for enhanced visible light photocatalytic degradation efficiency of congo red and rhodamine-B dye molecules.J. Photochem. Photobiol. Chem.202243011397210.1016/j.jphotochem.2022.113972
    [Google Scholar]
  30. DcruzD.A. Synthesis of NiO nanoparticles by chemical precipitation method.SSRN3684208202010.2139/ssrn.3684208
    [Google Scholar]
  31. ParvekarP. PalaskarJ. MetgudS. MariaR. DuttaS. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus.Biomater. Investig. Dent.20207110510910.1080/26415275.2020.179667432939454
    [Google Scholar]
  32. RaiM.K. DeshmukhS.D. IngleA.P. GadeA.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria.J. Appl. Microbiol.2012112584185210.1111/j.1365‑2672.2012.05253.x22324439
    [Google Scholar]
  33. RaiM. YadavA. GadeA. Silver nanoparticles as a new generation of antimicrobials.Biotechnol. Adv.2009271768310.1016/j.biotechadv.2008.09.00218854209
    [Google Scholar]
  34. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation.J. Nanobiotechnology20181618410.1186/s12951‑018‑0408‑430373622
    [Google Scholar]
  35. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. HasanH. MohamadD. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x30464967
    [Google Scholar]
  36. KumarV. SharmaN. MaitraS.S. In vitro and in vivo toxicity assessment of nanoparticles.Int. Nano Lett.20177424325610.1007/s40089‑017‑0221‑3
    [Google Scholar]
  37. ZhaoX. LiuW. CaiZ. HanB. QianT. ZhaoD. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation.Water Res.201610024526610.1016/j.watres.2016.05.01927206054
    [Google Scholar]
  38. LiX. ChoyW.C.H. LuH. ShaW.E.I. HoA.H.P. Efficiency enhancement of organic solar cells by using shape‐dependent broadband plasmonic absorption in metallic nanoparticles.Adv. Funct. Mater.201323212728273510.1002/adfm.201202476
    [Google Scholar]
  39. El-NahhalI.M. ElmanamaA.A. AmaraN. QodihF.S. SelmaneM. ChehimiM.M. The efficacy of surfactants in stabilizing coating of nano-structured CuO particles onto the surface of cotton fibers and their antimicrobial activity.Mater. Chem. Phys.201821522122810.1016/j.matchemphys.2018.05.012
    [Google Scholar]
  40. DingK. CullenD.A. ZhangL. CaoZ. RoyA.D. IvanovI.N. CaoD. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry.Science2018362641456056410.1126/science.aau441430385572
    [Google Scholar]
  41. ParkT.J. LeeK.G. LeeS.Y. Advances in microbial biosynthesis of metal nanoparticles.Appl. Microbiol. Biotechnol.2016100252153410.1007/s00253‑015‑6904‑726300292
    [Google Scholar]
  42. WuJ. ZhengY. SongW. LuanJ. WenX. WuZ. ChenX. WangQ. GuoS. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing.Carbohydr. Polym.201410276277110.1016/j.carbpol.2013.10.09324507345
    [Google Scholar]
  43. ZhengJ. SongF. WangX.L. WangY.Z. In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles.Cellulose20142143097310510.1007/s10570‑014‑0324‑1
    [Google Scholar]
  44. HariramM. GanesanV. MuthuramkumarS. VivekanandhanS. Functionalization of kaolin clay with silver nanoparticles by Murraya koenigii fruit extract-mediated bioreduction process for antimicrobial applications.J. Australian Ceramic Society202157250551310.1007/s41779‑020‑00545‑2
    [Google Scholar]
  45. ZhuS. WangS. YangX. TufailS. ChenC. WangX. ShangJ. Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism.J. Clean. Prod.202027612300910.1016/j.jclepro.2020.123009
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002392051250612052515
Loading
/content/journals/cdm/10.2174/0113892002392051250612052515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test