Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Numerous chronic illnesses, including diabetes, cancer, cardiovascular disease, and neurological disorders, are mostly caused by oxidative stress, which is defined as an imbalance between the body's antioxidant defenses and the generation of reactive oxygen species (ROS). The success of traditional treatments for oxidative stress has been limited because antioxidant medications are not well-absorbed, are quickly broken down, and do not target specific areas of the body.

Methods

Drug delivery methods based on nanotechnology offer a viable solution to these issues by providing therapeutic molecules with improved release characteristics, enhanced bioavailability, and targeted capabilities. Recent developments in nanotechnology have enabled the creation of multipurpose carriers that can simultaneously transmit genes for endogenous antioxidant enzymes and antioxidants.

Results

This integration promotes a long-term healing response and addresses the immediate oxidative stress. Likewise, functionalizing nanocarriers with particular ligands improves localization to oxidative stress locations, including inflammatory tissues or tumor microenvironments, boosting therapeutic efficacy. The potential of nanotherapeutics in reducing oxidative stress-driven diseases is examined in this article.

Discussion

Nanotechnology-based drug delivery approaches offer a novel avenue for the treatment of several oxidative stress-induced diseases. These delivery systems are highly target-specific and have a longer duration of action. Still, more research is needed to address issues, such as safety margins, large-scale production, and approval of medicine use.

Conclusion

We address several nanocarrier platforms, such as liposomes, polymeric nanoparticles, dendrimers, and metallic nanoparticles that have proven more effective in delivering therapeutic drugs and antioxidants to specific sites of oxidative damage. Furthermore, nanotherapeutics may enhance their therapeutic potential by protecting these bioactive substances from premature degradation and clearance.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002389930250903070042
2025-09-23
2025-12-21
Loading full text...

Full text loading...

References

  1. HongY. BoitiA. ValloneD. FoulkesN.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution.Antioxidants202413331210.3390/antiox1303031238539845
    [Google Scholar]
  2. RayP.D. HuangB.W. TsujiY. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell. Signal.201224598199010.1016/j.cellsig.2012.01.00822286106
    [Google Scholar]
  3. TirichenH. YaigoubH. XuW. WuC. LiR. LiY. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress.Front. Physiol.20211262783710.3389/fphys.2021.62783733967820
    [Google Scholar]
  4. HayyanM. HashimM.A. AlNashefI.M. Superoxide ion: Generation and chemical implications.Chem. Rev.201611653029308510.1021/acs.chemrev.5b0040726875845
    [Google Scholar]
  5. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.201324987008
    [Google Scholar]
  6. RaufA. KhalilA.A. AwadallahS. KhanS.A. Abu-IzneidT. KamranM. HemegH.A. MubarakM.S. KhalidA. WilairatanaP. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors—A review.Food Sci. Nutr.202412267569310.1002/fsn3.378438370049
    [Google Scholar]
  7. JomovaK. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants.Arch. Toxicol.20249851323136710.1007/s00204‑024‑03696‑438483584
    [Google Scholar]
  8. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.201854428729310.1016/j.ajme.2017.09.001
    [Google Scholar]
  9. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of Reactive Oxygen Species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and Proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  10. ZgutkaK. TkaczM. TomasiakP. TarnowskiM. A role for advanced glycation end products in molecular ageing.Int. J. Mol. Sci.20232412988110.3390/ijms2412988137373042
    [Google Scholar]
  11. FournetM. BontéF. DesmoulièreA. Glycation damage: A possible hub for major pathophysiological disorders and aging.Aging Dis.20189588090010.14336/AD.2017.112130271665
    [Google Scholar]
  12. RungratanawanichW. QuY. WangX. EssaM.M. SongB.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury.Exp. Mol. Med.202153216818810.1038/s12276‑021‑00561‑733568752
    [Google Scholar]
  13. KoerichS. ParreiraG.M. de AlmeidaD.L. VieiraR.P. de OliveiraA.C.P. Receptors for advanced glycation end products (RAGE): Promising targets aiming at the treatment of neurodegenerative conditions.Curr. Neuropharmacol.202321221923410.2174/1570159X2066622092215390336154605
    [Google Scholar]
  14. ZhouM. ZhangY. ShiL. LiL. ZhangD. GongZ. WuQ. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions: A review.Pharmacol. Res.202420610728210.1016/j.phrs.2024.10728238914383
    [Google Scholar]
  15. TaguchiK. FukamiK. RAGE signaling regulates the progression of diabetic complications.Front. Pharmacol.202314112887210.3389/fphar.2023.112887237007029
    [Google Scholar]
  16. BarreraG. Oxidative stress and lipid peroxidation products in cancer progression and therapy.ISRN Oncol.2012201212110.5402/2012/13728923119185
    [Google Scholar]
  17. TumilaarS.G. HardiantoA. DohiH. KurniaD. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds.J. Chem.20242024112110.1155/2024/5594386
    [Google Scholar]
  18. BouayedJ. BohnT. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses.Oxid. Med. Cell. Longev.20103422823710.4161/oxim.3.4.1285820972369
    [Google Scholar]
  19. NgoV. DuennwaldM.L. Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease.Antioxidants20221112234510.3390/antiox1112234536552553
    [Google Scholar]
  20. TripathiS. KharkwalG. MishraR. SinghG. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress.Heliyon20241018e3754510.1016/j.heliyon.2024.e3754539309893
    [Google Scholar]
  21. TonevD. MomchilovaA. Oxidative Stress and the nuclear factor erythroid 2-related factor 2 (nrf2) pathway in multiple sclerosis: Focus on certain exogenous and endogenous nrf2 activators and therapeutic plasma exchange modulation.Int. J. Mol. Sci.202324241722310.3390/ijms24241722338139050
    [Google Scholar]
  22. LiuP. LiY. WangR. RenF. WangX. Oxidative stress and antioxidant nanotherapeutic approaches for inflammatory bowel disease.Biomedicines20211018510.3390/biomedicines1001008535052764
    [Google Scholar]
  23. LiC.W. LiL.L. ChenS. ZhangJ.X. LuW.L. Antioxidant nanotherapies for the treatment of inflammatory diseases.Front. Bioeng. Biotechnol.2020820010.3389/fbioe.2020.0020032258013
    [Google Scholar]
  24. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  25. MalikS. MuhammadK. WaheedY. Emerging Applications of nanotechnology in healthcare and medicine.Molecules20232818662410.3390/molecules2818662437764400
    [Google Scholar]
  26. JosephT. Kar MahapatraD. EsmaeiliA. PiszczykŁ. HasaninM. KattaliM. HaponiukJ. ThomasS. Nanoparticles: Taking a unique position in medicine.Nanomaterials202313357410.3390/nano1303057436770535
    [Google Scholar]
  27. MourdikoudisS. PallaresR.M. ThanhN.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties.Nanoscale20181027128711293410.1039/C8NR02278J29926865
    [Google Scholar]
  28. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  29. EftekhariA. DizajS.M. ChodariL. SunarS. HasanzadehA. AhmadianE. HasanzadehM. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities.Biomed. Pharmacother.20181031018102710.1016/j.biopha.2018.04.12629710659
    [Google Scholar]
  30. MauricioM.D. Guerra-OjedaS. MarchioP. VallesS.L. AldasoroM. Escribano-LopezI. HeranceJ.R. RochaM. VilaJ.M. VictorV.M. Nanoparticles in medicine: A focus on vascular oxidative stress.Oxid. Med. Cell. Longev.201820181623148210.1155/2018/623148230356429
    [Google Scholar]
  31. VonaR. PallottaL. CappellettiM. SeveriC. MatarreseP. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders.Antioxidants202110220110.3390/antiox1002020133573222
    [Google Scholar]
  32. SharmaP. JhaA.B. DubeyR.S. PessarakliM. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.J. Bot. (Egypt)20122012112610.1155/2012/217037
    [Google Scholar]
  33. Aranda-RiveraA.K. Cruz-GregorioA. Arancibia-HernándezY.L. Hernández-CruzE.Y. Pedraza-ChaverriJ. RONS and oxidative stress: An overview of basic concepts.Oxygen20222443747810.3390/oxygen2040030
    [Google Scholar]
  34. Sharifi-RadM. Anil KumarN.V. ZuccaP. VaroniE.M. DiniL. PanzariniE. RajkovicJ. Tsouh FokouP.V. AzziniE. PelusoI. Prakash MishraA. NigamM. El RayessY. BeyrouthyM.E. PolitoL. IritiM. MartinsN. MartorellM. DoceaA.O. SetzerW.N. CalinaD. ChoW.C. Sharifi-RadJ. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.0069432714204
    [Google Scholar]
  35. BhattacharyyaA. ChattopadhyayR. MitraS. CroweS.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases.Physiol. Rev.201494232935410.1152/physrev.00040.201224692350
    [Google Scholar]
  36. ChaudharyP. JanmedaP. DoceaA.O. YeskaliyevaB. Abdull RazisA.F. ModuB. CalinaD. Sharifi-RadJ. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases.Front Chem.202311115819810.3389/fchem.2023.115819837234200
    [Google Scholar]
  37. LiuJ. WuM. ZhangR. XuZ.P. Oxygen‐derived free radicals: Production, biological importance, bioimaging, and analytical detection with responsive luminescent nanoprobes.VIEW2021252020013910.1002/VIW.20200139
    [Google Scholar]
  38. OngG. LogueS.E. Unfolding the interactions between endoplasmic reticulum stress and oxidative stress.Antioxidants202312598110.3390/antiox1205098137237847
    [Google Scholar]
  39. CollinF. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases.Int. J. Mol. Sci.20192010240710.3390/ijms2010240731096608
    [Google Scholar]
  40. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑937597078
    [Google Scholar]
  41. Medrano-MacíasJ. Flores-GallegosA.C. Nava-ReynaE. MoralesI. TortellaG. Solís-GaonaS. Benavides-MendozaA. Reactive Oxygen, Nitrogen, and Sulfur Species (RONSS) as a Metabolic Cluster for Signaling and Biostimulation of Plants: An Overview.Plants20221123320310.3390/plants1123320336501243
    [Google Scholar]
  42. RadiR. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine.Proc. Natl. Acad. Sci. USA2018115235839584810.1073/pnas.180493211529802228
    [Google Scholar]
  43. Nolfi-DoneganD. BraganzaA. ShivaS. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement.Redox Biol.20203710167410.1016/j.redox.2020.10167432811789
    [Google Scholar]
  44. ZhaoR.Z. JiangS. ZhangL. YuZ.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review).Int. J. Mol. Med.201944131510.3892/ijmm.2019.418831115493
    [Google Scholar]
  45. BrownO.I. BridgeK.I. KearneyM.T. Nicotinamide Adenine dinucleotide phosphate oxidases in glucose homeostasis and diabetes-related endothelial cell dysfunction.Cells2021109231510.3390/cells1009231534571964
    [Google Scholar]
  46. CzapskiG.A. CzubowiczK. StrosznajderJ.B. StrosznajderR.P. The Lipoxygenases: Their regulation and implication in alzheimer’s disease.Neurochem. Res.2016411-224325710.1007/s11064‑015‑1776‑x26677076
    [Google Scholar]
  47. SirakiA.G. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery.Redox Biol.20214610210910.1016/j.redox.2021.10210934455146
    [Google Scholar]
  48. ArnholdJ. The dual role of myeloperoxidase in immune response.Int. J. Mol. Sci.20202121805710.3390/ijms2121805733137905
    [Google Scholar]
  49. FrangieC. DaherJ. Role of myeloperoxidase in inflammation and atherosclerosis (Review).Biomed. Rep.20221665310.3892/br.2022.153635620311
    [Google Scholar]
  50. ChenJ. LiuL. WangW. GaoH. Nitric Oxide, nitric oxide formers and their physiological impacts in bacteria.Int. J. Mol. Sci.202223181077810.3390/ijms23181077836142682
    [Google Scholar]
  51. WallaceJ.L. Nitric oxide in the gastrointestinal tract: opportunities for drug development.Br. J. Pharmacol.2019176214715410.1111/bph.1452730357812
    [Google Scholar]
  52. FakiY. ErA. Different chemical structures and physiological/pathological roles of cyclooxygenases.Rambam Maimonides Med. J.2021121e000310.5041/RMMJ.1042633245277
    [Google Scholar]
  53. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w33637672
    [Google Scholar]
  54. de AlmeidaA.J.P.O. de OliveiraJ.C.P.L. da Silva PontesL.V. de Souza JúniorJ.F. GonçalvesT.A.F. DantasS.H. de Almeida FeitosaM.S. SilvaA.O. de MedeirosI.A. ROS: Basic concepts, sources, cellular signaling, and its implications in aging pathways.Oxid. Med. Cell. Longev.202220221122557810.1155/2022/122557836312897
    [Google Scholar]
  55. MartemucciG. CostagliolaC. MarianoM. D’andreaL. NapolitanoP. D’AlessandroA.G. Free radical properties, source and targets, antioxidant consumption and health.Oxygen202222487810.3390/oxygen2020006
    [Google Scholar]
  56. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.201720171841676310.1155/2017/841676328819546
    [Google Scholar]
  57. BaekJ. LeeM.G. Oxidative stress and antioxidant strategies in dermatology.Redox Rep.201621416416910.1179/1351000215Y.000000001526020527
    [Google Scholar]
  58. De SimoniE. CandeloraM. BelleggiaS. RizzettoG. MolinelliE. CapodaglioI. FerrettiG. BacchettiT. OffidaniA. SimonettiO. Role of antioxidants supplementation in the treatment of atopic dermatitis: a critical narrative review.Front. Nutr.202411139367310.3389/fnut.2024.139367338933878
    [Google Scholar]
  59. MannaP. JainS.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies.Metab. Syndr. Relat. Disord.2015131042344410.1089/met.2015.009526569333
    [Google Scholar]
  60. PanicA. StanimirovicJ. Sudar-MilovanovicE. IsenovicE.R. Oxidative stress in obesity and insulin resistance.Explor. Med.20223587010.37349/emed.2022.00074
    [Google Scholar]
  61. KowalczykP. SulejczakD. KleczkowskaP. Bukowska-OśkoI. KuciaM. PopielM. WietrakE. KramkowskiK. WrzosekK. KaczyńskaK. Mitochondrial oxidative stress: A causative factor and therapeutic target in many diseases.Int. J. Mol. Sci.202122241338410.3390/ijms22241338434948180
    [Google Scholar]
  62. KhanA.Q. AghaM.V. SheikhanK.S.A.M. YounisS.M. TamimiM.A. AlamM. AhmadA. UddinS. BuddenkotteJ. SteinhoffM. Targeting deregulated oxidative stress in skin inflammatory diseases: An update on clinical importance.Biomed. Pharmacother.202215411360110.1016/j.biopha.2022.11360136049315
    [Google Scholar]
  63. Sienes BailoP. Llorente MartínE. CalmarzaP. Montolio BrevaS. Bravo GómezA. Pozo GiráldezA. Sánchez-Pascuala CallauJ.J. Vaquer SantamaríaJ.M. Dayaldasani KhialaniA. Cerdá MicóC. Camps AndreuJ. Sáez TormoG. Fort GallifaI. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Advances in Laboratory Medicine / Avancesen Medicina de Laboratorio20223434235010.1515/almed‑2022‑011137363428
    [Google Scholar]
  64. Martínez LeoE.E. Segura CamposM.R. Systemic oxidative stress: A key point in neurodegeneration – a review.J. Nutr. Health Aging201923869469910.1007/s12603‑019‑1240‑831560025
    [Google Scholar]
  65. PegorettiV. SwansonK.A. BetheaJ.R. ProbertL. EiselU.L.M. FischerR. Inflammation and oxidative stress in multiple sclerosis: consequences for therapy development.Oxid. Med. Cell. Longev.2020202011910.1155/2020/719108032454942
    [Google Scholar]
  66. KaltsasA. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants.Medicina (Kaunas)20235910176910.3390/medicina5910176937893487
    [Google Scholar]
  67. AgarwalA. Aponte-MelladoA. PremkumarB.J. ShamanA. GuptaS. The effects of oxidative stress on female reproduction: A review.Reprod. Biol. Endocrinol.20121014910.1186/1477‑7827‑10‑4922748101
    [Google Scholar]
  68. MohammadiM. Oxidative stress and polycystic ovary syndrome: A brief review.Int. J. Prev. Med.20191018610.4103/ijpvm.IJPVM_576_1731198521
    [Google Scholar]
  69. HoH.J. ShirakawaH. Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease.Cells20221218810.3390/cells1201008836611880
    [Google Scholar]
  70. AnsariM.Y. AhmadN. HaqqiT.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols.Biomed. Pharmacother.202012911045210.1016/j.biopha.2020.11045232768946
    [Google Scholar]
  71. PerilloB. Di DonatoM. PezoneA. Di ZazzoE. GiovannelliP. GalassoG. CastoriaG. MigliaccioA. ROS in cancer therapy: The bright side of the moon.Exp. Mol. Med.202052219220310.1038/s12276‑020‑0384‑232060354
    [Google Scholar]
  72. SalehE.A.M. Al-dolaimyF. Qasim almajidi, Y.; Baymakov, S.; kader M, M.A.; Ullah, M.I.; Abbas, A.R.; Khlewee, I.H.; Bisht, Y.S.; Alsaalamy, A.H. Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes.Pathol. Res. Pract.202324915466410.1016/j.prp.2023.15466437573621
    [Google Scholar]
  73. RamaniS. PathakA. DalalV. PaulA. BiswasS. Oxidative stress in autoimmune diseases: An under dealt malice.Curr. Protein Pept. Sci.202021661162110.2174/138920372166620021411181632056521
    [Google Scholar]
  74. XiangY. ZhangM. JiangD. SuQ. ShiJ. The role of inflammation in autoimmune disease: A therapeutic target.Front. Immunol.202314126709110.3389/fimmu.2023.126709137859999
    [Google Scholar]
  75. PisoschiA.M. PopA. IordacheF. StancaL. GeicuO.I. BilteanuL. SerbanA.I. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy.Eur. J. Med. Chem.202223211417510.1016/j.ejmech.2022.11417535151223
    [Google Scholar]
  76. Arroyo-HernándezM. MaldonadoF. Lozano-RuizF. Muñoz-MontañoW. Nuñez-BaezM. ArrietaO. Radiation-induced lung injury: current evidence.BMC Pulm. Med.2021211910.1186/s12890‑020‑01376‑433407290
    [Google Scholar]
  77. YanY. FuJ. KowalchukR.O. WrightC.M. ZhangR. LiX. XuY. Exploration of radiation-induced lung injury, from mechanism to treatment: A narrative review.Transl. Lung Cancer Res.202211230710.21037/tlcr‑22‑108
    [Google Scholar]
  78. HananiaA.N. MainwaringW. GhebreY.T. HananiaN.A. LudwigM. Radiation-induced lung injury.Chest2019156115016210.1016/j.chest.2019.03.03330998908
    [Google Scholar]
  79. BattyM. BennettM.R. YuE. The role of oxidative stress in atherosclerosis.Cells20221123384310.3390/cells1123384336497101
    [Google Scholar]
  80. PoznyakA.V. GrechkoA.V. OrekhovaV.A. ChegodaevY.S. WuW.K. OrekhovA.N. Oxidative stress and antioxidants in atherosclerosis development and treatment.Biology2020936010.3390/biology903006032245238
    [Google Scholar]
  81. NowakW.N. DengJ. RuanX.Z. XuQ. Reactive oxygen species generation and atherosclerosis.Arterioscler. Thromb. Vasc. Biol.2017375e41e5210.1161/ATVBAHA.117.30922828446473
    [Google Scholar]
  82. AlizadehS. Anani-SarabG. AmiriH. HashemiM. Paraquat induced oxidative stress, DNA damage, and cytotoxicity in lymphocytes.Heliyon202287e09895
    [Google Scholar]
  83. AsaduzzamanM. ChandoM.R. AhmedN. Rezwanul IslamK.M. AlamM.M.J. RoyS. Paraquat‐induced acute kidney and liver injury: Case report of a survivor from Bangladesh.Clin. Case Rep.2021911e0502010.1002/ccr3.502034765204
    [Google Scholar]
  84. SharmaP. MittalP. Paraquat (herbicide) as a cause of Parkinson’s Disease.Parkinsonism Relat. Disord.202411910593210.1016/j.parkreldis.2023.10593238008593
    [Google Scholar]
  85. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.514923991888
    [Google Scholar]
  86. FischerB. VoynowJ. GhioA. COPD: Balancing oxidants and antioxidants.Int. J. Chron. Obstruct. Pulmon. Dis.20151026127610.2147/COPD.S4241425673984
    [Google Scholar]
  87. BarnesP.J. Oxidative stress in chronic obstructive pulmonary disease.Antioxidants202211596510.3390/antiox1105096535624831
    [Google Scholar]
  88. BreitzigM. BhimineniC. LockeyR. KolliputiN. 4-Hydroxy-2-nonenal: A critical target in oxidative stress?Am. J. Physiol. Cell Physiol.20163114C537C54310.1152/ajpcell.00101.201627385721
    [Google Scholar]
  89. GrailleM. WildP. SauvainJ.J. HemmendingerM. Guseva CanuI. HopfN.B. Urinary 8-OHdG as a biomarker for oxidative stress: A systematic literature review and meta-analysis.Int. J. Mol. Sci.20202111374310.3390/ijms2111374332466448
    [Google Scholar]
  90. ChereshP. KimS.J. TulasiramS. KampD.W. Oxidative stress and pulmonary fibrosis.Biochim. Biophys. Acta Mol. Basis Dis.2013183271028104010.1016/j.bbadis.2012.11.02123219955
    [Google Scholar]
  91. FoisA.G. PaliogiannisP. SotgiaS. MangoniA.A. ZinelluE. PirinaP. CarruC. ZinelluA. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: A systematic review.Respir. Res.20181915110.1186/s12931‑018‑0754‑729587761
    [Google Scholar]
  92. MalliF. BardakaF. TsilioniI. KaretsiE. GourgoulianisK.I. DaniilZ. 8-Isoprostane levels in serum and bronchoalveolar lavage in idiopathic pulmonary fibrosis and sarcoidosis.Food Chem. Toxicol.20136116016310.1016/j.fct.2013.05.01623702326
    [Google Scholar]
  93. PantazopoulosI. MagounakiK. KotsiouO. RoukaE. PerlikosF. KakavasS. GourgoulianisK. Incorporating biomarkers in COPD management: The research keeps going.J. Pers. Med.202212337910.3390/jpm1203037935330379
    [Google Scholar]
  94. CorteselliE. AboushoushaR. Janssen-HeiningerY. S-Glutathionylation-controlled apoptosis of lung epithelial cells; potential implications for lung fibrosis.Antioxidants2022119178910.3390/antiox1109178936139863
    [Google Scholar]
  95. MeiQ. LiuZ. ZuoH. YangZ. QuJ. Idiopathic pulmonary fibrosis: An update on pathogenesis.Front. Pharmacol.20221279729210.3389/fphar.2021.79729235126134
    [Google Scholar]
  96. ChawlaR. ChawlaA. JaggiS. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?Indian J. Endocrinol. Metab.201620454655110.4103/2230‑8210.18348027366724
    [Google Scholar]
  97. BigagliE. LodoviciM. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications.Oxid. Med. Cell. Longev.2019201911710.1155/2019/595368531214280
    [Google Scholar]
  98. TangvarasittichaiS. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus.World J. Diabetes20156345648010.4239/wjd.v6.i3.45625897356
    [Google Scholar]
  99. MontezanoA.C. TouyzR.M. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research.Antioxid. Redox Signal.201420116418210.1089/ars.2013.530223600794
    [Google Scholar]
  100. GriendlingK.K. CamargoL.L. RiosF.J. Alves-LopesR. MontezanoA.C. TouyzR.M. Oxidative stress and hypertension.Circ. Res.20211287993102010.1161/CIRCRESAHA.121.31806333793335
    [Google Scholar]
  101. GàoX. SchöttkerB. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews.Oncotarget2017831518885190610.18632/oncotarget.1712828881698
    [Google Scholar]
  102. SinghR. MannaP.P. Reactive oxygen species in cancer progression and its role in therapeutics.Explor. Med.20223435710.37349/emed.2022.00073
    [Google Scholar]
  103. JiangH. ZuoJ. LiB. ChenR. LuoK. XiangX. LuS. HuangC. LiuL. TangJ. GaoF. Drug-induced oxidative stress in cancer treatments: Angel or devil?Redox Biol.20236310275410.1016/j.redox.2023.10275437224697
    [Google Scholar]
  104. KolbasinaN.A. GureevA.P. SerzhantovaO.V. MikhailovA.A. MoshurovI.P. StarkovA.A. PopovV.N. Lung cancer increases H2O2 concentration in the exhaled breath condensate, extent of mtDNA damage, and mtDNA copy number in buccal mucosa.Heliyon202066e0430310.1016/j.heliyon.2020.e0430332637695
    [Google Scholar]
  105. OrfanakosK. AlifierisC.E. VerigosE.K. DeligiorgiM.V. VerigosK.E. PanayiotidisM.I. NikolaouM. TrafalisD.T. The predictive value of 8-hydroxy-deoxyguanosine (8-OHdG) serum concentrations in irradiated non-small cell lung carcinoma (NSCLC) patients.Biomedicines202412113410.3390/biomedicines1201013438255239
    [Google Scholar]
  106. LeeW.H. LooC.Y. BebawyM. LukF. MasonR. RohanizadehR. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century.Curr. Neuropharmacol.201311433837810.2174/1570159X1131104000224381528
    [Google Scholar]
  107. WangX. WangW. LiL. PerryG. LeeH. ZhuX. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.2014184281240124710.1016/j.bbadis.2013.10.01524189435
    [Google Scholar]
  108. SultanaR. ButterfieldD.A. Protein Oxidation in aging and alzheimer’s disease brain.Antioxidants202413557410.3390/antiox1305057438790679
    [Google Scholar]
  109. PiccaA. CalvaniR. Coelho-JuniorH.J. LandiF. BernabeiR. MarzettiE. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration.Antioxidants20209864710.3390/antiox908064732707949
    [Google Scholar]
  110. NanjwadeB.K. KadamV.T. ManviF.V. Formulation and characterization of nanostructured lipid carrier of ubiquinone (Coenzyme Q10).J. Biomed. Nanotechnol.20139345046010.1166/jbn.2013.156023621001
    [Google Scholar]
  111. da Rocha LindnerG. Bonfanti SantosD. ColleD. Gasnhar MoreiraE.L. Daniel PredigerR. FarinaM. KhalilN.M. Mara MainardesR. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism.Nanomedicine (Lond.)20151071127113810.2217/nnm.14.16525929569
    [Google Scholar]
  112. LuX. JiC. XuH. LiX. DingH. YeM. ZhuZ. DingD. JiangX. DingX. GuoX. Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress.Int. J. Pharm.20093751-2899610.1016/j.ijpharm.2009.03.02119481694
    [Google Scholar]
  113. BollimpelliV.S. KumarP. KumariS. KondapiA.K. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.Neurochem. Int.201695374510.1016/j.neuint.2016.01.00626826319
    [Google Scholar]
  114. SinghalN.K. AgarwalS. BhatnagarP. TiwariM.N. TiwariS.K. SrivastavaG. KumarP. SethB. PatelD.K. ChaturvediR.K. SinghM.P. GuptaK.C. Mechanism of nanotization-mediated improvement in the efficacy of caffeine against 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism.J. Biomed. Nanotechnol.201511122211222210.1166/jbn.2015.210726510314
    [Google Scholar]
  115. LiuH. HanY. WangT. ZhangH. XuQ. YuanJ. LiZ. Targeting microglia for therapy of parkinson’s disease by using biomimetic ultrasmall nanoparticles.J. Am. Chem. Soc.202014252217302174210.1021/jacs.0c0939033315369
    [Google Scholar]
  116. HalevasE. MavroidiB. NdayC.M. TangJ. SmithG.C. BoukosN. LitsardakisG. PelecanouM. SalifoglouA. Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity.J. Inorg. Biochem.202021311127110.1016/j.jinorgbio.2020.11127133069945
    [Google Scholar]
  117. PanQ. BanY. XuL. Silibinin-albumin nanoparticles: characterization and biological evaluation against oxidative stress-stimulated neurotoxicity associated with Alzheimer’s disease.J. Biomed. Nanotechnol.20211761123113010.1166/jbn.2021.303834167626
    [Google Scholar]
  118. SathyaS. ManogariB.G. ThamaraiselviK. VaideviS. RuckmaniK. DeviK.P. Phytol loaded PLGA nanoparticles ameliorate scopolamine-induced cognitive dysfunction by attenuating cholinesterase activity, oxidative stress and apoptosis in Wistar rat.Nutr. Neurosci.202225348550110.1080/1028415X.2020.176429032406811
    [Google Scholar]
  119. SheaT.B. OrtizD. NicolosiR.J. KumarR. WattersonA.C. Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta.J. Alzheimers Dis.20057429730110.3233/JAD‑2005‑740516131731
    [Google Scholar]
  120. SinghA. UjjwalR.R. NaqviS. VermaR.K. TiwariS. KesharwaniP. ShuklaR. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease.J. Drug Target.202230777779110.1080/1061186X.2022.206329735382657
    [Google Scholar]
  121. DhasN. MehtaT. Cationic biopolymer functionalized nanoparticles encapsulating lutein to attenuate oxidative stress in effective treatment of Alzheimer’s disease: A non-invasive approach.Int. J. Pharm.202058611955310.1016/j.ijpharm.2020.11955332561306
    [Google Scholar]
  122. PrakashkumarN. SivamaruthiB.S. ChaiyasutC. SuganthyN. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis an in vitro study.Pharmaceutics202113329910.3390/pharmaceutics1303029933668877
    [Google Scholar]
  123. SinningC. WestermannD. ClemmensenP. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives.Biomarkers Med.201711111031104010.2217/bmm‑2017‑011029039206
    [Google Scholar]
  124. KibelA. LukinacA.M. DambicV. JuricI. Selthofer-RelaticK. Oxidative stress in ischemic heart disease.Oxid. Med. Cell. Longev.2020202013010.1155/2020/662714433456670
    [Google Scholar]
  125. ChazelasP. SteichenC. FavreauF. TrouillasP. HannaertP. ThuillierR. GiraudS. HauetT. GuillardJ. Oxidative stress evaluation in ischemia reperfusion models: Characteristics, limits and perspectives.Int. J. Mol. Sci.2021225236610.3390/ijms2205236633673423
    [Google Scholar]
  126. GranataS. VotricoV. SpadaccinoF. CatalanoV. NettiG.S. RanieriE. StalloneG. ZazaG. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants.Antioxidants202211476910.3390/antiox1104076935453454
    [Google Scholar]
  127. CasertaS. MengozziM. KernF. NewburyS.F. GhezziP. LlewelynM.J. Severity of systemic inflammatory response syndrome affects the blood levels of circulating inflammatory-relevant MicroRNAs.Front. Immunol.20188197710.3389/fimmu.2017.0197729459855
    [Google Scholar]
  128. BertozziG. FerraraM. Di FazioA. MaieseA. DeloguG. Di FazioN. TortorellaV. La RussaR. FineschiV. Oxidative stress in sepsis: A focus on cardiac pathology.Int. J. Mol. Sci.2024255291210.3390/ijms2505291238474158
    [Google Scholar]
  129. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell20121491060
    [Google Scholar]
  130. LiJ. ZhouY. WangH. LouJ. LenahanC. GaoS. WangX. DengY. ChenH. ShaoA. Oxidative stress-induced ferroptosis in cardiovascular diseases and epigenetic mechanisms.Front. Cell Dev. Biol.2021968577510.3389/fcell.2021.68577534490241
    [Google Scholar]
  131. MöllerM.N. OrricoF. VillarS.F. LópezA.C. SilvaN. DonzéM. ThomsonL. DenicolaA. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells.ACS Omega20238114716810.1021/acsomega.2c0676836643550
    [Google Scholar]
  132. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑527456681
    [Google Scholar]
  133. PoljsakB. ŠuputD. MilisavI. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants.Oxid. Med. Cell. Longev.2013201311110.1155/2013/95679223738047
    [Google Scholar]
  134. PedreB. BarayeuU. EzerinaD. DickT.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfanesulfur species.Pharmacol. Ther.202122810791610.1016/j.pharmthera.2021.10791634171332
    [Google Scholar]
  135. KerksickC. WilloughbyD. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress.J. Int. Soc. Sports Nutr.200522384410.1186/1550‑2783‑2‑2‑3818500954
    [Google Scholar]
  136. DailahH.G. Therapeutic potential of small molecules targeting oxidative stress in the treatment of chronic obstructive pulmonary disease (COPD): A comprehensive review.Molecules20222717554210.3390/molecules2717554236080309
    [Google Scholar]
  137. PetronekM.S. StolwijkJ.M. MurrayS.D. SteinbachE.J. ZakhariaY. BuettnerG.R. SpitzD.R. AllenB.G. Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy.Redox Biol.20214210186410.1016/j.redox.2021.10186433485837
    [Google Scholar]
  138. IslamS. AhmedM.M. IslamM.A. HossainN. ChowdhuryM.A. Advances in nanoparticles in targeted drug delivery: A review.Result Surface Interfac20257910052910.1016/j.rsurfi.2025.100529
    [Google Scholar]
  139. ZhaoZ. CaoY. XuR. FangJ. ZhangY. XuX. HuangL. LiR. Nanoparticles (NPs)-mediated targeted regulation of redox homeostasis for effective cancer therapy.Smart Mater. Med.20245229132010.1016/j.smaim.2024.03.003
    [Google Scholar]
  140. ZhangW. HuS. YinJ.J. HeW. LuW. MaM. GuN. ZhangY. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers.J. Am. Chem. Soc.2016138185860586510.1021/jacs.5b1207026918394
    [Google Scholar]
  141. WangJ. WangH. ZhuR. LiuQ. FeiJ. WangS. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis.Biomaterials20155347548310.1016/j.biomaterials.2015.02.11625890744
    [Google Scholar]
  142. KangC. ChoW. ParkM. KimJ. ParkS. ShinD. SongC. LeeD. H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics.Biomaterials20168519520310.1016/j.biomaterials.2016.01.07026874282
    [Google Scholar]
  143. SeshadriG. SyJ.C. BrownM. DikalovS. YangS.C. MurthyN. DavisM.E. The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury.Biomaterials20103161372137910.1016/j.biomaterials.2009.10.04519889454
    [Google Scholar]
  144. GouS. HuangY. WanY. MaY. ZhouX. TongX. HuangJ. KangY. PanG. DaiF. XiaoB. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis.Biomaterials2019212395410.1016/j.biomaterials.2019.05.01231103945
    [Google Scholar]
  145. JungE. NohJ. KangC. YooD. SongC. LeeD. Ultrasound imaging and on-demand therapy of peripheral arterial diseases using H2O2-Activated bubble generating anti-inflammatory polymer particles.Biomaterials201817917518510.1016/j.biomaterials.2018.07.00329990676
    [Google Scholar]
  146. KozowerB.D. Christofidou-SolomidouM. SweitzerT.D. MuroS. BuerkD.G. SolomidesC.C. AlbeldaS.M. PattersonG.A. MuzykantovV.R. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury.Nat. Biotechnol.200321439239810.1038/nbt80612652312
    [Google Scholar]
  147. KojimaR. BojarD. RizziG. HamriG.C.E. El-BabaM.D. SaxenaP. AusländerS. TanK.R. FusseneggerM. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment.Nat. Commun.201891130510.1038/s41467‑018‑03733‑829610454
    [Google Scholar]
  148. ChonpathompikunlertP. YoshitomiT. HanJ. TohK. IsodaH. NagasakiY. Chemical nanotherapy: nitroxyl radical-containing nanoparticle protects neuroblastoma SH-SY5Y cells from Abeta-induced oxidative stress.Ther. Deliv.20112558559710.4155/tde.11.2722833976
    [Google Scholar]
  149. GaoF. ZhaoJ. LiuP. JiD. ZhangL. ZhangM. LiY. XiaoY. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer’s disease.Int. J. Biol. Macromol.202014226527610.1016/j.ijbiomac.2019.09.09831593732
    [Google Scholar]
  150. ChonpathompikunlertP. YoshitomiT. VongL.B. ImaizumiN. OzakiY. NagasakiY. Recovery of cognitive dysfunction via orally administered redox-polymer nanotherapeutics in SAMP8 mice.PLoS One2015105e012601310.1371/journal.pone.012601325955022
    [Google Scholar]
  151. LiC. WangN. ZhengG. YangL. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates alzheimer’s disease-like pathogenesis by inhibiting aβ aggregation and regulating gut microbiota.ACS Appl. Mater. Interfaces20211339464064642010.1021/acsami.1c1481834569225
    [Google Scholar]
  152. JiaZ. YuanX. WeiJ. GuoX. GongY. LiJ. ZhouH. ZhangL. LiuJ. A functionalized octahedral palladium nanozyme as a radical scavenger for ameliorating Alzheimer’s disease.ACS Appl. Mater. Interfaces20211342496024961310.1021/acsami.1c0668734641674
    [Google Scholar]
  153. LiuP. ZhangT. ChenQ. LiC. ChuY. GuoQ. ZhangY. ZhouW. ChenH. ZhouZ. WangY. ZhaoZ. LuoY. LiX. SongH. SuB. LiC. SunT. JiangC. Biomimetic dendrimer-peptide conjugates for early multi-target therapy of alzheimer’s disease by inflammatory microenvironment modulation.Adv. Mater.20213326210074610.1002/adma.20210074633998706
    [Google Scholar]
  154. MaM. GaoN. SunY. DuX. RenJ. QuX. Redox-activated near-infrared-responsive polyoxometalates used for photothermal treatment of Alzheimer’s disease.Adv. Healthc. Mater.2018720180032010.1002/adhm.20180032029920995
    [Google Scholar]
  155. YangL. YinT. LiuY. SunJ. ZhouY. LiuJ. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment.Acta Biomater.20164617719010.1016/j.actbio.2016.09.01027619837
    [Google Scholar]
  156. ZhongG. LongH. ZhouT. LiuY. ZhaoJ. HanJ. YangX. YuY. ChenF. ShiS. Blood-brain barrier Permeable nanoparticles for Alzheimer’s disease treatment by selective mitophagy of microglia.Biomaterials202228812169010.1016/j.biomaterials.2022.12169035965114
    [Google Scholar]
  157. ZhangY. WangZ. LiX. WangL. YinM. WangL. ChenN. FanC. SongH. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila.Adv. Mater.20162871387139310.1002/adma.20150389326643597
    [Google Scholar]
  158. HaoC. QuA. XuL. SunM. ZhangH. XuC. KuangH. Chiral molecule-mediated porous Cu O nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease.J. Am. Chem. Soc.201914121091109910.1021/jacs.8b1185630540450
    [Google Scholar]
  159. MaghsoudiA. FakharzadehS. HafiziM. AbbasiM. KohramF. SardabS. TahzibiA. KalanakyS. NazaranM.H. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity.Apoptosis201520329830910.1007/s10495‑014‑1069‑x25451011
    [Google Scholar]
  160. PichlaM. PulaskiŁ. KaniaK.D. StefaniukI. CieniekB. PieńkowskaN. BartoszG. Sadowska-BartoszI. Nitroxide radical-containing redox nanoparticles protect neuroblastoma SH-SY5Y cells against 6-hydroxydopamine toxicity.Oxid. Med. Cell. Longev.2020202011910.1155/2020/926074832377313
    [Google Scholar]
  161. LiuY.Q. MaoY. XuE. JiaH. ZhangS. DawsonV.L. DawsonT.M. LiY-M. ZhengZ. HeW. MaoX. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease.Nano Today20213610102710.1016/j.nantod.2020.101027
    [Google Scholar]
  162. DuganL.L. LovettE.G. QuickK.L. LothariusJ. LinT.T. O’MalleyK.L. Fullerene-based antioxidants and neurodegenerative disorders.Parkinsonism Relat. Disord.20017324324610.1016/S1353‑8020(00)00064‑X11331193
    [Google Scholar]
  163. VernekarA.A. SinhaD. SrivastavaS. ParamasivamP.U. D’SilvaP. MugeshG. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires.Nat. Commun.201451530110.1038/ncomms630125412933
    [Google Scholar]
  164. UmaraoP. BoseS. BhattacharyyaS. KumarA. JainS. Neuroprotective potential of superparamagnetic iron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of Parkinson’s Disease.J. Nanosci. Nanotechnol.201616126126910.1166/jnn.2016.1110327398453
    [Google Scholar]
  165. RuotoloR. De GiorgioG. MinatoI. BianchiM. BussolatiO. MarmiroliN. Cerium oxide nanoparticles rescue α-synuclein-induced toxicity in a yeast model of Parkinson’s Disease.Nanomaterials (Basel)202010223510.3390/nano1002023532013138
    [Google Scholar]
  166. LinoC.A. HarperJ.C. CarneyJ.P. TimlinJ.A. Delivering CRISPR: A review of the challenges and approaches.Drug Deliv.20182511234125710.1080/10717544.2018.147496429801422
    [Google Scholar]
  167. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as Drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers2023157159610.3390/polym1507159637050210
    [Google Scholar]
  168. KhalilI. YehyeW.A. EtxeberriaA.E. AlhadiA.A. DezfooliS.M. JulkapliN.B.M. BasirunW.J. SeyfoddinA. Nanoantioxidants: Recent trends in antioxidant delivery applications.Antioxidants2019912410.3390/antiox901002431888023
    [Google Scholar]
  169. ZhangC. WangX. DuJ. GuZ. ZhaoY. Reactive Oxygen species‐regulating strategies based on nanomaterials for disease treatment.Adv. Sci. (Weinh.)202183200279710.1002/advs.20200279733552863
    [Google Scholar]
  170. DaiY. GuoY. TangW. ChenD. XueL. ChenY. GuoY. WeiS. WuM. DaiJ. WangS. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases.J. Nanobiotechnology202422125210.1186/s12951‑024‑02501‑938750509
    [Google Scholar]
  171. ThaoN.T.M. DoH.D.K. NamN.N. TranN.K.S. DanT.T. TrinhK.T.L. Antioxidant nanozymes: Mechanisms, activity manipulation, and applications.Micromachines2023145101710.3390/mi1405101737241640
    [Google Scholar]
  172. TianR. XuJ. LuoQ. HouC. LiuJ. Rational design and biological application of antioxidant nanozymes.Front Chem.2021883110.3389/fchem.2020.0083133644000
    [Google Scholar]
  173. LiuJ. HanX. ZhangT. TianK. LiZ. LuoF. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy.J. Hematol. Oncol.202316111610.1186/s13045‑023‑01512‑738037103
    [Google Scholar]
  174. LiR. HouX. LiL. GuoJ. JiangW. ShangW. Application of metal-based nanozymes in inflammatory disease: A review.Front. Bioeng. Biotechnol.20221092021310.3389/fbioe.2022.92021335782497
    [Google Scholar]
  175. FerreiraC.A. NiD. RosenkransZ.T. CaiW. Scavenging of reactive oxygen and nitrogen species with nanomaterials.Nano Res.201811104955498410.1007/s12274‑018‑2092‑y30450165
    [Google Scholar]
  176. WuJ. WangX. WangQ. LouZ. LiS. ZhuY. QinL. WeiH. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II).Chem. Soc. Rev.20194841004107610.1039/C8CS00457A30534770
    [Google Scholar]
  177. ZhaoS. LiY. LiuQ. LiS. ChengY. ChengC. SunZ. DuY. ButchC.J. WeiH. An orally administered CeO 2 @Montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy.Adv. Funct. Mater.20203045200469210.1002/adfm.202004692
    [Google Scholar]
  178. KimJ. KimH.Y. SongS.Y. GoS. SohnH.S. BaikS. SohM. KimK. KimD. KimH.C. LeeN. KimB.S. HyeonT. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment.ACS Nano20191333206321710.1021/acsnano.8b0878530830763
    [Google Scholar]
  179. YaoX. GuanY. WangJ. WangD. Cerium oxide nanoparticles modulating the Parkinson’s disease conditions: From the alpha synuclein structural point of view and antioxidant properties of cerium oxide nanoparticles.Heliyon2024101e2178910.1016/j.heliyon.2023.e2178938163101
    [Google Scholar]
  180. KwonH.J. ChaM.Y. KimD. KimD.K. SohM. ShinK. HyeonT. Mook-JungI. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease.ACS Nano20161022860287010.1021/acsnano.5b0804526844592
    [Google Scholar]
  181. GhaznaviH. NajafiR. MehrzadiS. HosseiniA. TekyemaroofN. Shakeri-zadehA. RezayatM. SharifiA.M. Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells.Neurol. Res.201537762463210.1179/1743132815Y.000000003725786672
    [Google Scholar]
  182. HuangX. HeD. PanZ. LuoG. DengJ. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation.Mater. Today Bio20211110012410.1016/j.mtbio.2021.10012434458716
    [Google Scholar]
  183. WuY. SongZ. DengG. JiangK. WangH. ZhangX. HanH. Gastric acid powered nanomotors release antibiotics for in vivo treatment of Helicobacter pylori infection.Small20211711200687710.1002/smll.20200687733619851
    [Google Scholar]
  184. WangB. FengL. JiangW.D. WuP. KuangS.Y. JiangJ. TangL. TangW.N. ZhangY.A. LiuY. ZhouX.Q. Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine.Aquat. Toxicol.201515812513710.1016/j.aquatox.2014.10.02525461751
    [Google Scholar]
  185. ZhangJ. LiM. LiuM. YuQ. GeD. ZhangJ. metal–organic framework nanomaterials as a medicine for catalytic tumor therapy: Recent advances.Nanomaterials202414979710.3390/nano1409079738727391
    [Google Scholar]
  186. ChengH. LiuY. HuY. DingY. LinS. CaoW. WangQ. WuJ. MuhammadF. ZhaoX. ZhaoD. LiZ. XingH. WeiH. Monitoring of heparin activity in live rats using metal–organic framework nanosheets as peroxidase mimics.Anal. Chem.20178921115521155910.1021/acs.analchem.7b0289528992698
    [Google Scholar]
  187. PengY. HeD. GeX. LuY. ChaiY. ZhangY. MaoZ. LuoG. DengJ. ZhangY. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition.Bioact. Mater.20216103109312410.1016/j.bioactmat.2021.02.00633778192
    [Google Scholar]
  188. HaoC. QuA. XuL. SunM. ZhangH. XuC. KuangH. Chiral Molecule-mediated Porous Cux O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson’s Disease.J. Am. Chem. Soc.201914121091109910.1021/jacs.8b1185630540450
    [Google Scholar]
  189. FukaiT. Ushio-FukaiM. Superoxide dismutases: Role in redox signaling, vascular function, and diseases.Antioxid. Redox Signal.20111561583160610.1089/ars.2011.399921473702
    [Google Scholar]
  190. ReddyM.K. LabhasetwarV. Nanoparticle‐mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia‐reperfusion injury.FASEB J.20092351384139510.1096/fj.08‑11694719124559
    [Google Scholar]
  191. ChenY.P. ChenC.T. HungY. ChouC.M. LiuT.P. LiangM.R. ChenC.T. MouC.Y. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: Superoxide dismutase.J. Am. Chem. Soc.201313541516152310.1021/ja310520823289802
    [Google Scholar]
  192. ZengZ. HeX. LiC. LinS. ChenH. LiuL. FengX. Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease.Biomaterials202127112075310.1016/j.biomaterials.2021.12075333725585
    [Google Scholar]
  193. DeJuliusC.R. DollingerB.R. KavanaughT.E. DailingE. YuF. GulatiS. MiskalisA. ZhangC. UddinJ. DikalovS. DuvallC.L. Optimizing an antioxidant TEMPO copolymer for reactive oxygen species scavenging and anti-inflammatory effects in Vivo.Bioconjug. Chem.202132592894110.1021/acs.bioconjchem.1c0008133872001
    [Google Scholar]
  194. KaltenmeierC. WangR. PoppB. GellerD. TohmeS. YazdaniH.O. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury.Cells20221114222210.3390/cells1114222235883665
    [Google Scholar]
  195. LiT. ZhangT. GaoH. LiuR. GuM. YangY. CuiT. LuZ. YinC. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction.Redox Biol.20214110188610.1016/j.redox.2021.10188633592539
    [Google Scholar]
  196. CalabreseG. ArdizzoneA. CampoloM. ConociS. EspositoE. PaternitiI. Beneficial effect of tempol, a membrane-permeable radical scavenger, on inflammation and osteoarthritis in in vitro models.Biomolecules202111335210.3390/biom1103035233669093
    [Google Scholar]
  197. ZhangQ. TaoH. LinY. HuY. AnH. ZhangD. FengS. HuH. WangR. LiX. ZhangJ. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.Biomaterials201610520622110.1016/j.biomaterials.2016.08.01027525680
    [Google Scholar]
  198. WangY. LiL. ZhaoW. DouY. AnH. TaoH. XuX. JiaY. LuS. ZhangJ. HuH. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity.ACS Nano20181298943896010.1021/acsnano.8b0203730114351
    [Google Scholar]
  199. ChistyakovV.A. SmirnovaY.O. PrazdnovaE.V. SoldatovA.V. Possible mechanisms of fullerene C60 antioxidant action.BioMed Res. Int.201320131410.1155/2013/82149824222918
    [Google Scholar]
  200. RoyP. BagS. ChakrabortyD. DasguptaS. Exploring the inhibitory and antioxidant effects of fullerene and fullerenol on ribonuclease A.ACS Omega201839122701228310.1021/acsomega.8b0158430320292
    [Google Scholar]
  201. LiaoS. LiuG. TanB. QiM. LiJ. LiX. ZhuC. HuangJ. YinY. TangY. Fullerene C60 protects against intestinal injury from deoxynivalenol toxicity by improving antioxidant capacity.Life202111649110.3390/life1106049134071941
    [Google Scholar]
  202. BalR. TürkG. TuzcuM. YilmazO. OzercanI. KulogluT. GürS. NedzvetskyV.S. TykhomyrovA.A. AndrievskyG.V. BaydasG. NazirogluM. Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin-diabetic male rats.Toxicology20112823698110.1016/j.tox.2010.12.00321163323
    [Google Scholar]
  203. LiX. ZhenM. ZhouC. DengR. YuT. WuY. ShuC. WangC. BaiC. Gadofullerene nanoparticles reverse dysfunctions of pancreas and improve hepatic insulin resistance for type 2 diabetes mellitus Treatment.ACS Nano20191388597860810.1021/acsnano.9b0205031314991
    [Google Scholar]
  204. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.0102133041781
    [Google Scholar]
  205. SaghariY. MovahediM. TebianianM. EntezariM. The neuroprotective effects of curcumin nanoparticles on the cerebral ischemia-reperfusion injury in the rats-the roles of the protein Kinase RNA-Like ER Kinase/extracellular signal-regulated kinase and transcription factor EB proteins.Cell J.2024261626910.22074/cellj.2023.1995696.125738351730
    [Google Scholar]
  206. QianF. HanY. HanZ. ZhangD. ZhangL. ZhaoG. LiS. JinG. YuR. LiuH. In Situ implantable, post-trauma microenvironment-responsive, ROS depletion hydrogels for the treatment of traumatic brain injury.Biomaterials202127012067510.1016/j.biomaterials.2021.12067533548799
    [Google Scholar]
  207. FernandesM. LopesI. MagalhãesL. SárriaM.P. MachadoR. SousaJ.C. BotelhoC. TeixeiraJ. GomesA.C. Novel concept of exosome-like liposomes for the treatment of Alzheimer’s disease.J. Control. Release202133613014310.1016/j.jconrel.2021.06.01834126168
    [Google Scholar]
  208. ZhangZ. JiangM. FangJ. YangM. ZhangS. YinY. LiD. MaoL. FuX. HouY. FuX. FanC. SunB. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood–brain barrier disruption through inhibition of inflammatory response and oxidative stress.Mol. Neurobiol.201754111410.1007/s12035‑015‑9635‑y26708209
    [Google Scholar]
  209. RabanelJ.M. FaivreJ. PakaG.D. RamassamyC. HildgenP. BanquyX. Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: Toward a drug delivery nano-platform to the CNS.Eur. J. Pharm. Biopharm.20159640942010.1016/j.ejpb.2015.09.00426409200
    [Google Scholar]
  210. JayantiS. VítekL. TiribelliC. GazzinS. The role of bilirubin and the other “yellow players” in neurodegenerative diseases.Antioxidants20209990010.3390/antiox909090032971784
    [Google Scholar]
  211. KimD.E. LeeY. KimM. LeeS. JonS. LeeS.H. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.Biomaterials2017140374410.1016/j.biomaterials.2017.06.01428624706
    [Google Scholar]
  212. IdelmanG. SmithD.L.H. ZuckerS.D. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase.Redox Biol.2015539840810.1016/j.redox.2015.06.00826163808
    [Google Scholar]
  213. KeumH. KimD. KimJ. KimT.W. WhangC.H. JungW. JonS. A bilirubin-derived nanomedicine attenuates the pathological cascade of pulmonary fibrosis.Biomaterials202127512098610.1016/j.biomaterials.2021.12098634175563
    [Google Scholar]
  214. ZhaoY.Z. HuangZ.W. ZhaiY.Y. ShiY. DuC.C. ZhaiJ. XuH.L. XiaoJ. KouL. YaoQ. Polylysine-bilirubin conjugates maintain functional islets and promote M2 macrophage polarization.Acta Biomater.202112217218510.1016/j.actbio.2020.12.04733387663
    [Google Scholar]
  215. HuJ. YangL. YangP. JiangS. LiuX. LiY. Polydopamine free radical scavengers.Biomater. Sci.20208184940495010.1039/D0BM01070G32807998
    [Google Scholar]
  216. BaoX. ZhaoJ. SunJ. HuM. YangX. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease.ACS Nano20181298882889210.1021/acsnano.8b0402230028940
    [Google Scholar]
  217. BattagliniM. MarinoA. CarmignaniA. TapeinosC. CaudaV. AnconaA. GarinoN. VighettoV. La RosaG. SinibaldiE. CiofaniG. Polydopamine nanoparticles as an organic and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation.ACS Appl. Mater. Interfaces20201232357823579810.1021/acsami.0c0549732693584
    [Google Scholar]
  218. FuY. ZhangJ. WangY. LiJ. BaoJ. XuX. ZhangC. LiY. WuH. GuZ. Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing.Carbohydr. Polym.202125711759810.1016/j.carbpol.2020.11759833541635
    [Google Scholar]
  219. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  220. LombardoD. KiselevM.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application.Pharmaceutics202214354310.3390/pharmaceutics1403054335335920
    [Google Scholar]
  221. XuY. LiuH. SongL. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: A review.J. Nanobiotechnology202018114510.1186/s12951‑020‑00703‑533076918
    [Google Scholar]
  222. DekhuijzenP.N.R. BatsiouM. BjermerL. Bosnic-AnticevichS. ChrystynH. PapiA. Rodríguez-RoisinR. FletcherM. WoodL. CifraA. SorianoJ.B. PriceD.B. Incidence of oral thrush in patients with COPD prescribed inhaled corticosteroids: Effect of drug, dose, and device.Respir. Med.2016120546310.1016/j.rmed.2016.09.01527817816
    [Google Scholar]
  223. HoeselL.M. FlierlM.A. NiederbichlerA.D. RittirschD. McClintockS.D. ReubenJ.S. PiankoM.J. StoneW. YangH. SmithM. SarmaJ.V. WardP.A. Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury.Antioxid. Redox Signal.200810596397210.1089/ars.2007.187818257742
    [Google Scholar]
  224. ManconiM. MancaM.L. ValentiD. EscribanoE. HillaireauH. FaddaA.M. FattalE. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin.Int. J. Pharm.2017525120321010.1016/j.ijpharm.2017.04.04428438698
    [Google Scholar]
  225. SukJ.S. XuQ. KimN. HanesJ. EnsignL.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.2016992810.1016/j.addr.2015.09.012
    [Google Scholar]
  226. LuH. ZhangS. WangJ. ChenQ. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems.Front. Nutr.2021878383110.3389/fnut.2021.78383134926557
    [Google Scholar]
  227. CelardoI. PedersenJ.Z. TraversaE. GhibelliL. Pharmacological potential of cerium oxide nanoparticles.Nanoscale2011341411142010.1039/c0nr00875c21369578
    [Google Scholar]
  228. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  229. FornagueraC. García-CelmaM. Personalized Nanomedicine: A Revolution at the Nanoscale.J. Pers. Med.2017741210.3390/jpm704001229023366
    [Google Scholar]
  230. KattoorA.J. PothineniN.V.K. PalagiriD. MehtaJ.L. Oxidative stress in atherosclerosis.Curr. Atheroscler. Rep.201719114210.1007/s11883‑017‑0678‑628921056
    [Google Scholar]
  231. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.04025942353
    [Google Scholar]
  232. GoodmanM. BostickR.M. KucukO. JonesD.P. Clinical trials of antioxidants as cancer prevention agents: Past, present, and future.Free Radic. Biol. Med.20115151068108410.1016/j.freeradbiomed.2011.05.01821683786
    [Google Scholar]
  233. KarakotiA. SinghS. DowdingJ.M. SealS. SelfW.T. Redox-active radical scavenging nanomaterials.Chem. Soc. Rev.201039114422443210.1039/b919677n20717560
    [Google Scholar]
  234. CiofaniG. GenchiG.G. LiakosI. CappelloV. GemmiM. AthanassiouA. MazzolaiB. MattoliV. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion.Pharm. Res.20133082133214510.1007/s11095‑013‑1071‑y23661146
    [Google Scholar]
  235. RagelleH. DanhierF. PréatV. LangerR. AndersonD.G. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures.Expert Opin. Drug Deliv.201714785186410.1080/17425247.2016.124418727730820
    [Google Scholar]
  236. SainzV. ConniotJ. MatosA.I. PeresC. ZupanǒiǒE. MouraL. SilvaL.C. FlorindoH.F. GasparR.S. Regulatory aspects on nanomedicines.Biochem. Biophys. Res. Commun.2015468350451010.1016/j.bbrc.2015.08.02326260323
    [Google Scholar]
  237. BostanH.B. RezaeeR. ValokalaM.G. TsarouhasK. GolokhvastK. TsatsakisA.M. KarimiG. Cardiotoxicity of nano-particles.Life Sci.2016165919910.1016/j.lfs.2016.09.01727686832
    [Google Scholar]
  238. KimK.S. SongC.G. KangP.M. Targeting oxidative stress using nanoparticles as a theranostic strategy for cardiovascular diseases.Antioxid. Redox Signal.201930573374610.1089/ars.2017.742829228781
    [Google Scholar]
  239. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  240. AgrahariV. HiremathP. Challenges associated and approaches for successful translation of nanomedicines into commercial products.Nanomedicine (Lond.)201712881982310.2217/nnm‑2017‑003928338401
    [Google Scholar]
  241. LooC.Y. SiewE.L. YoungP.M. TrainiD. LeeW.H. Toxicity of curcumin nanoparticles towards alveolar macrophage: Effects of surface charges.Food Chem. Toxicol.202216311297610.1016/j.fct.2022.11297635364129
    [Google Scholar]
  242. LooC.Y. TrainiD. YoungP.M. LeeW.H. Evaluation of the protective effect of curcumin nanoparticles on lung cells (Beas-2B) treated with paclitaxel nanoparticles: Targeting oxidative stress.J. Drug Deliv. Sci. Technol.202510510665710.1016/j.jddst.2025.106657
    [Google Scholar]
  243. BansalM. KumarA. MalineeM. SharmaT.K. Nanomedicine: Diagnosis, treatment, and potential prospects.Nanoscience in Medicine20201297331
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002389930250903070042
Loading
/content/journals/cdm/10.2174/0113892002389930250903070042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test