Skip to content
2000
image of Smart Stimuli-Responsive Drug Delivery Systems for Advanced Diabetes Management

Abstract

Traditional treatment methods for the management of diabetes, such as oral hypoglycemic medications and insulin injections, include drawbacks like systemic adverse effects, inconsistent medication levels, and low compliance. To avoid difficulties, glycemic levels in diabetic patients, a long-term metabolic condition, must be precisely and consistently controlled. Smart therapeutic systems allow for precise, on-demand medication release in response to local physiological or environmental cues, such as glucose levels, pH, temperature, or enzyme activity. They provide a possible substitute for conventional diabetic therapies. As these systems only administer medications when and where needed, they reduce side effects while simultaneously increasing therapeutic efficacy and patient compliance. These systems are designed to respond to signals from external sources (such as light, ultrasound, or magnetic fields) or stimuli like temperature, pH, glucose levels, and enzymes. As they use glucose-sensitive substances like phenylboronic acid, glucose oxidase, or polymers to precisely release insulin in hyperglycemic circumstances, glucose-responsive delivery methods are essential for diabetes. This review discusses a stimuli-responsive drug delivery system designed for diabetes treatment, with a focus on the developments in biomaterials, nanotechnology, and engineering that improve its effectiveness and biocompatibility. Along with the possibility of combining a stimuli-responsive drug delivery system with wearable technology for continuous glucose monitoring and intelligent insulin delivery, issues, such as manufacturing complexity, stability, and patient safety, are also addressed. The stimuli-responsive drug delivery system has the potential to revolutionize diabetes management by bridging the gap between physiological needs and therapeutic delivery, providing better glucose control, fewer side effects, and an enhanced standard of living for patients.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002390554251015114414
2025-11-04
2026-02-11
Loading full text...

Full text loading...

References

  1. Sugandh F.N.U. Chandio M. Raveena F.N.U. Kumar L. Karishma F.N.U. Khuwaja S. Memon U.A. Bai K. Kashif M. Varrassi G. Khatri M. Kumar S. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 e43697 10.7759/cureus.43697 37724233
    [Google Scholar]
  2. Siegel R.A. Stimuli sensitive polymers and self regulated drug delivery systems: A very partial review. J. Control. Release 2014 190 337 351 10.1016/j.jconrel.2014.06.035 24984012
    [Google Scholar]
  3. Trehan K. Saini M. Thakur S. Stimuli-responsive material in controlled release of drug. Engineered Biomaterials. Malviya R. Sundram S. Singapore Springer 2023 535 561 10.1007/978‑981‑99‑6698‑1_18
    [Google Scholar]
  4. Naziris N. Pippa N. Pispas S. Demetzos C. Stimuli-responsive drug delivery nanosystems: From bench to clinic. Curr. Nanomed. 2016 6 3 166 185 10.2174/2468187306666160712232449
    [Google Scholar]
  5. Polat E.O. Cetin M.M. Tabak A.F. Bilget Güven E. Uysal B.Ö. Arsan T. Kabbani A. Hamed H. Gül S.B. Transducer technologies for biosensors and their wearable applications. Biosensors 2022 12 6 385 10.3390/bios12060385 35735533
    [Google Scholar]
  6. Metkar S.K. Girigoswami K. Diagnostic biosensors in medicine – A review. Biocatal. Agric. Biotechnol. 2019 17 271 283 10.1016/j.bcab.2018.11.029
    [Google Scholar]
  7. Cicha I. Priefer R. Severino P. Souto E.B. Jain S. Biosensor-integrated drug delivery systems as new materials for biomedical applications. Biomolecules 2022 12 9 1198 10.3390/biom12091198 36139035
    [Google Scholar]
  8. Zaric B.L. Obradovic M. Sudar-Milovanovic E. Nedeljkovic J. Lazic V. Isenovic E.R. Drug delivery systems for diabetes treatment. Curr. Pharm. Des. 2019 25 2 166 173 10.2174/1381612825666190306153838 30848184
    [Google Scholar]
  9. Stumvoll M. Goldstein B.J. van Haeften T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005 365 9467 1333 1346 10.1016/S0140‑6736(05)61032‑X 15823385
    [Google Scholar]
  10. Mukhopadhyay P. Kundu P.P. Stimuli-responsive polymers for oral insulin delivery.Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Woodhead Publishing 2019 525 546 10.1016/B978‑0‑08‑101995‑5.00021‑0
    [Google Scholar]
  11. Mart R.J. Osborne R.D. Stevens M.M. Ulijn R.V. Peptide-based stimuli-responsive biomaterials. Soft Matter 2006 2 10 822 835 10.1039/b607706d 32680274
    [Google Scholar]
  12. Mu Y. Gong L. Peng T. Yao J. Lin Z. Advances in pH-responsive drug delivery systems. OpenNano 2021 5 100031 10.1016/j.onano.2021.100031
    [Google Scholar]
  13. Donath M.Y. Shoelson S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011 11 2 98 107 10.1038/nri2925 21233852
    [Google Scholar]
  14. Ismail-Beigi F. Clinical practice. Glycemic management of type 2 diabetes mellitus. N. Engl. J. Med. 2012 366 14 1319 1327 10.1056/NEJMcp1013127 22475595
    [Google Scholar]
  15. Rao R. Mahant S. Chhabra L. Nanda S. Transdermal innovations in diabetes management. Curr. Diabetes Rev. 2015 10 6 343 359 10.2174/1573399810666141124110836 25418713
    [Google Scholar]
  16. Chaudhary N. Tyagi N. Diabetes mellitus: An overview. Int. J. Res. Dev. Pharm. Life Sci. 2018 7 4 3030 3033 10.21276/IJRDPL.2278‑0238.2018.7(4).3030‑3033
    [Google Scholar]
  17. Perada S. Murthy P.N. Design, development and evaluation of transdermal drug delivery system for treatment of diabetes. J. Pharm. Negat Results 2022 13 special issue 08 3610 3617 10.47750/pnr.2022.13.S08.448
    [Google Scholar]
  18. Alsuraifi A. Curtis A. Lamprou D.A. Hoskins C. Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics 2018 10 3 136 10.3390/pharmaceutics10030136 30131473
    [Google Scholar]
  19. Aloke C. Egwu C.O. Aja P.M. Obasi N.A. Chukwu J. Akumadu B.O. Ogbu P.N. Achilonu I. Current advances in the management of diabetes mellitus. Biomedicines 2022 10 10 2436 10.3390/biomedicines10102436 36289697
    [Google Scholar]
  20. Pal S. Rakshit T. Saha S. Jinagal D. Glucose-responsive materials for smart insulin delivery: from protein-based to protein-free design. ACS Mater. Au 2025 5 2 239 252 10.1021/acsmaterialsau.4c00138 40093833
    [Google Scholar]
  21. Shen D. Yu H. Wang L. Khan A. Haq F. Chen X. Huang Q. Teng L. Recent progress in design and preparation of glucose-responsive insulin delivery systems. J. Control. Release 2020 321 236 258 10.1016/j.jconrel.2020.02.014 32061789
    [Google Scholar]
  22. Rostamizadeh K. Rezaei S. Abdouss M. Sadighian S. Arish S. A hybrid modeling approach for optimization of PMAA–chitosan–PEG nanoparticles for oral insulin delivery. RSC Advances 2015 5 85 69152 69160 10.1039/C5RA07082A
    [Google Scholar]
  23. Sung H.W. Sonaje K. Liao Z.X. Hsu L.W. Chuang E.Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: From mechanism to therapeutic applications. Acc. Chem. Res. 2012 45 4 619 629 10.1021/ar200234q 22236133
    [Google Scholar]
  24. Lin Y.H. Mi F.L. Chen C.T. Chang W.C. Peng S.F. Liang H.F. Sung H.W. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 2007 8 1 146 152 10.1021/bm0607776 17206800
    [Google Scholar]
  25. Ding H. Tan P. Fu S. Tian X. Zhang H. Ma X. Gu Z. Luo K. Preparation and application of pH-responsive drug delivery systems. J. Control. Release 2022 348 206 238 10.1016/j.jconrel.2022.05.056 35660634
    [Google Scholar]
  26. Wells C.M. Harris M. Choi L. Murali V.P. Guerra F.D. Jennings J.A. Stimuli-responsive drug release from smart polymers. J. Funct. Biomater. 2019 10 3 34 10.3390/jfb10030034 31370252
    [Google Scholar]
  27. Laaser J.E. Jiang Y. Sprouse D. Reineke T.M. Lodge T.P. pH-and ionic-strength-induced contraction of polybasic micelles in buffered aqueous solutions. Macromolecules 2015 48 8 2677 2685 10.1021/acs.macromol.5b00360
    [Google Scholar]
  28. Yoshida T. Lai T.C. Kwon G.S. Sako K. pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv. 2013 10 11 1497 1513 10.1517/17425247.2013.821978 23930949
    [Google Scholar]
  29. Mansoor S. Adeyemi S.A. Kondiah P.P.D. Choonara Y.E. A Closed loop stimuli-responsive concanavalin a-loaded chitosan–pluronic hydrogel for glucose-responsive delivery of short-acting insulin prototyped in RIN-5F pancreatic cells. Biomedicines 2023 11 9 2545 10.3390/biomedicines11092545 37760986
    [Google Scholar]
  30. Veiseh O. Tang B.C. Whitehead K.A. Anderson D.G. Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015 14 1 45 57 10.1038/nrd4477 25430866
    [Google Scholar]
  31. Mo R. Jiang T. Di J. Tai W. Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 2014 43 10 3595 3629 10.1039/c3cs60436e 24626293
    [Google Scholar]
  32. Cao J. Yuan P. Wu B. Liu Y. Hu C. Advances in the research and application of smart-responsive hydrogels in disease treatment. Gels 2023 9 8 662 10.3390/gels9080662 37623116
    [Google Scholar]
  33. Zahoor I. Singh S. Behl T. Sharma N. Naved T. Subramaniyan V. Fuloria S. Fuloria N.K. Bhatia S. Al-Harrasi A. Aleya L. Emergence of microneedles as a potential therapeutics in diabetes mellitus. Environ. Sci. Pollut. Res. Int. 2022 29 3 3302 3322 34755300
    [Google Scholar]
  34. Xu R. Bhangu S.K. Sourris K.C. Vanni D. Sani M.A. Karas J.A. Alt K. Niego B. Ale A. Besford Q.A. Dyett B. Patrick J. Carmichael I. Shaw J.E. Caruso F. Cooper M.E. Hagemeyer C.E. Cavalieri F. An engineered nanosugar enables rapid and sustained glucose‐responsive insulin delivery in diabetic mice. Adv. Mater. 2023 35 21 2210392 10.1002/adma.202210392 36908046
    [Google Scholar]
  35. Damiri F. Fatimi A. Santos A.C.P. Varma R.S. Berrada M. Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: A review. J. Mater. Chem. B Mater. Biol. Med. 2023 11 44 10538 10565 10.1039/D3TB01712E 37909361
    [Google Scholar]
  36. Martínez-Navarrete M. Pérez-López A. Guillot A.J. Cordeiro A.S. Melero A. Aparicio-Blanco J. Latest advances in glucose-responsive microneedle-based systems for transdermal insulin delivery. Int. J. Biol. Macromol. 2024 263 Pt 2 130301 10.1016/j.ijbiomac.2024.130301 38382776
    [Google Scholar]
  37. Chou D.H.C. Webber M.J. Tang B.C. Lin A.B. Thapa L.S. Deng D. Truong J.V. Cortinas A.B. Langer R. Anderson D.G. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. USA 2015 112 8 2401 2406 10.1073/pnas.1424684112 25675515
    [Google Scholar]
  38. Zhang C. Hong S. Liu M.D. Yu W.Y. Zhang M.K. Zhang L. Zeng X. Zhang X.Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Control. Release 2020 320 159 167 10.1016/j.jconrel.2020.01.038 31978443
    [Google Scholar]
  39. Zong Q. Zhou R. Zhao Z. Wang Y. Liu C. Zhang P. Glucose-responsive insulin microneedle patch based on phenylboronic acid for 1 diabetes treatment. Eur. Polym. J. 2022 173 111217 10.1016/j.eurpolymj.2022.111217
    [Google Scholar]
  40. Yao Y. Ji K. Wang Y. Gu Z. Wang J. Materials and carriers development for glucose-responsive insulin. Acc Mater. Res. 2022 3 9 960 970 10.1021/accountsmr.2c00094
    [Google Scholar]
  41. Sobczak M. Enzyme-responsive hydrogels as potential drug delivery systems—state of knowledge and future prospects. Int. J. Mol. Sci. 2022 23 8 4421 10.3390/ijms23084421 35457239
    [Google Scholar]
  42. Park C. Kim H. Kim S. Kim C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. J. Am. Chem. Soc. 2009 131 46 16614 16615 10.1021/ja9061085 19919132
    [Google Scholar]
  43. Liu J. Yi X. Zhang J. Yao Y. Panichayupakaranant P. Chen H. Recent advances in the drugs and glucose-responsive drug delivery systems for the treatment of diabetes: A systematic review. Pharmaceutics 2024 16 10 1343 10.3390/pharmaceutics16101343 39458671
    [Google Scholar]
  44. Hulambukie E. Liu M. Wu W. Xiang X. Hanning S. Wen J. Formulation approaches and strategies for transdermal delivery of insulin: special emphasis on microneedle-based systems. Acta. Materia Med. 2025 4 3 466 492 10.15212/AMM‑2025‑0019
    [Google Scholar]
  45. Jhaveri A. Deshpande P. Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J. Control. Release 2014 190 352 370 10.1016/j.jconrel.2014.05.002 24818767
    [Google Scholar]
  46. Karimi M. Ghasemi A. Sahandi Zangabad P. Rahighi R. Moosavi Basri S.M. Mirshekari H. Amiri M. Shafaei Pishabad Z. Aslani A. Bozorgomid M. Ghosh D. Beyzavi A. Vaseghi A. Aref A.R. Haghani L. Bahrami S. Hamblin M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016 45 5 1457 1501 10.1039/C5CS00798D 26776487
    [Google Scholar]
  47. Korivi M. Huang Y.W. Liu B.R. Cell-penetrating peptides as a potential drug delivery system for effective treatment of diabetes. Curr. Pharm. Des. 2021 27 6 816 825 10.2174/1381612826666201019102640 33076803
    [Google Scholar]
  48. Johnson R.P. Preman N.K. Responsive block copolymers for drug delivery applications. Part 1: Endogenous stimuli-responsive drug-release systems. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1 Woodhead Publishing 2018 171 220 10.1016/B978‑0‑08‑101997‑9.00009‑6
    [Google Scholar]
  49. Li W.X. Zhang X.P. Chen B.Z. Fei W.M. Cui Y. Zhang C.Y. Guo X.D. An update on microneedle-based systems for diabetes. Drug Deliv. Transl. Res. 2022 12 10 2275 2286 10.1007/s13346‑021‑01113‑2 35112330
    [Google Scholar]
  50. Lin X. Wu X. Chen X. Wang B. Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int. J. Pharm. 2021 602 120591 10.1016/j.ijpharm.2021.120591 33845152
    [Google Scholar]
  51. Singh K. Agarwal T. Kumar U. Pal S. Runthala A. Pan T.M. Wu C.C. Optical biosensors for diabetes management: Advancing into stimuli-responsive sensing mechanisms. Smart Mater. Med. 2023 4 91 101 10.1016/j.smaim.2022.08.003
    [Google Scholar]
  52. Hu Y. Li H. Lv X. Xu Y. Xie Y. Yuwen L. Song Y. Li S. Shao J. Yang D. Stimuli-responsive therapeutic systems for the treatment of diabetic infected wounds. Nanoscale 2022 14 36 12967 12983 10.1039/D2NR03756D 36065785
    [Google Scholar]
  53. Zhang Y. Wu B.M. Current advances in stimuli-responsive hydrogels as smart drug delivery carriers. Gels 2023 9 10 838 10.3390/gels9100838 37888411
    [Google Scholar]
  54. Prausnitz M.R. Langer R. Transdermal drug delivery. Nat. Biotechnol. 2008 26 11 1261 1268 10.1038/nbt.1504 18997767
    [Google Scholar]
  55. Bao H. Chen J. Wang X. Chen C. Gong J. Liu J. Xia D. Ultrasound-triggered on-demand insulin release for diabetes mellitus treatment. Ann. Biomed. Eng. 2022 50 12 1826 1836 10.1007/s10439‑022‑02994‑1 35752994
    [Google Scholar]
  56. Park E.J. Werner J. Smith N.B. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm. Res. 2007 24 7 1396 1401 10.1007/s11095‑007‑9306‑4 17443398
    [Google Scholar]
  57. Di J. Price J. Gu X. Jiang X. Jing Y. Gu Z. Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv. Healthc. Mater. 2014 3 6 811 816 10.1002/adhm.201300490 24255016
    [Google Scholar]
  58. Fan C.H. Ho Y.J. Lin C.W. Wu N. Chiang P.H. Yeh C.K. State-of-the-art of ultrasound-triggered drug delivery from ultrasound-responsive drug carriers. Expert Opin. Drug Deliv. 2022 19 8 997 1009 10.1080/17425247.2022.2110585 35930441
    [Google Scholar]
  59. Sun Y. Chen L.G. Fan X.M. Pang J.L. Ultrasound responsive smart implantable hydrogels for targeted delivery of drugs: Reviewing current practices. Int. J. Nanomedicine 2022 17 5001 5026 10.2147/IJN.S374247 36275483
    [Google Scholar]
  60. Klouda L. Mikos A.G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008 68 1 34 45 10.1016/j.ejpb.2007.02.025 17881200
    [Google Scholar]
  61. Lima A.C. Song W. Blanco-Fernandez B. Alvarez-Lorenzo C. Mano J.F. Synthesis of temperature-responsive dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces. Pharm. Res. 2011 28 6 1294 1305 10.1007/s11095‑011‑0380‑2 21298327
    [Google Scholar]
  62. Zhang J. Xu J. Lim J. Nolan J.K. Lee H. Lee C.H. Wearable glucose monitoring and implantable drug delivery systems for diabetes management. Adv. Healthc. Mater. 2021 10 17 2100194 10.1002/adhm.202100194 33930258
    [Google Scholar]
  63. Gandhi A. Paul A. Sen S.O. Sen K.K. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J. Pharm. Sci. 2015 10 2 99 107 10.1016/j.ajps.2014.08.010
    [Google Scholar]
  64. Li J.Y. Feng Y.H. He Y.T. Hu L.F. Liang L. Zhao Z.Q. Chen B.Z. Guo X.D. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta Biomater. 2022 153 308 319 10.1016/j.actbio.2022.08.061 36055607
    [Google Scholar]
  65. Chatterjee S. Hui P.C. Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems. Polymers 2021 13 13 2086 10.3390/polym13132086 34202828
    [Google Scholar]
  66. Priya James H. John R. Alex A. Anoop K.R. Smart polymers for the controlled delivery of drugs – A concise overview. Acta Pharm. Sin. B 2014 4 2 120 127 10.1016/j.apsb.2014.02.005 26579373
    [Google Scholar]
  67. Mura S. Nicolas J. Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013 12 11 991 1003 10.1038/nmat3776 24150417
    [Google Scholar]
  68. Hu H. Busa P. Zhao Y. Zhao C. Externally triggered drug delivery systems. Smart Mater. Med. 2024 5 3 386 408 10.1016/j.smaim.2024.08.004
    [Google Scholar]
  69. Le M. Huang W. Chen K.F. Lin C. Cai L. Zhang H. Jia Y.G. Upper critical solution temperature polymeric drug carriers. Chem. Eng. J. 2022 432 134354 10.1016/j.cej.2021.134354
    [Google Scholar]
  70. Liu Y. Yan K. Jiang G. Xiong Y. Du Y. Shi X. Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel. Int. J. Polym. Sci. 2014 2014 1 1 8 10.1155/2014/736898
    [Google Scholar]
  71. Farra R. Sheppard N.F. McCabe L. Neer R.M. Anderson J.M. Santini J.T. Cima M.J. Langer R. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 2012 4 122 122ra21 10.1126/scitranslmed.3003276 22344516
    [Google Scholar]
  72. Qi Z. Tao X. Tan G. Tian B. Zhang L. Kundu S.C. Lu S. Electro-responsive silk fibroin microneedles for controlled release of insulin. Int. J. Biol. Macromol. 2023 242 Pt 1 124684 10.1016/j.ijbiomac.2023.124684 37148951
    [Google Scholar]
  73. Liu R. Li A. Lang Y. Cai H. Tang X. Li D. Liu X. Liu J. Stimuli-responsive polymer microneedles: A rising transdermal drug delivery system and Its applications in biomedical. J. Drug Deliv. Sci. Technol. 2023 88 104922 10.1016/j.jddst.2023.104922
    [Google Scholar]
  74. Anal A. Stimuli-induced pulsatile or triggered release delivery systems for bioactive compounds. Recent Pat. Endocr. Metab. Immune Drug Discov. 2007 1 1 83 90 10.2174/187221407779814598
    [Google Scholar]
  75. Ge J. Neofytou E. Cahill T.J. Beygui R.E. Zare R.N. Drug release from electric-field-responsive nanoparticles. ACS Nano 2012 6 1 227 233 10.1021/nn203430m 22111891
    [Google Scholar]
  76. Im J.S. Bai B.C. Lee Y.S. The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials 2010 31 6 1414 1419 10.1016/j.biomaterials.2009.11.004 19931904
    [Google Scholar]
  77. Yan Q. Yuan J. Cai Z. Xin Y. Kang Y. Yin Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc. 2010 132 27 9268 9270 10.1021/ja1027502 20565093
    [Google Scholar]
  78. Gowda B.H.J. Ahmed M.G. Sahebkar A. Riadi Y. Shukla R. Kesharwani P. Stimuli-responsive microneedles as a transdermal drug delivery system: A demand-supply strategy. Biomacromolecules 2022 23 4 1519 1544 10.1021/acs.biomac.1c01691 35274937
    [Google Scholar]
  79. Shamaeli E. Alizadeh N. Functionalized gold nanoparticle-polypyrrole nanobiocomposite with high effective surface area for electrochemical/pH dual stimuli-responsive smart release of insulin. Colloids Surf. B Biointerfaces 2015 126 502 509 10.1016/j.colsurfb.2015.01.003 25616970
    [Google Scholar]
  80. Xu L. Yang Y. Mao Y. Li Z. Self‐powerbility in electrical stimulation drug delivery system. Adv. Mater. Technol. 2022 7 2 2100055 10.1002/admt.202100055
    [Google Scholar]
  81. Zhao Y. Tavares A.C. Gauthier M.A. Nano-engineered electro-responsive drug delivery systems. J. Mater. Chem. B Mater. Biol. Med. 2016 4 18 3019 3030 10.1039/C6TB00049E 32263041
    [Google Scholar]
  82. Sutani K. Kaetsu I. Uchida K. The synthesis and the electric-responsiveness of hydrogels entrapping natural polyelectrolyte. Radiat. Phys. Chem. 2001 61 1 49 54 10.1016/S0969‑806X(00)00381‑9
    [Google Scholar]
  83. Wang J. Wang Z. Yu J. Kahkoska A.R. Buse J.B. Gu Z. Glucose‐responsive insulin and delivery systems: Innovation and translation. Adv. Mater. 2020 32 13 1902004 10.1002/adma.201902004 31423670
    [Google Scholar]
  84. Lyon P.C. Gray M.D. Mannaris C. Folkes L.K. Stratford M. Campo L. Chung D.Y.F. Scott S. Anderson M. Goldin R. Carlisle R. Wu F. Middleton M.R. Gleeson F.V. Coussios C.C. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): A single-centre, open-label, phase 1 trial. Lancet Oncol. 2018 19 8 1027 1039 10.1016/S1470‑2045(18)30332‑2 30001990
    [Google Scholar]
  85. Chen S. Gao Y. Cao Z. Wu B. Wang L. Wang H. Dang Z. Wang G. Nanocomposites of spiropyran-functionalized polymers and upconversion nanoparticles for controlled release stimulated by near-infrared light and pH. Macromolecules 2016 49 19 7490 7496 10.1021/acs.macromol.6b01760
    [Google Scholar]
  86. Han D. Tong X. Zhao Y. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 2012 28 5 2327 2331 10.1021/la204930n 22263885
    [Google Scholar]
  87. Linsley C.S. Wu B.M. Recent Advances in light-responsive on-demand drug-delivery Systems. Ther. Deliv. 2017 8 2 89 107 10.4155/tde‑2016‑0060 28088880
    [Google Scholar]
  88. Yavlovich A. Singh A. Tarasov S. Capala J. Blumenthal R. Puri A. Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J. Therm. Anal. Calorim. 2009 98 1 97 104 10.1007/s10973‑009‑0228‑8 20160877
    [Google Scholar]
  89. Bléger D. Hecht S. Visible‐light‐activated molecular switches. Angew. Chem. Int. Ed. 2015 54 39 11338 11349 10.1002/anie.201500628 26096635
    [Google Scholar]
  90. Yi Q. Sukhorukov G.B. UV light stimulated encapsulation and release by polyelectrolyte microcapsules. Adv. Colloid Interface Sci. 2014 207 280 289 10.1016/j.cis.2013.11.009 24370006
    [Google Scholar]
  91. Alatorre-Meda M. Alvarez-Lorenzo C. Concheiro A. Taboada P. Chapter 12: UV and near-IR triggered release from polymeric micelles and nanoparticles. Smart Materials for Drug delivery. Royal Society of Chemistry 2013 304 348 10.1039/9781849736800‑00304
    [Google Scholar]
  92. Alvarez-Lorenzo C. Deshmukh S. Bromberg L. Hatton T.A. Sández-Macho I. Concheiro A. Temperature- and Light-Responsive Blends of Pluronic F127 and Poly(N, N -dimethylacrylamide- co -methacryloyloxyazobenzene). Langmuir 2007 23 23 11475 11481 10.1021/la7019654 17918871
    [Google Scholar]
  93. Schroeder A. Goldberg M.S. Kastrup C. Wang Y. Jiang S. Joseph B.J. Levins C.G. Kannan S.T. Langer R. Anderson D.G. Remotely activated protein-producing nanoparticles. Nano Lett. 2012 12 6 2685 2689 10.1021/nl2036047 22432731
    [Google Scholar]
  94. Zhang S. Li Z. Stimuli‐responsive polypeptide materials prepared by ring‐opening polymerization of α‐amino acid N ‐carboxyanhydrides. J. Polym. Sci., B, Polym. Phys. 2013 51 7 546 555 10.1002/polb.23263
    [Google Scholar]
  95. Hrubý M. Filippov S.K. Štěpánek P. Smart polymers in drug delivery systems on crossroads: Which way deserves following? Eur. Polym. J. 2015 65 82 97 10.1016/j.eurpolymj.2015.01.016
    [Google Scholar]
  96. Leung S.J. Romanowski M. Light-activated content release from liposomes. Theranostics 2012 2 10 1020 1036 10.7150/thno.4847 23139729
    [Google Scholar]
  97. Iglesias N. Galbis E. Romero-Azogil L. Benito E. Lucas R. García-Martín M.G. de-Paz M.V. In-depth study into polymeric materials in low-density gastroretentive formulations. Pharmaceutics 2020 12 7 636 10.3390/pharmaceutics12070636 32645909
    [Google Scholar]
  98. Mathaba M. Daramola M.O. Effect of chitosan’s degree of deacetylation on the performance of pes membrane infused with chitosan during amd treatment. Membranes 2020 10 3 52 10.3390/membranes10030052 32213825
    [Google Scholar]
  99. Olaru N. Olaru L. Phthaloylation of cellulose acetate in acetic acid and acetone Media. Iran. Polym. J. 2005 14 12 1058 1065
    [Google Scholar]
  100. Okayasu T. Hibino T. Nishide H. Free radical polymerization kinetics of vinylsulfonic acid and highly acidic properties of its polymer. Macromol. Chem. Phys. 2011 212 10 1072 1079 10.1002/macp.201000773
    [Google Scholar]
  101. Holmes P.F. Bohrer M. Kohn J. Exploration of polymethacrylate structure–property correlations: Advances towards combinatorial and high-throughput methods for biomaterials discovery. Prog. Polym. Sci. 2008 33 8 787 796 10.1016/j.progpolymsci.2008.05.002 19649142
    [Google Scholar]
  102. Pita-Vilar M. Concheiro A. Alvarez-Lorenzo C. Diaz-Gomez L. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements. Carbohydr. Polym. 2023 321 121298 10.1016/j.carbpol.2023.121298 37739531
    [Google Scholar]
  103. Yáñez-Fernández J. Herrera Ovando M.G. Patlán Ramírez L. Ramírez-Sotelo G. Guarin C.A. Castro-Rodríguez D.C. Factorial design to optimize dextran production by the native strain Leuconostoc mesenteroides SF3. ACS Omega 2021 6 46 31203 31210 10.1021/acsomega.1c04856 34841163
    [Google Scholar]
  104. Liu L. Liu Y. Li J. Du G. Chen J. Microbial production of hyaluronic acid: Current state, challenges, and perspectives. Microb. Cell Fact. 2011 10 1 99 10.1186/1475‑2859‑10‑99 22088095
    [Google Scholar]
  105. Jurko L. Bračič M. Hribernik S. Makuc D. Plavec J. Jerenec F. Žabkar S. Gubeljak N. Štern A. Kargl R. Succinylation of polyallylamine: Influence on biological efficacy and the formation of electrospun fibers. Polymers 2021 13 17 2840 10.3390/polym13172840 34502880
    [Google Scholar]
  106. Vojkovsky T. Sullivan B. Sill K.N. Synthesis of heterobifunctional polyethylene glycols: Polymerization from functional initiators. Polymer 2016 105 72 78 10.1016/j.polymer.2016.10.015
    [Google Scholar]
  107. Bonacucina G. Cespi M. Mencarelli G. Giorgioni G. Palmieri G.F. Thermosensitive self-assembling block copolymers as drug delivery systems. Polymers 2011 3 2 779 811 10.3390/polym3020779
    [Google Scholar]
  108. Yang L. Fan X. Zhang J. Ju J. Preparation and characterization of thermoresponsive poly (N-isopropylacrylamide) for cell culture applications. Polymers 2020 12 2 389 10.3390/polym12020389 32050412
    [Google Scholar]
  109. Osmałek T. Froelich A. Tasarek S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm. 2014 466 1-2 328 340 10.1016/j.ijpharm.2014.03.038 24657577
    [Google Scholar]
  110. Jadav M. Pooja D. Adams D.J. Kulhari H. Advances in xanthan gum-based systems for the delivery of therapeutic agents. Pharmaceutics 2023 15 2 402 10.3390/pharmaceutics15020402 36839724
    [Google Scholar]
  111. Zhang H. Cheng J. Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine. Mar. Drugs 2021 19 5 264 10.3390/md19050264 34068547
    [Google Scholar]
  112. Guha A. Shaharyar M.A. Ali K.A. Roy S.K. Kuotsu K. Smart and intelligent stimuli responsive materials: An innovative step in drug delivery system. Curr. Biochem. Eng. 2020 6 1 41 52 10.2174/2212711906666190723142057
    [Google Scholar]
  113. Silva I.B.B. Kimura C.H. Colantoni V.P. Sogayar M.C. Stem cells differentiation into insulin-producing cells (IPCs): Recent advances and current challenges. Stem Cell Res. Ther. 2022 13 1 309 10.1186/s13287‑022‑02977‑y 35840987
    [Google Scholar]
  114. Hsieh M.C.W. Wang W.T. Lin C.Y. Kuo Y.R. Lee S.S. Hou M.F. Wu Y.C. Stem cell-based therapeutic strategies in diabetic wound healing. Biomedicines 2022 10 9 2085 10.3390/biomedicines10092085 36140185
    [Google Scholar]
  115. Du S. Li Y. Geng Z. Zhang Q. Buhler L.H. Gonelle-Gispert C. Wang Y. Engineering islets from stem cells: The optimal solution for the treatment of diabetes? Front. Immunol. 2022 13 869514 10.3389/fimmu.2022.869514 35572568
    [Google Scholar]
  116. Rahmadanthi F.R. Maksum I.P. Transfer RNA mutation associated with type 2 diabetes mellitus. Biology 2023 12 6 871 10.3390/biology12060871 37372155
    [Google Scholar]
  117. Urizar A.I. Prause M. Ingerslev L.R. Wortham M. Sui Y. Sander M. Williams K. Barrès R. Larsen M.R. Christensen G.L. Billestrup N. Beta cell dysfunction induced by bone morphogenetic protein (BMP)-2 is associated with histone modifications and decreased NeuroD1 chromatin binding. Cell Death Dis. 2023 14 7 399 10.1038/s41419‑023‑05906‑w 37407581
    [Google Scholar]
  118. Sun H. Sun R. Hua Y. Lu Q. Shao X. An update on the role of thioredoxin-interacting protein in diabetic kidney disease: A mini review. Front. Med. 2023 10 1153805 10.3389/fmed.2023.1153805 37144033
    [Google Scholar]
  119. Zahid M. Dowlatshahi S. Kansara A.H. Sadhu A.R. The evolution of diabetes technology – Options toward personalized care. Endocr. Pract. 2023 29 8 653 662 10.1016/j.eprac.2023.04.007 37100350
    [Google Scholar]
  120. Seth A.K. Parmar G. Aundhia C. Shah N. Gohil D. Smart polymer systems: A futuristic approach to enhance therapeutic efficacy. Curr. Org. Chem. 2024 28 15 1164 1178 10.2174/0113852728305580240429100851
    [Google Scholar]
  121. Karmakar S. Bhowmik M. Laha B. Manna S. Recent advancements on novel approaches of insulin delivery. Med. Novel Technol Devices 2023 19 100253 10.1016/j.medntd.2023.100253
    [Google Scholar]
  122. Wu Q. Wang L. Yu H. Wang J. Chen Z. Organization of glucose-responsive systems and their properties. Chem. Rev. 2011 111 12 7855 7875 10.1021/cr200027j 21902252
    [Google Scholar]
  123. Patel G. Dalwadi C. Recent patents on stimuli responsive hydrogel drug delivery system. Recent Pat. Drug Deliv. Formul. 2013 7 3 206 215 10.2174/1872211307666131118141600 24237032
    [Google Scholar]
  124. Zhao R. Lu Z. Yang J. Zhang L. Li Y. Zhang X. Drug delivery system in the treatment of diabetes mellitus. Front. Bioeng. Biotechnol. 2020 8 880 10.3389/fbioe.2020.00880 32850735
    [Google Scholar]
  125. Yu J. Zhang Y. Bomba H. Gu Z. Stimuli‐responsive delivery of therapeutics for diabetes treatment. Bioeng. Transl. Med. 2016 1 3 323 337 10.1002/btm2.10036 29147685
    [Google Scholar]
  126. Akashi M. Sawa Y. Matsusaki M. Stimuli-responsive degradable gel. US Patent 20090117656A1 2009
    [Google Scholar]
  127. Bikram M. West J.L. Thermo-responsive systems for controlled drug delivery. Expert Opin. Drug Deliv. 2008 5 10 1077 1091 10.1517/17425247.5.10.1077 18817514
    [Google Scholar]
  128. Wang L. Li Y. Ren M. Wang X. Li L. Liu F. Lan Y. Yang S. Song J. pH and lipase-responsive nanocarrier-mediated dual drug delivery system to treat periodontitis in diabetic rats. Bioact. Mater. 2022 18 254 266 10.1016/j.bioactmat.2022.02.008 35387157
    [Google Scholar]
  129. Namkung S. Chu C.C. Partially biodegradable temperature- and pH-responsive poly(N-isopropylacrylamide)/dextran-maleic acid hydrogels: formulation and controlled drug delivery of doxorubicin. J. Biomater. Sci. Polym. Ed. 2007 18 7 901 924 10.1163/156856207781367701 17688747
    [Google Scholar]
  130. Lee D.S. Nguyen M.K. Kim B.S. Temperature and pH-sensitive block copolymer having excellent safty in vivo and hydrogel and drug delivery system using thereof. US Patent 9469728B2 2016
    [Google Scholar]
  131. Alexander L.Y. Stimuli responsive low solubility hydrogel co poly-mers of N isopropyl acrylamide and synthesis method patent. US Patent 20100203141A1 2010
    [Google Scholar]
  132. Han D.K. Park K. Kim J.J. Thermosensitive pluronic derivative hydrogels with high biodegradability and biocompatibility for tissue regeneration and preparation method thereof. US Patent 20100098762A1 2010
    [Google Scholar]
  133. Weng C.C. Yang T.A. Li Y.K. Design and fabrication of cell-targeted, dual drug-loaded nanoparticles with pH-controlled drug release and near-infrared light-induced photothermal effects. Mater. Des. 2021 197 109230 10.1016/j.matdes.2020.109230
    [Google Scholar]
  134. Jarosinski M.A. Dhayalan B. Rege N. Chatterjee D. Weiss M.A. ‘Smart’ insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia 2021 64 5 1016 1029 10.1007/s00125‑021‑05422‑6 33710398
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002390554251015114414
Loading
/content/journals/cdm/10.2174/0113892002390554251015114414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test