Skip to content
2000
image of An Explicative Review on Nanotechnology-based Drug Delivery Systems for Alleviating Oxidative Stress-driven Pathologies

Abstract

Background

Numerous chronic illnesses, including diabetes, cancer, cardiovascular disease, and neurological disorders, are mostly caused by oxidative stress, which is defined as an imbalance between the body's antioxidant defenses and the generation of reactive oxygen species (ROS). The success of traditional treatments for oxidative stress has been limited because antioxidant medications are not well-absorbed, are quickly broken down, and do not target specific areas of the body.

Methods

Drug delivery methods based on nanotechnology offer a viable solution to these issues by providing therapeutic molecules with improved release characteristics, enhanced bioavailability, and targeted capabilities. Recent developments in nanotechnology have enabled the creation of multipurpose carriers that can simultaneously transmit genes for endogenous antioxidant enzymes and antioxidants.

Results

This integration promotes a long-term healing response and addresses the immediate oxidative stress. Likewise, functionalizing nanocarriers with particular ligands improves localization to oxidative stress locations, including inflammatory tissues or tumor microenvironments, boosting therapeutic efficacy. The potential of nanotherapeutics in reducing oxidative stress-driven diseases is examined in this article.

Discussion

Nanotechnology-based drug delivery approaches offer a novel avenue for the treatment of several oxidative stress-induced diseases. These delivery systems are highly target-specific and have a longer duration of action. Still, more research is needed to address issues, such as safety margins, large-scale production, and approval of medicine use.

Conclusion

We address several nanocarrier platforms, such as liposomes, polymeric nanoparticles, dendrimers, and metallic nanoparticles that have proven more effective in delivering therapeutic drugs and antioxidants to specific sites of oxidative damage. Furthermore, nanotherapeutics may enhance their therapeutic potential by protecting these bioactive substances from premature degradation and clearance.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002389930250903070042
2025-09-23
2025-10-27
Loading full text...

Full text loading...

References

  1. Hong Y. Boiti A. Vallone D. Foulkes N.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution. Antioxidants 2024 13 3 312 10.3390/antiox13030312 38539845
    [Google Scholar]
  2. Ray P.D. Huang B.W. Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012 24 5 981 990 10.1016/j.cellsig.2012.01.008 22286106
    [Google Scholar]
  3. Tirichen H. Yaigoub H. Xu W. Wu C. Li R. Li Y. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front. Physiol. 2021 12 627837 10.3389/fphys.2021.627837 33967820
    [Google Scholar]
  4. Hayyan M. Hashim M.A. AlNashef I.M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016 116 5 3029 3085 10.1021/acs.chemrev.5b00407 26875845
    [Google Scholar]
  5. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  6. Rauf A. Khalil A.A. Awadallah S. Khan S.A. Abu-Izneid T. Kamran M. Hemeg H.A. Mubarak M.S. Khalid A. Wilairatana P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors—A review. Food Sci. Nutr. 2024 12 2 675 693 10.1002/fsn3.3784 38370049
    [Google Scholar]
  7. Jomova K. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024 98 5 1323 1367 10.1007/s00204‑024‑03696‑4 38483584
    [Google Scholar]
  8. Ighodaro O.M. Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018 54 4 287 293 10.1016/j.ajme.2017.09.001
    [Google Scholar]
  9. Juan C.A. Pérez de la Lastra J.M. Plou F.J. Pérez-Lebeña E. The chemistry of Reactive Oxygen Species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and Proteins) and induced pathologies. Int. J. Mol. Sci. 2021 22 9 4642 10.3390/ijms22094642 33924958
    [Google Scholar]
  10. Zgutka K. Tkacz M. Tomasiak P. Tarnowski M. A role for advanced glycation end products in molecular ageing. Int. J. Mol. Sci. 2023 24 12 9881 10.3390/ijms24129881 37373042
    [Google Scholar]
  11. Fournet M. Bonté F. Desmoulière A. Glycation damage: A possible hub for major pathophysiological disorders and aging. Aging Dis. 2018 9 5 880 900 10.14336/AD.2017.1121 30271665
    [Google Scholar]
  12. Rungratanawanich W. Qu Y. Wang X. Essa M.M. Song B.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med. 2021 53 2 168 188 10.1038/s12276‑021‑00561‑7 33568752
    [Google Scholar]
  13. Koerich S. Parreira G.M. de Almeida D.L. Vieira R.P. de Oliveira A.C.P. Receptors for advanced glycation end products (RAGE): Promising targets aiming at the treatment of neurodegenerative conditions. Curr. Neuropharmacol. 2023 21 2 219 234 10.2174/1570159X20666220922153903 36154605
    [Google Scholar]
  14. Zhou M. Zhang Y. Shi L. Li L. Zhang D. Gong Z. Wu Q. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions: A review. Pharmacol. Res. 2024 206 107282 10.1016/j.phrs.2024.107282 38914383
    [Google Scholar]
  15. Taguchi K. Fukami K. RAGE signaling regulates the progression of diabetic complications. Front. Pharmacol. 2023 14 1128872 10.3389/fphar.2023.1128872 37007029
    [Google Scholar]
  16. Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012 2012 1 21 10.5402/2012/137289 23119185
    [Google Scholar]
  17. Tumilaar S.G. Hardianto A. Dohi H. Kurnia D. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem. 2024 2024 1 1 21 10.1155/2024/5594386
    [Google Scholar]
  18. Bouayed J. Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev. 2010 3 4 228 237 10.4161/oxim.3.4.12858 20972369
    [Google Scholar]
  19. Ngo V. Duennwald M.L. Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease. Antioxidants 2022 11 12 2345 10.3390/antiox11122345 36552553
    [Google Scholar]
  20. Tripathi S. Kharkwal G. Mishra R. Singh G. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress. Heliyon 2024 10 18 e37545 10.1016/j.heliyon.2024.e37545 39309893
    [Google Scholar]
  21. Tonev D. Momchilova A. Oxidative Stress and the nuclear factor erythroid 2-related factor 2 (nrf2) pathway in multiple sclerosis: Focus on certain exogenous and endogenous nrf2 activators and therapeutic plasma exchange modulation. Int. J. Mol. Sci. 2023 24 24 17223 10.3390/ijms242417223 38139050
    [Google Scholar]
  22. Liu P. Li Y. Wang R. Ren F. Wang X. Oxidative stress and antioxidant nanotherapeutic approaches for inflammatory bowel disease. Biomedicines 2021 10 1 85 10.3390/biomedicines10010085 35052764
    [Google Scholar]
  23. Li C.W. Li L.L. Chen S. Zhang J.X. Lu W.L. Antioxidant nanotherapies for the treatment of inflammatory diseases. Front. Bioeng. Biotechnol. 2020 8 200 10.3389/fbioe.2020.00200 32258013
    [Google Scholar]
  24. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  25. Malik S. Muhammad K. Waheed Y. Emerging Applications of nanotechnology in healthcare and medicine. Molecules 2023 28 18 6624 10.3390/molecules28186624 37764400
    [Google Scholar]
  26. Joseph T. Kar Mahapatra D. Esmaeili A. Piszczyk Ł. Hasanin M. Kattali M. Haponiuk J. Thomas S. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023 13 3 574 10.3390/nano13030574 36770535
    [Google Scholar]
  27. Mourdikoudis S. Pallares R.M. Thanh N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018 10 27 12871 12934 10.1039/C8NR02278J 29926865
    [Google Scholar]
  28. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  29. Eftekhari A. Dizaj S.M. Chodari L. Sunar S. Hasanzadeh A. Ahmadian E. Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother. 2018 103 1018 1027 10.1016/j.biopha.2018.04.126 29710659
    [Google Scholar]
  30. Mauricio M.D. Guerra-Ojeda S. Marchio P. Valles S.L. Aldasoro M. Escribano-Lopez I. Herance J.R. Rocha M. Vila J.M. Victor V.M. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxid. Med. Cell. Longev. 2018 2018 1 6231482 10.1155/2018/6231482 30356429
    [Google Scholar]
  31. Vona R. Pallotta L. Cappelletti M. Severi C. Matarrese P. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants 2021 10 2 201 10.3390/antiox10020201 33573222
    [Google Scholar]
  32. Sharma P. Jha A.B. Dubey R.S. Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. (Egypt) 2012 2012 1 1 26 10.1155/2012/217037
    [Google Scholar]
  33. Aranda-Rivera A.K. Cruz-Gregorio A. Arancibia-Hernández Y.L. Hernández-Cruz E.Y. Pedraza-Chaverri J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022 2 4 437 478 10.3390/oxygen2040030
    [Google Scholar]
  34. Sharifi-Rad M. Anil Kumar N.V. Zucca P. Varoni E.M. Dini L. Panzarini E. Rajkovic J. Tsouh Fokou P.V. Azzini E. Peluso I. Prakash Mishra A. Nigam M. El Rayess Y. Beyrouthy M.E. Polito L. Iriti M. Martins N. Martorell M. Docea A.O. Setzer W.N. Calina D. Cho W.C. Sharifi-Rad J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020 11 694 10.3389/fphys.2020.00694 32714204
    [Google Scholar]
  35. Bhattacharyya A. Chattopadhyay R. Mitra S. Crowe S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014 94 2 329 354 10.1152/physrev.00040.2012 24692350
    [Google Scholar]
  36. Chaudhary P. Janmeda P. Docea A.O. Yeskaliyeva B. Abdull Razis A.F. Modu B. Calina D. Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023 11 1158198 10.3389/fchem.2023.1158198 37234200
    [Google Scholar]
  37. Liu J. Wu M. Zhang R. Xu Z.P. Oxygen‐derived free radicals: Production, biological importance, bioimaging, and analytical detection with responsive luminescent nanoprobes. VIEW 2021 2 5 20200139 10.1002/VIW.20200139
    [Google Scholar]
  38. Ong G. Logue S.E. Unfolding the interactions between endoplasmic reticulum stress and oxidative stress. Antioxidants 2023 12 5 981 10.3390/antiox12050981 37237847
    [Google Scholar]
  39. Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019 20 10 2407 10.3390/ijms20102407 31096608
    [Google Scholar]
  40. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  41. Medrano-Macías J. Flores-Gallegos A.C. Nava-Reyna E. Morales I. Tortella G. Solís-Gaona S. Benavides-Mendoza A. Reactive Oxygen, Nitrogen, and Sulfur Species (RONSS) as a Metabolic Cluster for Signaling and Biostimulation of Plants: An Overview. Plants 2022 11 23 3203 10.3390/plants11233203 36501243
    [Google Scholar]
  42. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018 115 23 5839 5848 10.1073/pnas.1804932115 29802228
    [Google Scholar]
  43. Nolfi-Donegan D. Braganza A. Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020 37 101674 10.1016/j.redox.2020.101674 32811789
    [Google Scholar]
  44. Zhao R.Z. Jiang S. Zhang L. Yu Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019 44 1 3 15 10.3892/ijmm.2019.4188 31115493
    [Google Scholar]
  45. Brown O.I. Bridge K.I. Kearney M.T. Nicotinamide Adenine dinucleotide phosphate oxidases in glucose homeostasis and diabetes-related endothelial cell dysfunction. Cells 2021 10 9 2315 10.3390/cells10092315 34571964
    [Google Scholar]
  46. Czapski G.A. Czubowicz K. Strosznajder J.B. Strosznajder R.P. The Lipoxygenases: Their regulation and implication in alzheimer’s disease. Neurochem. Res. 2016 41 1-2 243 257 10.1007/s11064‑015‑1776‑x 26677076
    [Google Scholar]
  47. Siraki A.G. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Redox Biol. 2021 46 102109 10.1016/j.redox.2021.102109 34455146
    [Google Scholar]
  48. Arnhold J. The dual role of myeloperoxidase in immune response. Int. J. Mol. Sci. 2020 21 21 8057 10.3390/ijms21218057 33137905
    [Google Scholar]
  49. Frangie C. Daher J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed. Rep. 2022 16 6 53 10.3892/br.2022.1536 35620311
    [Google Scholar]
  50. Chen J. Liu L. Wang W. Gao H. Nitric Oxide, nitric oxide formers and their physiological impacts in bacteria. Int. J. Mol. Sci. 2022 23 18 10778 10.3390/ijms231810778 36142682
    [Google Scholar]
  51. Wallace J.L. Nitric oxide in the gastrointestinal tract: opportunities for drug development. Br. J. Pharmacol. 2019 176 2 147 154 10.1111/bph.14527 30357812
    [Google Scholar]
  52. Faki Y. Er A. Different chemical structures and physiological/pathological roles of cyclooxygenases. Rambam Maimonides Med. J. 2021 12 1 e0003 10.5041/RMMJ.10426 33245277
    [Google Scholar]
  53. Wang B. Wu L. Chen J. Dong L. Chen C. Wen Z. Hu J. Fleming I. Wang D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021 6 1 94 10.1038/s41392‑020‑00443‑w 33637672
    [Google Scholar]
  54. de Almeida A.J.P.O. de Oliveira J.C.P.L. da Silva Pontes L.V. de Souza Júnior J.F. Gonçalves T.A.F. Dantas S.H. de Almeida Feitosa M.S. Silva A.O. de Medeiros I.A. ROS: Basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxid. Med. Cell. Longev. 2022 2022 1 1225578 10.1155/2022/1225578 36312897
    [Google Scholar]
  55. Martemucci G. Costagliola C. Mariano M. D’andrea L. Napolitano P. D’Alessandro A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022 2 2 48 78 10.3390/oxygen2020006
    [Google Scholar]
  56. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  57. Baek J. Lee M.G. Oxidative stress and antioxidant strategies in dermatology. Redox Rep. 2016 21 4 164 169 10.1179/1351000215Y.0000000015 26020527
    [Google Scholar]
  58. De Simoni E. Candelora M. Belleggia S. Rizzetto G. Molinelli E. Capodaglio I. Ferretti G. Bacchetti T. Offidani A. Simonetti O. Role of antioxidants supplementation in the treatment of atopic dermatitis: a critical narrative review. Front. Nutr. 2024 11 1393673 10.3389/fnut.2024.1393673 38933878
    [Google Scholar]
  59. Manna P. Jain S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015 13 10 423 444 10.1089/met.2015.0095 26569333
    [Google Scholar]
  60. Panic A. Stanimirovic J. Sudar-Milovanovic E. Isenovic E.R. Oxidative stress in obesity and insulin resistance. Explor. Med. 2022 3 58 70 10.37349/emed.2022.00074
    [Google Scholar]
  61. Kowalczyk P. Sulejczak D. Kleczkowska P. Bukowska-Ośko I. Kucia M. Popiel M. Wietrak E. Kramkowski K. Wrzosek K. Kaczyńska K. Mitochondrial oxidative stress: A causative factor and therapeutic target in many diseases. Int. J. Mol. Sci. 2021 22 24 13384 10.3390/ijms222413384 34948180
    [Google Scholar]
  62. Khan A.Q. Agha M.V. Sheikhan K.S.A.M. Younis S.M. Tamimi M.A. Alam M. Ahmad A. Uddin S. Buddenkotte J. Steinhoff M. Targeting deregulated oxidative stress in skin inflammatory diseases: An update on clinical importance. Biomed. Pharmacother. 2022 154 113601 10.1016/j.biopha.2022.113601 36049315
    [Google Scholar]
  63. Sienes Bailo P. Llorente Martín E. Calmarza P. Montolio Breva S. Bravo Gómez A. Pozo Giráldez A. Sánchez-Pascuala Callau J.J. Vaquer Santamaría J.M. Dayaldasani Khialani A. Cerdá Micó C. Camps Andreu J. Sáez Tormo G. Fort Gallifa I. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Advances in Laboratory Medicine / Avances en Medicina de Laboratorio 2022 3 4 342 350 10.1515/almed‑2022‑0111 37363428
    [Google Scholar]
  64. Martínez Leo E.E. Segura Campos M.R. Systemic oxidative stress: A key point in neurodegeneration – a review. J. Nutr. Health Aging 2019 23 8 694 699 10.1007/s12603‑019‑1240‑8 31560025
    [Google Scholar]
  65. Pegoretti V. Swanson K.A. Bethea J.R. Probert L. Eisel U.L.M. Fischer R. Inflammation and oxidative stress in multiple sclerosis: consequences for therapy development. Oxid. Med. Cell. Longev. 2020 2020 1 19 10.1155/2020/7191080 32454942
    [Google Scholar]
  66. Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. Medicina (Kaunas) 2023 59 10 1769 10.3390/medicina59101769 37893487
    [Google Scholar]
  67. Agarwal A. Aponte-Mellado A. Premkumar B.J. Shaman A. Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012 10 1 49 10.1186/1477‑7827‑10‑49 22748101
    [Google Scholar]
  68. Mohammadi M. Oxidative stress and polycystic ovary syndrome: A brief review. Int. J. Prev. Med. 2019 10 1 86 10.4103/ijpvm.IJPVM_576_17 31198521
    [Google Scholar]
  69. Ho H.J. Shirakawa H. Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022 12 1 88 10.3390/cells12010088 36611880
    [Google Scholar]
  70. Ansari M.Y. Ahmad N. Haqqi T.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed. Pharmacother. 2020 129 110452 10.1016/j.biopha.2020.110452 32768946
    [Google Scholar]
  71. Perillo B. Di Donato M. Pezone A. Di Zazzo E. Giovannelli P. Galasso G. Castoria G. Migliaccio A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020 52 2 192 203 10.1038/s12276‑020‑0384‑2 32060354
    [Google Scholar]
  72. Saleh E.A.M. Al-dolaimy F. Qasim almajidi, Y.; Baymakov, S.; kader M, M.A.; Ullah, M.I.; Abbas, A.R.; Khlewee, I.H.; Bisht, Y.S.; Alsaalamy, A.H. Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes. Pathol. Res. Pract. 2023 249 154664 10.1016/j.prp.2023.154664 37573621
    [Google Scholar]
  73. Ramani S. Pathak A. Dalal V. Paul A. Biswas S. Oxidative stress in autoimmune diseases: An under dealt malice. Curr. Protein Pept. Sci. 2020 21 6 611 621 10.2174/1389203721666200214111816 32056521
    [Google Scholar]
  74. Xiang Y. Zhang M. Jiang D. Su Q. Shi J. The role of inflammation in autoimmune disease: A therapeutic target. Front. Immunol. 2023 14 1267091 10.3389/fimmu.2023.1267091 37859999
    [Google Scholar]
  75. Pisoschi A.M. Pop A. Iordache F. Stanca L. Geicu O.I. Bilteanu L. Serban A.I. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur. J. Med. Chem. 2022 232 114175 10.1016/j.ejmech.2022.114175 35151223
    [Google Scholar]
  76. Arroyo-Hernández M. Maldonado F. Lozano-Ruiz F. Muñoz-Montaño W. Nuñez-Baez M. Arrieta O. Radiation-induced lung injury: current evidence. BMC Pulm. Med. 2021 21 1 9 10.1186/s12890‑020‑01376‑4 33407290
    [Google Scholar]
  77. Yan Y. Fu J. Kowalchuk R.O. Wright C.M. Zhang R. Li X. Xu Y. Exploration of radiation-induced lung injury, from mechanism to treatment: A narrative review. Transl. Lung Cancer Res. 2022 11 2 307 10.21037/tlcr‑22‑108
    [Google Scholar]
  78. Hanania A.N. Mainwaring W. Ghebre Y.T. Hanania N.A. Ludwig M. Radiation-induced lung injury. Chest 2019 156 1 150 162 10.1016/j.chest.2019.03.033 30998908
    [Google Scholar]
  79. Batty M. Bennett M.R. Yu E. The role of oxidative stress in atherosclerosis. Cells 2022 11 23 3843 10.3390/cells11233843 36497101
    [Google Scholar]
  80. Poznyak A.V. Grechko A.V. Orekhova V.A. Chegodaev Y.S. Wu W.K. Orekhov A.N. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology 2020 9 3 60 10.3390/biology9030060 32245238
    [Google Scholar]
  81. Nowak W.N. Deng J. Ruan X.Z. Xu Q. Reactive oxygen species generation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017 37 5 e41 e52 10.1161/ATVBAHA.117.309228 28446473
    [Google Scholar]
  82. Alizadeh S. Anani-Sarab G. Amiri H. Hashemi M. Paraquat induced oxidative stress, DNA damage, and cytotoxicity in lymphocytes. Heliyon 2022 8 7 e09895
    [Google Scholar]
  83. Asaduzzaman M. Chando M.R. Ahmed N. Rezwanul Islam K.M. Alam M.M.J. Roy S. Paraquat‐induced acute kidney and liver injury: Case report of a survivor from Bangladesh. Clin. Case Rep. 2021 9 11 e05020 10.1002/ccr3.5020 34765204
    [Google Scholar]
  84. Sharma P. Mittal P. Paraquat (herbicide) as a cause of Parkinson’s Disease. Parkinsonism Relat. Disord. 2024 119 105932 10.1016/j.parkreldis.2023.105932 38008593
    [Google Scholar]
  85. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  86. Fischer B. Voynow J. Ghio A. COPD: Balancing oxidants and antioxidants. Int. J. Chron. Obstruct. Pulmon. Dis. 2015 10 261 276 10.2147/COPD.S42414 25673984
    [Google Scholar]
  87. Barnes P.J. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants 2022 11 5 965 10.3390/antiox11050965 35624831
    [Google Scholar]
  88. Breitzig M. Bhimineni C. Lockey R. Kolliputi N. 4-Hydroxy-2-nonenal: A critical target in oxidative stress? Am. J. Physiol. Cell Physiol. 2016 311 4 C537 C543 10.1152/ajpcell.00101.2016 27385721
    [Google Scholar]
  89. Graille M. Wild P. Sauvain J.J. Hemmendinger M. Guseva Canu I. Hopf N.B. Urinary 8-OHdG as a biomarker for oxidative stress: A systematic literature review and meta-analysis. Int. J. Mol. Sci. 2020 21 11 3743 10.3390/ijms21113743 32466448
    [Google Scholar]
  90. Cheresh P. Kim S.J. Tulasiram S. Kamp D.W. Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2013 1832 7 1028 1040 10.1016/j.bbadis.2012.11.021 23219955
    [Google Scholar]
  91. Fois A.G. Paliogiannis P. Sotgia S. Mangoni A.A. Zinellu E. Pirina P. Carru C. Zinellu A. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: A systematic review. Respir. Res. 2018 19 1 51 10.1186/s12931‑018‑0754‑7 29587761
    [Google Scholar]
  92. Malli F. Bardaka F. Tsilioni I. Karetsi E. Gourgoulianis K.I. Daniil Z. 8-Isoprostane levels in serum and bronchoalveolar lavage in idiopathic pulmonary fibrosis and sarcoidosis. Food Chem. Toxicol. 2013 61 160 163 10.1016/j.fct.2013.05.016 23702326
    [Google Scholar]
  93. Pantazopoulos I. Magounaki K. Kotsiou O. Rouka E. Perlikos F. Kakavas S. Gourgoulianis K. Incorporating biomarkers in COPD management: The research keeps going. J. Pers. Med. 2022 12 3 379 10.3390/jpm12030379 35330379
    [Google Scholar]
  94. Corteselli E. Aboushousha R. Janssen-Heininger Y. S-Glutathionylation-controlled apoptosis of lung epithelial cells; potential implications for lung fibrosis. Antioxidants 2022 11 9 1789 10.3390/antiox11091789 36139863
    [Google Scholar]
  95. Mei Q. Liu Z. Zuo H. Yang Z. Qu J. Idiopathic pulmonary fibrosis: An update on pathogenesis. Front. Pharmacol. 2022 12 797292 10.3389/fphar.2021.797292 35126134
    [Google Scholar]
  96. Chawla R. Chawla A. Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016 20 4 546 551 10.4103/2230‑8210.183480 27366724
    [Google Scholar]
  97. Bigagli E. Lodovici M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxid. Med. Cell. Longev. 2019 2019 1 17 10.1155/2019/5953685 31214280
    [Google Scholar]
  98. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015 6 3 456 480 10.4239/wjd.v6.i3.456 25897356
    [Google Scholar]
  99. Montezano A.C. Touyz R.M. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid. Redox Signal. 2014 20 1 164 182 10.1089/ars.2013.5302 23600794
    [Google Scholar]
  100. Griendling K.K. Camargo L.L. Rios F.J. Alves-Lopes R. Montezano A.C. Touyz R.M. Oxidative stress and hypertension. Circ. Res. 2021 128 7 993 1020 10.1161/CIRCRESAHA.121.318063 33793335
    [Google Scholar]
  101. Gào X. Schöttker B. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 2017 8 31 51888 51906 10.18632/oncotarget.17128 28881698
    [Google Scholar]
  102. Singh R. Manna P.P. Reactive oxygen species in cancer progression and its role in therapeutics. Explor. Med. 2022 3 43 57 10.37349/emed.2022.00073
    [Google Scholar]
  103. Jiang H. Zuo J. Li B. Chen R. Luo K. Xiang X. Lu S. Huang C. Liu L. Tang J. Gao F. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol. 2023 63 102754 10.1016/j.redox.2023.102754 37224697
    [Google Scholar]
  104. Kolbasina N.A. Gureev A.P. Serzhantova O.V. Mikhailov A.A. Moshurov I.P. Starkov A.A. Popov V.N. Lung cancer increases H2O2 concentration in the exhaled breath condensate, extent of mtDNA damage, and mtDNA copy number in buccal mucosa. Heliyon 2020 6 6 e04303 10.1016/j.heliyon.2020.e04303 32637695
    [Google Scholar]
  105. Orfanakos K. Alifieris C.E. Verigos E.K. Deligiorgi M.V. Verigos K.E. Panayiotidis M.I. Nikolaou M. Trafalis D.T. The predictive value of 8-hydroxy-deoxyguanosine (8-OHdG) serum concentrations in irradiated non-small cell lung carcinoma (NSCLC) patients. Biomedicines 2024 12 1 134 10.3390/biomedicines12010134 38255239
    [Google Scholar]
  106. Lee W.H. Loo C.Y. Bebawy M. Luk F. Mason R. Rohanizadeh R. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 2013 11 4 338 378 10.2174/1570159X11311040002 24381528
    [Google Scholar]
  107. Wang X. Wang W. Li L. Perry G. Lee H. Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 8 1240 1247 10.1016/j.bbadis.2013.10.015 24189435
    [Google Scholar]
  108. Sultana R. Butterfield D.A. Protein Oxidation in aging and alzheimer’s disease brain. Antioxidants 2024 13 5 574 10.3390/antiox13050574 38790679
    [Google Scholar]
  109. Picca A. Calvani R. Coelho-Junior H.J. Landi F. Bernabei R. Marzetti E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants 2020 9 8 647 10.3390/antiox9080647 32707949
    [Google Scholar]
  110. Nanjwade B.K. Kadam V.T. Manvi F.V. Formulation and characterization of nanostructured lipid carrier of ubiquinone (Coenzyme Q10). J. Biomed. Nanotechnol. 2013 9 3 450 460 10.1166/jbn.2013.1560 23621001
    [Google Scholar]
  111. da Rocha Lindner G. Bonfanti Santos D. Colle D. Gasnhar Moreira E.L. Daniel Prediger R. Farina M. Khalil N.M. Mara Mainardes R. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond.) 2015 10 7 1127 1138 10.2217/nnm.14.165 25929569
    [Google Scholar]
  112. Lu X. Ji C. Xu H. Li X. Ding H. Ye M. Zhu Z. Ding D. Jiang X. Ding X. Guo X. Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. Int. J. Pharm. 2009 375 1-2 89 96 10.1016/j.ijpharm.2009.03.021 19481694
    [Google Scholar]
  113. Bollimpelli V.S. Kumar P. Kumari S. Kondapi A.K. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem. Int. 2016 95 37 45 10.1016/j.neuint.2016.01.006 26826319
    [Google Scholar]
  114. Singhal N.K. Agarwal S. Bhatnagar P. Tiwari M.N. Tiwari S.K. Srivastava G. Kumar P. Seth B. Patel D.K. Chaturvedi R.K. Singh M.P. Gupta K.C. Mechanism of nanotization-mediated improvement in the efficacy of caffeine against 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism. J. Biomed. Nanotechnol. 2015 11 12 2211 2222 10.1166/jbn.2015.2107 26510314
    [Google Scholar]
  115. Liu H. Han Y. Wang T. Zhang H. Xu Q. Yuan J. Li Z. Targeting microglia for therapy of parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc. 2020 142 52 21730 21742 10.1021/jacs.0c09390 33315369
    [Google Scholar]
  116. Halevas E. Mavroidi B. Nday C.M. Tang J. Smith G.C. Boukos N. Litsardakis G. Pelecanou M. Salifoglou A. Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J. Inorg. Biochem. 2020 213 111271 10.1016/j.jinorgbio.2020.111271 33069945
    [Google Scholar]
  117. Pan Q. Ban Y. Xu L. Silibinin-albumin nanoparticles: characterization and biological evaluation against oxidative stress-stimulated neurotoxicity associated with Alzheimer’s disease. J. Biomed. Nanotechnol. 2021 17 6 1123 1130 10.1166/jbn.2021.3038 34167626
    [Google Scholar]
  118. Sathya S. Manogari B.G. Thamaraiselvi K. Vaidevi S. Ruckmani K. Devi K.P. Phytol loaded PLGA nanoparticles ameliorate scopolamine-induced cognitive dysfunction by attenuating cholinesterase activity, oxidative stress and apoptosis in Wistar rat. Nutr. Neurosci. 2022 25 3 485 501 10.1080/1028415X.2020.1764290 32406811
    [Google Scholar]
  119. Shea T.B. Ortiz D. Nicolosi R.J. Kumar R. Watterson A.C. Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta. J. Alzheimers Dis. 2005 7 4 297 301 10.3233/JAD‑2005‑7405 16131731
    [Google Scholar]
  120. Singh A. Ujjwal R.R. Naqvi S. Verma R.K. Tiwari S. Kesharwani P. Shukla R. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease. J. Drug Target. 2022 30 7 777 791 10.1080/1061186X.2022.2063297 35382657
    [Google Scholar]
  121. Dhas N. Mehta T. Cationic biopolymer functionalized nanoparticles encapsulating lutein to attenuate oxidative stress in effective treatment of Alzheimer’s disease: A non-invasive approach. Int. J. Pharm. 2020 586 119553 10.1016/j.ijpharm.2020.119553 32561306
    [Google Scholar]
  122. Prakashkumar N. Sivamaruthi B.S. Chaiyasut C. Suganthy N. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis an in vitro study. Pharmaceutics 2021 13 3 299 10.3390/pharmaceutics13030299 33668877
    [Google Scholar]
  123. Sinning C. Westermann D. Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives. Biomarkers Med. 2017 11 11 1031 1040 10.2217/bmm‑2017‑0110 29039206
    [Google Scholar]
  124. Kibel A. Lukinac A.M. Dambic V. Juric I. Selthofer-Relatic K. Oxidative stress in ischemic heart disease. Oxid. Med. Cell. Longev. 2020 2020 1 30 10.1155/2020/6627144 33456670
    [Google Scholar]
  125. Chazelas P. Steichen C. Favreau F. Trouillas P. Hannaert P. Thuillier R. Giraud S. Hauet T. Guillard J. Oxidative stress evaluation in ischemia reperfusion models: Characteristics, limits and perspectives. Int. J. Mol. Sci. 2021 22 5 2366 10.3390/ijms22052366 33673423
    [Google Scholar]
  126. Granata S. Votrico V. Spadaccino F. Catalano V. Netti G.S. Ranieri E. Stallone G. Zaza G. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants. Antioxidants 2022 11 4 769 10.3390/antiox11040769 35453454
    [Google Scholar]
  127. Caserta S. Mengozzi M. Kern F. Newbury S.F. Ghezzi P. Llewelyn M.J. Severity of systemic inflammatory response syndrome affects the blood levels of circulating inflammatory-relevant MicroRNAs. Front. Immunol. 2018 8 1977 10.3389/fimmu.2017.01977 29459855
    [Google Scholar]
  128. Bertozzi G. Ferrara M. Di Fazio A. Maiese A. Delogu G. Di Fazio N. Tortorella V. La Russa R. Fineschi V. Oxidative stress in sepsis: A focus on cardiac pathology. Int. J. Mol. Sci. 2024 25 5 2912 10.3390/ijms25052912 38474158
    [Google Scholar]
  129. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 1060
    [Google Scholar]
  130. Li J. Zhou Y. Wang H. Lou J. Lenahan C. Gao S. Wang X. Deng Y. Chen H. Shao A. Oxidative stress-induced ferroptosis in cardiovascular diseases and epigenetic mechanisms. Front. Cell Dev. Biol. 2021 9 685775 10.3389/fcell.2021.685775 34490241
    [Google Scholar]
  131. Möller M.N. Orrico F. Villar S.F. López A.C. Silva N. Donzé M. Thomson L. Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS Omega 2023 8 1 147 168 10.1021/acsomega.2c06768 36643550
    [Google Scholar]
  132. Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 2015 15 1 71 10.1186/s12937‑016‑0186‑5 27456681
    [Google Scholar]
  133. Poljsak B. Šuput D. Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013 2013 1 11 10.1155/2013/956792 23738047
    [Google Scholar]
  134. Pedre B. Barayeu U. Ezerina D. Dick T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfanesulfur species. Pharmacol. Ther. 2021 228 107916 10.1016/j.pharmthera.2021.107916 34171332
    [Google Scholar]
  135. Kerksick C. Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J. Int. Soc. Sports Nutr. 2005 2 2 38 44 10.1186/1550‑2783‑2‑2‑38 18500954
    [Google Scholar]
  136. Dailah H.G. Therapeutic potential of small molecules targeting oxidative stress in the treatment of chronic obstructive pulmonary disease (COPD): A comprehensive review. Molecules 2022 27 17 5542 10.3390/molecules27175542 36080309
    [Google Scholar]
  137. Petronek M.S. Stolwijk J.M. Murray S.D. Steinbach E.J. Zakharia Y. Buettner G.R. Spitz D.R. Allen B.G. Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biol. 2021 42 101864 10.1016/j.redox.2021.101864 33485837
    [Google Scholar]
  138. Islam S. Ahmed M.M. Islam M.A. Hossain N. Chowdhury M.A. Advances in nanoparticles in targeted drug delivery: A review. Result Surface Interfac 2025 79 100529 10.1016/j.rsurfi.2025.100529
    [Google Scholar]
  139. Zhao Z. Cao Y. Xu R. Fang J. Zhang Y. Xu X. Huang L. Li R. Nanoparticles (NPs)-mediated targeted regulation of redox homeostasis for effective cancer therapy. Smart Mater. Med. 2024 5 2 291 320 10.1016/j.smaim.2024.03.003
    [Google Scholar]
  140. Zhang W. Hu S. Yin J.J. He W. Lu W. Ma M. Gu N. Zhang Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016 138 18 5860 5865 10.1021/jacs.5b12070 26918394
    [Google Scholar]
  141. Wang J. Wang H. Zhu R. Liu Q. Fei J. Wang S. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 2015 53 475 483 10.1016/j.biomaterials.2015.02.116 25890744
    [Google Scholar]
  142. Kang C. Cho W. Park M. Kim J. Park S. Shin D. Song C. Lee D. H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials 2016 85 195 203 10.1016/j.biomaterials.2016.01.070 26874282
    [Google Scholar]
  143. Seshadri G. Sy J.C. Brown M. Dikalov S. Yang S.C. Murthy N. Davis M.E. The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials 2010 31 6 1372 1379 10.1016/j.biomaterials.2009.10.045 19889454
    [Google Scholar]
  144. Gou S. Huang Y. Wan Y. Ma Y. Zhou X. Tong X. Huang J. Kang Y. Pan G. Dai F. Xiao B. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 2019 212 39 54 10.1016/j.biomaterials.2019.05.012 31103945
    [Google Scholar]
  145. Jung E. Noh J. Kang C. Yoo D. Song C. Lee D. Ultrasound imaging and on-demand therapy of peripheral arterial diseases using H2O2-Activated bubble generating anti-inflammatory polymer particles. Biomaterials 2018 179 175 185 10.1016/j.biomaterials.2018.07.003 29990676
    [Google Scholar]
  146. Kozower B.D. Christofidou-Solomidou M. Sweitzer T.D. Muro S. Buerk D.G. Solomides C.C. Albelda S.M. Patterson G.A. Muzykantov V.R. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nat. Biotechnol. 2003 21 4 392 398 10.1038/nbt806 12652312
    [Google Scholar]
  147. Kojima R. Bojar D. Rizzi G. Hamri G.C.E. El-Baba M.D. Saxena P. Ausländer S. Tan K.R. Fussenegger M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 2018 9 1 1305 10.1038/s41467‑018‑03733‑8 29610454
    [Google Scholar]
  148. Chonpathompikunlert P. Yoshitomi T. Han J. Toh K. Isoda H. Nagasaki Y. Chemical nanotherapy: nitroxyl radical-containing nanoparticle protects neuroblastoma SH-SY5Y cells from Abeta-induced oxidative stress. Ther. Deliv. 2011 2 5 585 597 10.4155/tde.11.27 22833976
    [Google Scholar]
  149. Gao F. Zhao J. Liu P. Ji D. Zhang L. Zhang M. Li Y. Xiao Y. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer’s disease. Int. J. Biol. Macromol. 2020 142 265 276 10.1016/j.ijbiomac.2019.09.098 31593732
    [Google Scholar]
  150. Chonpathompikunlert P. Yoshitomi T. Vong L.B. Imaizumi N. Ozaki Y. Nagasaki Y. Recovery of cognitive dysfunction via orally administered redox-polymer nanotherapeutics in SAMP8 mice. PLoS One 2015 10 5 e0126013 10.1371/journal.pone.0126013 25955022
    [Google Scholar]
  151. Li C. Wang N. Zheng G. Yang L. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates alzheimer’s disease-like pathogenesis by inhibiting aβ aggregation and regulating gut microbiota. ACS Appl. Mater. Interfaces 2021 13 39 46406 46420 10.1021/acsami.1c14818 34569225
    [Google Scholar]
  152. Jia Z. Yuan X. Wei J. Guo X. Gong Y. Li J. Zhou H. Zhang L. Liu J. A functionalized octahedral palladium nanozyme as a radical scavenger for ameliorating Alzheimer’s disease. ACS Appl. Mater. Interfaces 2021 13 42 49602 49613 10.1021/acsami.1c06687 34641674
    [Google Scholar]
  153. Liu P. Zhang T. Chen Q. Li C. Chu Y. Guo Q. Zhang Y. Zhou W. Chen H. Zhou Z. Wang Y. Zhao Z. Luo Y. Li X. Song H. Su B. Li C. Sun T. Jiang C. Biomimetic dendrimer-peptide conjugates for early multi-target therapy of alzheimer’s disease by inflammatory microenvironment modulation. Adv. Mater. 2021 33 26 2100746 10.1002/adma.202100746 33998706
    [Google Scholar]
  154. Ma M. Gao N. Sun Y. Du X. Ren J. Qu X. Redox-activated near-infrared-responsive polyoxometalates used for photothermal treatment of Alzheimer’s disease. Adv. Healthc. Mater. 2018 7 20 1800320 10.1002/adhm.201800320 29920995
    [Google Scholar]
  155. Yang L. Yin T. Liu Y. Sun J. Zhou Y. Liu J. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater. 2016 46 177 190 10.1016/j.actbio.2016.09.010 27619837
    [Google Scholar]
  156. Zhong G. Long H. Zhou T. Liu Y. Zhao J. Han J. Yang X. Yu Y. Chen F. Shi S. Blood-brain barrier Permeable nanoparticles for Alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials 2022 288 121690 10.1016/j.biomaterials.2022.121690 35965114
    [Google Scholar]
  157. Zhang Y. Wang Z. Li X. Wang L. Yin M. Wang L. Chen N. Fan C. Song H. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv. Mater. 2016 28 7 1387 1393 10.1002/adma.201503893 26643597
    [Google Scholar]
  158. Hao C. Qu A. Xu L. Sun M. Zhang H. Xu C. Kuang H. Chiral molecule-mediated porous Cu O nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 2019 141 2 1091 1099 10.1021/jacs.8b11856 30540450
    [Google Scholar]
  159. Maghsoudi A. Fakharzadeh S. Hafizi M. Abbasi M. Kohram F. Sardab S. Tahzibi A. Kalanaky S. Nazaran M.H. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity. Apoptosis 2015 20 3 298 309 10.1007/s10495‑014‑1069‑x 25451011
    [Google Scholar]
  160. Pichla M. Pulaski Ł. Kania K.D. Stefaniuk I. Cieniek B. Pieńkowska N. Bartosz G. Sadowska-Bartosz I. Nitroxide radical-containing redox nanoparticles protect neuroblastoma SH-SY5Y cells against 6-hydroxydopamine toxicity. Oxid. Med. Cell. Longev. 2020 2020 1 19 10.1155/2020/9260748 32377313
    [Google Scholar]
  161. Liu Y.Q. Mao Y. Xu E. Jia H. Zhang S. Dawson V.L. Dawson T.M. Li Y-M. Zheng Z. He W. Mao X. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today 2021 36 101027 10.1016/j.nantod.2020.101027
    [Google Scholar]
  162. Dugan L.L. Lovett E.G. Quick K.L. Lotharius J. Lin T.T. O’Malley K.L. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord. 2001 7 3 243 246 10.1016/S1353‑8020(00)00064‑X 11331193
    [Google Scholar]
  163. Vernekar A.A. Sinha D. Srivastava S. Paramasivam P.U. D’Silva P. Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun. 2014 5 1 5301 10.1038/ncomms6301 25412933
    [Google Scholar]
  164. Umarao P. Bose S. Bhattacharyya S. Kumar A. Jain S. Neuroprotective potential of superparamagnetic iron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of Parkinson’s Disease. J. Nanosci. Nanotechnol. 2016 16 1 261 269 10.1166/jnn.2016.11103 27398453
    [Google Scholar]
  165. Ruotolo R. De Giorgio G. Minato I. Bianchi M. Bussolati O. Marmiroli N. Cerium oxide nanoparticles rescue α-synuclein-induced toxicity in a yeast model of Parkinson’s Disease. Nanomaterials (Basel) 2020 10 2 235 10.3390/nano10020235 32013138
    [Google Scholar]
  166. Lino C.A. Harper J.C. Carney J.P. Timlin J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018 25 1 1234 1257 10.1080/10717544.2018.1474964 29801422
    [Google Scholar]
  167. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as Drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  168. Khalil I. Yehye W.A. Etxeberria A.E. Alhadi A.A. Dezfooli S.M. Julkapli N.B.M. Basirun W.J. Seyfoddin A. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants 2019 9 1 24 10.3390/antiox9010024 31888023
    [Google Scholar]
  169. Zhang C. Wang X. Du J. Gu Z. Zhao Y. Reactive Oxygen species‐regulating strategies based on nanomaterials for disease treatment. Adv. Sci. (Weinh.) 2021 8 3 2002797 10.1002/advs.202002797 33552863
    [Google Scholar]
  170. Dai Y. Guo Y. Tang W. Chen D. Xue L. Chen Y. Guo Y. Wei S. Wu M. Dai J. Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J. Nanobiotechnology 2024 22 1 252 10.1186/s12951‑024‑02501‑9 38750509
    [Google Scholar]
  171. Thao N.T.M. Do H.D.K. Nam N.N. Tran N.K.S. Dan T.T. Trinh K.T.L. Antioxidant nanozymes: Mechanisms, activity manipulation, and applications. Micromachines 2023 14 5 1017 10.3390/mi14051017 37241640
    [Google Scholar]
  172. Tian R. Xu J. Luo Q. Hou C. Liu J. Rational design and biological application of antioxidant nanozymes. Front Chem. 2021 8 831 10.3389/fchem.2020.00831 33644000
    [Google Scholar]
  173. Liu J. Han X. Zhang T. Tian K. Li Z. Luo F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. J. Hematol. Oncol. 2023 16 1 116 10.1186/s13045‑023‑01512‑7 38037103
    [Google Scholar]
  174. Li R. Hou X. Li L. Guo J. Jiang W. Shang W. Application of metal-based nanozymes in inflammatory disease: A review. Front. Bioeng. Biotechnol. 2022 10 920213 10.3389/fbioe.2022.920213 35782497
    [Google Scholar]
  175. Ferreira C.A. Ni D. Rosenkrans Z.T. Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018 11 10 4955 4984 10.1007/s12274‑018‑2092‑y 30450165
    [Google Scholar]
  176. Wu J. Wang X. Wang Q. Lou Z. Li S. Zhu Y. Qin L. Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019 48 4 1004 1076 10.1039/C8CS00457A 30534770
    [Google Scholar]
  177. Zhao S. Li Y. Liu Q. Li S. Cheng Y. Cheng C. Sun Z. Du Y. Butch C.J. Wei H. An orally administered CeO 2 @Montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv. Funct. Mater. 2020 30 45 2004692 10.1002/adfm.202004692
    [Google Scholar]
  178. Kim J. Kim H.Y. Song S.Y. Go S. Sohn H.S. Baik S. Soh M. Kim K. Kim D. Kim H.C. Lee N. Kim B.S. Hyeon T. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 2019 13 3 3206 3217 10.1021/acsnano.8b08785 30830763
    [Google Scholar]
  179. Yao X. Guan Y. Wang J. Wang D. Cerium oxide nanoparticles modulating the Parkinson’s disease conditions: From the alpha synuclein structural point of view and antioxidant properties of cerium oxide nanoparticles. Heliyon 2024 10 1 e21789 10.1016/j.heliyon.2023.e21789 38163101
    [Google Scholar]
  180. Kwon H.J. Cha M.Y. Kim D. Kim D.K. Soh M. Shin K. Hyeon T. Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano 2016 10 2 2860 2870 10.1021/acsnano.5b08045 26844592
    [Google Scholar]
  181. Ghaznavi H. Najafi R. Mehrzadi S. Hosseini A. Tekyemaroof N. Shakeri-zadeh A. Rezayat M. Sharifi A.M. Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol. Res. 2015 37 7 624 632 10.1179/1743132815Y.0000000037 25786672
    [Google Scholar]
  182. Huang X. He D. Pan Z. Luo G. Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 2021 11 100124 10.1016/j.mtbio.2021.100124 34458716
    [Google Scholar]
  183. Wu Y. Song Z. Deng G. Jiang K. Wang H. Zhang X. Han H. Gastric acid powered nanomotors release antibiotics for in vivo treatment of Helicobacter pylori infection. Small 2021 17 11 2006877 10.1002/smll.202006877 33619851
    [Google Scholar]
  184. Wang B. Feng L. Jiang W.D. Wu P. Kuang S.Y. Jiang J. Tang L. Tang W.N. Zhang Y.A. Liu Y. Zhou X.Q. Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine. Aquat. Toxicol. 2015 158 125 137 10.1016/j.aquatox.2014.10.025 25461751
    [Google Scholar]
  185. Zhang J. Li M. Liu M. Yu Q. Ge D. Zhang J. metal–organic framework nanomaterials as a medicine for catalytic tumor therapy: Recent advances. Nanomaterials 2024 14 9 797 10.3390/nano14090797 38727391
    [Google Scholar]
  186. Cheng H. Liu Y. Hu Y. Ding Y. Lin S. Cao W. Wang Q. Wu J. Muhammad F. Zhao X. Zhao D. Li Z. Xing H. Wei H. Monitoring of heparin activity in live rats using metal–organic framework nanosheets as peroxidase mimics. Anal. Chem. 2017 89 21 11552 11559 10.1021/acs.analchem.7b02895 28992698
    [Google Scholar]
  187. Peng Y. He D. Ge X. Lu Y. Chai Y. Zhang Y. Mao Z. Luo G. Deng J. Zhang Y. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater. 2021 6 10 3109 3124 10.1016/j.bioactmat.2021.02.006 33778192
    [Google Scholar]
  188. Hao C. Qu A. Xu L. Sun M. Zhang H. Xu C. Kuang H. Chiral Molecule-mediated Porous Cux O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson’s Disease. J. Am. Chem. Soc. 2019 141 2 1091 1099 10.1021/jacs.8b11856 30540450
    [Google Scholar]
  189. Fukai T. Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 2011 15 6 1583 1606 10.1089/ars.2011.3999 21473702
    [Google Scholar]
  190. Reddy M.K. Labhasetwar V. Nanoparticle‐mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia‐reperfusion injury. FASEB J. 2009 23 5 1384 1395 10.1096/fj.08‑116947 19124559
    [Google Scholar]
  191. Chen Y.P. Chen C.T. Hung Y. Chou C.M. Liu T.P. Liang M.R. Chen C.T. Mou C.Y. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: Superoxide dismutase. J. Am. Chem. Soc. 2013 135 4 1516 1523 10.1021/ja3105208 23289802
    [Google Scholar]
  192. Zeng Z. He X. Li C. Lin S. Chen H. Liu L. Feng X. Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease. Biomaterials 2021 271 120753 10.1016/j.biomaterials.2021.120753 33725585
    [Google Scholar]
  193. DeJulius C.R. Dollinger B.R. Kavanaugh T.E. Dailing E. Yu F. Gulati S. Miskalis A. Zhang C. Uddin J. Dikalov S. Duvall C.L. Optimizing an antioxidant TEMPO copolymer for reactive oxygen species scavenging and anti-inflammatory effects in Vivo. Bioconjug. Chem. 2021 32 5 928 941 10.1021/acs.bioconjchem.1c00081 33872001
    [Google Scholar]
  194. Kaltenmeier C. Wang R. Popp B. Geller D. Tohme S. Yazdani H.O. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury. Cells 2022 11 14 2222 10.3390/cells11142222 35883665
    [Google Scholar]
  195. Li T. Zhang T. Gao H. Liu R. Gu M. Yang Y. Cui T. Lu Z. Yin C. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction. Redox Biol. 2021 41 101886 10.1016/j.redox.2021.101886 33592539
    [Google Scholar]
  196. Calabrese G. Ardizzone A. Campolo M. Conoci S. Esposito E. Paterniti I. Beneficial effect of tempol, a membrane-permeable radical scavenger, on inflammation and osteoarthritis in in vitro models. Biomolecules 2021 11 3 352 10.3390/biom11030352 33669093
    [Google Scholar]
  197. Zhang Q. Tao H. Lin Y. Hu Y. An H. Zhang D. Feng S. Hu H. Wang R. Li X. Zhang J. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials 2016 105 206 221 10.1016/j.biomaterials.2016.08.010 27525680
    [Google Scholar]
  198. Wang Y. Li L. Zhao W. Dou Y. An H. Tao H. Xu X. Jia Y. Lu S. Zhang J. Hu H. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity. ACS Nano 2018 12 9 8943 8960 10.1021/acsnano.8b02037 30114351
    [Google Scholar]
  199. Chistyakov V.A. Smirnova Y.O. Prazdnova E.V. Soldatov A.V. Possible mechanisms of fullerene C60 antioxidant action. BioMed Res. Int. 2013 2013 1 4 10.1155/2013/821498 24222918
    [Google Scholar]
  200. Roy P. Bag S. Chakraborty D. Dasgupta S. Exploring the inhibitory and antioxidant effects of fullerene and fullerenol on ribonuclease A. ACS Omega 2018 3 9 12270 12283 10.1021/acsomega.8b01584 30320292
    [Google Scholar]
  201. Liao S. Liu G. Tan B. Qi M. Li J. Li X. Zhu C. Huang J. Yin Y. Tang Y. Fullerene C60 protects against intestinal injury from deoxynivalenol toxicity by improving antioxidant capacity. Life 2021 11 6 491 10.3390/life11060491 34071941
    [Google Scholar]
  202. Bal R. Türk G. Tuzcu M. Yilmaz O. Ozercan I. Kuloglu T. Gür S. Nedzvetsky V.S. Tykhomyrov A.A. Andrievsky G.V. Baydas G. Naziroglu M. Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology 2011 282 3 69 81 10.1016/j.tox.2010.12.003 21163323
    [Google Scholar]
  203. Li X. Zhen M. Zhou C. Deng R. Yu T. Wu Y. Shu C. Wang C. Bai C. Gadofullerene nanoparticles reverse dysfunctions of pancreas and improve hepatic insulin resistance for type 2 diabetes mellitus Treatment. ACS Nano 2019 13 8 8597 8608 10.1021/acsnano.9b02050 31314991
    [Google Scholar]
  204. Sharifi-Rad J. Rayess Y.E. Rizk A.A. Sadaka C. Zgheib R. Zam W. Sestito S. Rapposelli S. Neffe-Skocińska K. Zielińska D. Salehi B. Setzer W.N. Dosoky N.S. Taheri Y. El Beyrouthy M. Martorell M. Ostrander E.A. Suleria H.A.R. Cho W.C. Maroyi A. Martins N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020 11 01021 10.3389/fphar.2020.01021 33041781
    [Google Scholar]
  205. Saghari Y. Movahedi M. Tebianian M. Entezari M. The neuroprotective effects of curcumin nanoparticles on the cerebral ischemia-reperfusion injury in the rats-the roles of the protein Kinase RNA-Like ER Kinase/extracellular signal-regulated kinase and transcription factor EB proteins. Cell J. 2024 26 1 62 69 10.22074/cellj.2023.1995696.1257 38351730
    [Google Scholar]
  206. Qian F. Han Y. Han Z. Zhang D. Zhang L. Zhao G. Li S. Jin G. Yu R. Liu H. In Situ implantable, post-trauma microenvironment-responsive, ROS depletion hydrogels for the treatment of traumatic brain injury. Biomaterials 2021 270 120675 10.1016/j.biomaterials.2021.120675 33548799
    [Google Scholar]
  207. Fernandes M. Lopes I. Magalhães L. Sárria M.P. Machado R. Sousa J.C. Botelho C. Teixeira J. Gomes A.C. Novel concept of exosome-like liposomes for the treatment of Alzheimer’s disease. J. Control. Release 2021 336 130 143 10.1016/j.jconrel.2021.06.018 34126168
    [Google Scholar]
  208. Zhang Z. Jiang M. Fang J. Yang M. Zhang S. Yin Y. Li D. Mao L. Fu X. Hou Y. Fu X. Fan C. Sun B. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood–brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol. Neurobiol. 2017 54 1 1 14 10.1007/s12035‑015‑9635‑y 26708209
    [Google Scholar]
  209. Rabanel J.M. Faivre J. Paka G.D. Ramassamy C. Hildgen P. Banquy X. Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: Toward a drug delivery nano-platform to the CNS. Eur. J. Pharm. Biopharm. 2015 96 409 420 10.1016/j.ejpb.2015.09.004 26409200
    [Google Scholar]
  210. Jayanti S. Vítek L. Tiribelli C. Gazzin S. The role of bilirubin and the other “yellow players” in neurodegenerative diseases. Antioxidants 2020 9 9 900 10.3390/antiox9090900 32971784
    [Google Scholar]
  211. Kim D.E. Lee Y. Kim M. Lee S. Jon S. Lee S.H. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials 2017 140 37 44 10.1016/j.biomaterials.2017.06.014 28624706
    [Google Scholar]
  212. Idelman G. Smith D.L.H. Zucker S.D. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase. Redox Biol. 2015 5 398 408 10.1016/j.redox.2015.06.008 26163808
    [Google Scholar]
  213. Keum H. Kim D. Kim J. Kim T.W. Whang C.H. Jung W. Jon S. A bilirubin-derived nanomedicine attenuates the pathological cascade of pulmonary fibrosis. Biomaterials 2021 275 120986 10.1016/j.biomaterials.2021.120986 34175563
    [Google Scholar]
  214. Zhao Y.Z. Huang Z.W. Zhai Y.Y. Shi Y. Du C.C. Zhai J. Xu H.L. Xiao J. Kou L. Yao Q. Polylysine-bilirubin conjugates maintain functional islets and promote M2 macrophage polarization. Acta Biomater. 2021 122 172 185 10.1016/j.actbio.2020.12.047 33387663
    [Google Scholar]
  215. Hu J. Yang L. Yang P. Jiang S. Liu X. Li Y. Polydopamine free radical scavengers. Biomater. Sci. 2020 8 18 4940 4950 10.1039/D0BM01070G 32807998
    [Google Scholar]
  216. Bao X. Zhao J. Sun J. Hu M. Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 2018 12 9 8882 8892 10.1021/acsnano.8b04022 30028940
    [Google Scholar]
  217. Battaglini M. Marino A. Carmignani A. Tapeinos C. Cauda V. Ancona A. Garino N. Vighetto V. La Rosa G. Sinibaldi E. Ciofani G. Polydopamine nanoparticles as an organic and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation. ACS Appl. Mater. Interfaces 2020 12 32 35782 35798 10.1021/acsami.0c05497 32693584
    [Google Scholar]
  218. Fu Y. Zhang J. Wang Y. Li J. Bao J. Xu X. Zhang C. Li Y. Wu H. Gu Z. Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing. Carbohydr. Polym. 2021 257 117598 10.1016/j.carbpol.2020.117598 33541635
    [Google Scholar]
  219. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  220. Lombardo D. Kiselev M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  221. Xu Y. Liu H. Song L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: A review. J. Nanobiotechnology 2020 18 1 145 10.1186/s12951‑020‑00703‑5 33076918
    [Google Scholar]
  222. Dekhuijzen P.N.R. Batsiou M. Bjermer L. Bosnic-Anticevich S. Chrystyn H. Papi A. Rodríguez-Roisin R. Fletcher M. Wood L. Cifra A. Soriano J.B. Price D.B. Incidence of oral thrush in patients with COPD prescribed inhaled corticosteroids: Effect of drug, dose, and device. Respir. Med. 2016 120 54 63 10.1016/j.rmed.2016.09.015 27817816
    [Google Scholar]
  223. Hoesel L.M. Flierl M.A. Niederbichler A.D. Rittirsch D. McClintock S.D. Reuben J.S. Pianko M.J. Stone W. Yang H. Smith M. Sarma J.V. Ward P.A. Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury. Antioxid. Redox Signal. 2008 10 5 963 972 10.1089/ars.2007.1878 18257742
    [Google Scholar]
  224. Manconi M. Manca M.L. Valenti D. Escribano E. Hillaireau H. Fadda A.M. Fattal E. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int. J. Pharm. 2017 525 1 203 210 10.1016/j.ijpharm.2017.04.044 28438698
    [Google Scholar]
  225. Suk J.S. Xu Q. Kim N. Hanes J. Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016 99 28 10.1016/j.addr.2015.09.012
    [Google Scholar]
  226. Lu H. Zhang S. Wang J. Chen Q. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Front. Nutr. 2021 8 783831 10.3389/fnut.2021.783831 34926557
    [Google Scholar]
  227. Celardo I. Pedersen J.Z. Traversa E. Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011 3 4 1411 1420 10.1039/c0nr00875c 21369578
    [Google Scholar]
  228. de Jong W.H. Borm P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008 3 2 133 149 10.2147/IJN.S596 18686775
    [Google Scholar]
  229. Fornaguera C. García-Celma M. Personalized Nanomedicine: A Revolution at the Nanoscale. J. Pers. Med. 2017 7 4 12 10.3390/jpm7040012 29023366
    [Google Scholar]
  230. Kattoor A.J. Pothineni N.V.K. Palagiri D. Mehta J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 2017 19 11 42 10.1007/s11883‑017‑0678‑6 28921056
    [Google Scholar]
  231. Pisoschi A.M. Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015 97 55 74 10.1016/j.ejmech.2015.04.040 25942353
    [Google Scholar]
  232. Goodman M. Bostick R.M. Kucuk O. Jones D.P. Clinical trials of antioxidants as cancer prevention agents: Past, present, and future. Free Radic. Biol. Med. 2011 51 5 1068 1084 10.1016/j.freeradbiomed.2011.05.018 21683786
    [Google Scholar]
  233. Karakoti A. Singh S. Dowding J.M. Seal S. Self W.T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 2010 39 11 4422 4432 10.1039/b919677n 20717560
    [Google Scholar]
  234. Ciofani G. Genchi G.G. Liakos I. Cappello V. Gemmi M. Athanassiou A. Mazzolai B. Mattoli V. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion. Pharm. Res. 2013 30 8 2133 2145 10.1007/s11095‑013‑1071‑y 23661146
    [Google Scholar]
  235. Ragelle H. Danhier F. Préat V. Langer R. Anderson D.G. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 2017 14 7 851 864 10.1080/17425247.2016.1244187 27730820
    [Google Scholar]
  236. Sainz V. Conniot J. Matos A.I. Peres C. Zupanǒiǒ E. Moura L. Silva L.C. Florindo H.F. Gaspar R.S. Regulatory aspects on nanomedicines. Biochem. Biophys. Res. Commun. 2015 468 3 504 510 10.1016/j.bbrc.2015.08.023 26260323
    [Google Scholar]
  237. Bostan H.B. Rezaee R. Valokala M.G. Tsarouhas K. Golokhvast K. Tsatsakis A.M. Karimi G. Cardiotoxicity of nano-particles. Life Sci. 2016 165 91 99 10.1016/j.lfs.2016.09.017 27686832
    [Google Scholar]
  238. Kim K.S. Song C.G. Kang P.M. Targeting oxidative stress using nanoparticles as a theranostic strategy for cardiovascular diseases. Antioxid. Redox Signal. 2019 30 5 733 746 10.1089/ars.2017.7428 29228781
    [Google Scholar]
  239. Hua S. de Matos M.B.C. Metselaar J.M. Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 2018 9 790 10.3389/fphar.2018.00790 30065653
    [Google Scholar]
  240. Agrahari V. Hiremath P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine (Lond.) 2017 12 8 819 823 10.2217/nnm‑2017‑0039 28338401
    [Google Scholar]
  241. Loo C.Y. Siew E.L. Young P.M. Traini D. Lee W.H. Toxicity of curcumin nanoparticles towards alveolar macrophage: Effects of surface charges. Food Chem. Toxicol. 2022 163 112976 10.1016/j.fct.2022.112976 35364129
    [Google Scholar]
  242. Loo C.Y. Traini D. Young P.M. Lee W.H. Evaluation of the protective effect of curcumin nanoparticles on lung cells (Beas-2B) treated with paclitaxel nanoparticles: Targeting oxidative stress. J. Drug Deliv. Sci. Technol. 2025 105 106657 10.1016/j.jddst.2025.106657
    [Google Scholar]
  243. Bansal M. Kumar A. Malinee M. Sharma T.K. Nanomedicine: Diagnosis, treatment, and potential prospects. Nanoscience in Medicine 2020 1 297 331
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002389930250903070042
Loading
/content/journals/cdm/10.2174/0113892002389930250903070042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test