Skip to content
2000
image of Emerging Approaches in Data-Driven Drug Discovery for Rare Diseases

Abstract

Rare diseases present unique challenges in drug discovery and development, primarily due to small patient populations, limited clinical data, and significant variability in disease mechanisms. The primary objective of this review is to examine the integration of pharmacokinetics (PK) and drug metabolism data into data-driven drug discovery approaches, particularly in the context of rare diseases. By incorporating advanced computational techniques such as Machine Learning (ML) and Artificial Intelligence (AI), researchers can better predict PK parameters, optimize drug candidates, and identify personalized therapeutic strategies. AI integration with genomic and proteomic data reveals previously unidentifiable pathways, fostering collaboration among researchers, clinicians, and pharmaceutical companies. This interdisciplinary approach reduces development timelines and costs while enhancing the precision and effectiveness of therapies for patients with rare diseases. This review highlights the critical role of absorption, distribution, metabolism, and excretion (ADME) in understanding drug behavior in genetically diverse populations, thereby enabling the development of tailored treatments for patients with rare diseases. Additionally, it evaluates the opportunities and limitations of integrating PK/PD (pharmacodynamics) models with multi-omics data to improve drug discovery efficiency. Key examples of enzyme-drug interactions, metabolic pathway analysis, and AI-based PK simulations are discussed to illustrate advancements in predictive accuracy and drug safety. This review concludes by emphasizing the transformative potential of integrating PK and metabolism studies into the broader framework of data-driven drug discovery, ultimately accelerating therapeutic innovation and addressing unmet medical needs in rare diseases.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002383220250729100138
2025-08-25
2025-11-05
Loading full text...

Full text loading...

References

  1. Hu F. Yang H. Qiu L. Wei S. Hu H. Zhou H. Spatial structure and organization of the medical device industry urban network in China: Evidence from specialized, refined, distinctive, and innovative firms. Front. Public Health 2025 13 1518327 10.3389/fpubh.2025.1518327 40161027
    [Google Scholar]
  2. Qiu L. Yu R. Hu F. Zhou H. Hu H. How can China’s medical manufacturing listed firms improve their technological innovation efficiency? An analysis based on a three-stage DEA model and corporate governance configurations. Technol. Forecast. Soc. Change 2023 194 122684 10.1016/j.techfore.2023.122684
    [Google Scholar]
  3. Xing Y. Yang K. Lu A. Mackie K. Guo F. Sensors and devices guided by artificial intelligence for personalized pain medicine. Cy-borg Bionic Syst 2024 5 0160 10.34133/cbsystems.0160 39282019
    [Google Scholar]
  4. Abdallah S. Sharifa M.I.Kh. Almadhoun M.K. Khawar M.M. Shaikh U. Balabel K.M. Saleh I. Manzoor A. Mandal A.K. Ekomwereren O. Khine W.M. Oyelaja O.T. The impact of artificial intelligence on optimizing diagnosis and treatment plans for rare genetic disorders. Cureus 2023 15 10 e46860 10.7759/cureus.46860 37954711
    [Google Scholar]
  5. Decherchi S. Pedrini E. Mordenti M. Cavalli A. Sangiorgi L. Opportunities and challenges for machine learning in rare diseases. Front. Med. 2021 8 747612 10.3389/fmed.2021.747612 34676229
    [Google Scholar]
  6. Hasani N. Farhadi F. Morris M.A. Nikpanah M. Rahmim A. Xu Y. Pariser A. Collins M.T. Summers R.M. Jones E. Siegel E. Saboury B. Artificial intelligence in medical imaging and its impact on the rare disease community: Threats, challenges and opportunities. PET Clin. 2022 17 1 13 29 10.1016/j.cpet.2021.09.009 34809862
    [Google Scholar]
  7. Hirsch M.C. Ronicke S. Krusche M. Wagner A.D. Rare diseases 2030: How augmented AI will support diagnosis and treatment of rare diseases in the future. Ann. Rheum. Dis. 2020 79 6 740 743 10.1136/annrheumdis‑2020‑217125 32209541
    [Google Scholar]
  8. Faviez C. Chen X. Garcelon N. Neuraz A. Knebelmann B. Salomon R. Lyonnet S. Saunier S. Burgun A. Diagnosis support systems for rare diseases: A scoping review. Orphanet J. Rare Dis. 2020 15 1 94 10.1186/s13023‑020‑01374‑z 32299466
    [Google Scholar]
  9. Lee J. Liu C. Kim J. Chen Z. Sun Y. Rogers J.R. Chung W.K. Weng C. Deep learning for rare disease: A scoping review. J. Biomed. Inform. 2022 135 104227 10.1016/j.jbi.2022.104227 36257483
    [Google Scholar]
  10. Siddiq M. Revolutionizing drug discovery; Transformative role of machine learning. BULLET: Jurnal Multidisiplin Ilmu 2022 1 02 162 170
    [Google Scholar]
  11. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  12. Boniolo F. Dorigatti E. Ohnmacht A.J. Saur D. Schubert B. Menden M.P. Artificial intelligence in early drug discovery enabling precision medicine. Expert Opin. Drug Discov. 2021 16 9 991 1007 10.1080/17460441.2021.1918096 34075855
    [Google Scholar]
  13. Davenport T. Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019 6 2 94 98 10.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  14. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  15. Liu G. Catacutan D.B. Rathod K. Swanson K. Jin W. Mohammed J.C. Chiappino-Pepe A. Syed S.A. Fragis M. Rachwalski K. Magolan J. Surette M.G. Coombes B.K. Jaakkola T. Barzilay R. Collins J.J. Stokes J.M. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 2023 19 11 1342 1350 10.1038/s41589‑023‑01349‑8 37231267
    [Google Scholar]
  16. Wong F. Zheng E.J. Valeri J.A. Donghia N.M. Anahtar M.N. Omori S. Li A. Cubillos-Ruiz A. Krishnan A. Jin W. Manson A.L. Friedrichs J. Helbig R. Hajian B. Fiejtek D.K. Wagner F.F. Soutter H.H. Earl A.M. Stokes J.M. Renner L.D. Collins J.J. Discovery of a structural class of antibiotics with explainable deep learning. Nature 2024 626 7997 177 185 10.1038/s41586‑023‑06887‑8 38123686
    [Google Scholar]
  17. Hasselgren C. Oprea T.I. Artificial intelligence for drug discovery: Are we there yet? Annu. Rev. Pharmacol. Toxicol. 2024 64 527 550 10.1146/annurev‑pharmtox‑040323‑040828 37738505
    [Google Scholar]
  18. Alizadehsani R. Oyelere S.S. Hussain S. Calixto R.R. de Albuquerque V.H.C. Explainable artificial intelligence for drug discovery and development—A comprehensive survey. arXiv 2023 arXiv:2309.12177v2. 10.48550/arXiv.2309.12177
    [Google Scholar]
  19. Doron G. Genway S. Roberts M. Jasti S. New Horizons: Pioneering Pharmaceutical R&D with Generative AI from lab to the clinic—An industry perspective arXiv 2023 arXiv:2312.12482v1 10.48550/arXiv.2312.12482
    [Google Scholar]
  20. Gupta A. CardiGraphormer: Unveiling the power of self-supervised learning in revolutionizing drug discovery arXiv 2023 arXiv:2307.00859v4 10.48550/arXiv.2307.00859
    [Google Scholar]
  21. Tambuyzer E. Vandendriessche B. Austin C.P. Brooks P.J. Larsson K. Miller Needleman K.I. Valentine J. Davies K. Groft S.C. Preti R. Oprea T.I. Prunotto M. Therapies for rare diseases: Therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 2020 19 2 93 111 10.1038/s41573‑019‑0049‑9 31836861
    [Google Scholar]
  22. Liu J. Barrett J.S. Leonardi E.T. Lee L. Roychoudhury S. Chen Y. Trifillis P. Natural history and real‐world data in rare diseases: Applications, limitations, and future perspectives. J. Clin. Pharmacol 2022 62 (S2) S38 S55 (Suppl.2) 10.1002/jcph.2134 36461748
    [Google Scholar]
  23. Peng J. Jury E.C. Dönnes P. Ciurtin C. Machine learning techniques for personalised medicine approaches in immune-mediated chronic inflammatory diseases: Applications and challenges. Front. Pharmacol. 2021 12 720694 10.3389/fphar.2021.720694 34658859
    [Google Scholar]
  24. Quazi S. RETRACTED ARTICLE: Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022 39 8 120 10.1007/s12032‑022‑01711‑1 35704152
    [Google Scholar]
  25. Schaefer J. Lehne M. Schepers J. Prasser F. Thun S. The use of machine learning in rare diseases: A scoping review. Orphanet J. Rare Dis. 2020 15 1 145 10.1186/s13023‑020‑01424‑6
    [Google Scholar]
  26. Kumar Tripathi M. Nath A. Singh P. Evolving scenario of big data and artificial intelligence (AI) in drug discovery. Mol. Divers. 2021 25 3 1439 1460 10.1007/s11030‑021‑10256‑w 34159484
    [Google Scholar]
  27. Wojtara M. Rana E. Rahman T. Khanna P. Singh H. Artificial intelligence in rare disease diagnosis and treatment. Clin. Transl. Sci. 2023 16 11 2106 2111 10.1111/cts.13619
    [Google Scholar]
  28. Stankevičiūtė K. Woillard J-B. Peck R.W. Marquet P. van der Schaar M. Bridging the worlds of pharmacometrics and machine learning. Clin. Pharmacokinet. 2023 62 11 1551 1565 10.1007/s40262‑023‑01310‑x 37803104
    [Google Scholar]
  29. Brasil S. Neves C.J. Rijoff T. Falcão M. Valadão G. Videira P.A. dos Reis Ferreira V. Artificial intelligence in epigenetic studies: Shedding light on rare diseases. Front. Mol. Biosci. 2021 8 648012 10.3389/fmolb.2021.648012 34026829
    [Google Scholar]
  30. Tiwari P.C. Pal R. Chaudhary M.J. Nath R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Dev. Res. 2023 84 8 1652 1663 10.1002/ddr.22115 37712494
    [Google Scholar]
  31. Hallowell N. Badger S. McKay F. Kerasidou A. Nellåker C. Democratising or disrupting diagnosis? Ethical issues raised by the use of AI tools for rare disease diagnosis. SSM Qual Res. Health. 2023 3 100240 10.1016/j.ssmqr.2023.100240 37426704
    [Google Scholar]
  32. Denton N. Mulberg A.E. Molloy M. Charleston S. Fajgenbaum D.C. Marsh E.D. Howard P. Sharing is caring: A call for a new era of rare disease research and development. Orphanet J. Rare Dis. 2022 17 1 389 10.1186/s13023‑022‑02529‑w 36303170
    [Google Scholar]
  33. Sahu M. Gupta R. Ambasta R.K. Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog. Mol. Biol. Transl. Sci. 2022 190 1 57 100 10.1016/bs.pmbts.2022.03.002 36008002
    [Google Scholar]
  34. Gangwal A. Ansari A. Ahmad I. Azad A.K. Wan Sulaiman W.M.A. Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review. Comput. Biol. Med. 2024 179 108734 10.1016/j.compbiomed.2024.108734 38964243
    [Google Scholar]
  35. Siramshetty V.B. Xu X. Shah P. Artificial intelligence in ADME property prediction. Methods Mol. Biol. 2024 2714 307 327 10.1007/978‑1‑0716‑3441‑7_17 37676606
    [Google Scholar]
  36. Du B-X. Long Y. Li X. Wu M. Shi J-Y. CMMS-GCL: Cross-modality metabolic stability prediction with graph contrastive learn-ing Bioinformatics 2023 39 (8) btad503.Aug; 10.1093/bioinformatics/btad503
    [Google Scholar]
  37. Pillai N. Abos A. Teutonico D. Mavroudis P.D. Machine learning framework to predict pharmacokinetic profile of small molecule drugs based on chemical structure. Clin. Transl. Sci. 2024 17 5 e13824 10.1111/cts.13824 38752574
    [Google Scholar]
  38. Subramanian M. Wojtusciszyn A. Favre L. Boughorbel S. Shan J. Letaief K.B. Pitteloud N. Chouchane L. Precision medicine in the era of artificial intelligence: Implications in chronic disease management. J. Transl. Med. 2020 18 1 472 10.1186/s12967‑020‑02658‑5 33298113
    [Google Scholar]
  39. Nadella G.S. Satish S. Meduri K. Meduri S.S. A systematic literature review of advancements, challenges and future directions of AI and ML in healthcare. Int. J. Mach Learn. Sustain. Dev. 2023 5 3 115 130
    [Google Scholar]
  40. Roessler H.I. Knoers N.V.A.M. van Haelst M.M. van Haaften G. Drug repurposing for rare diseases. Trends Pharmacol. Sci. 2021 42 4 255 267 10.1016/j.tips.2021.01.003 33563480
    [Google Scholar]
  41. Vatansever S. Schlessinger A. Wacker D. Kaniskan H.Ü. Jin J. Zhou M.M. Zhang B. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Med. Res. Rev. 2021 41 3 1427 1473 10.1002/med.21764 33295676
    [Google Scholar]
  42. Li Y. Wang Z. Li Y. Du J. Gao X. Li Y. Lai L. A combination of machine learning and pbpk modeling approach for pharmacokinetics prediction of small molecules in humans. Pharm. Res. 2024 41 7 1369 1379 10.1007/s11095‑024‑03725‑y
    [Google Scholar]
  43. Feng X. Ma Z. Yu C. Xin R. MRNDR: Multihead attention-based recommendation network for drug repurposing. J. Chem. Inf. Model. 2024 64 7 2654 2669 10.1021/acs.jcim.3c01726 38373300
    [Google Scholar]
  44. Zhou Y. Li Q. Pan R. Wang Q. Zhu X. Yuan C. Cai F. Gao Y. Cui Y. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy 2022 77 2 469 482 10.1111/all.15111 34570913
    [Google Scholar]
  45. Zhou Y. Li L. Yu Z. Gu X. Pan R. Li Q. Yuan C. Cai F. Zhu Y. Cui Y. Dermatophagoides pteronyssinusallergen Der p 22: Cloning, expression, IgE ‐binding in asthmatic children, and immunogenicity. Pediatr. Allergy Immunol. 2022 33 8 e13835 10.1111/pai.13835 36003049
    [Google Scholar]
  46. Li J.P.O. Liu H. Ting D.S.J. Jeon S. Chan R.V.P. Kim J.E. Sim D.A. Thomas P.B.M. Lin H. Chen Y. Sakomoto T. Loewenstein A. Lam D.S.C. Pasquale L.R. Wong T.Y. Lam L.A. Ting D.S.W. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog. Retin. Eye Res. 2021 82 100900 10.1016/j.preteyeres.2020.100900 32898686
    [Google Scholar]
  47. de la Lastra J.M.P. Wardell S.J.T. Pal T. de la Fuente-Nunez C. Pletzer D. From data to decisions: Leveraging artificial intelligence and machine learning in combating antimicrobial resistance – A comprehensive review. J. Med. Syst. 2024 48 1 71 10.1007/s10916‑024‑02089‑5 39088151
    [Google Scholar]
  48. Javaid M. Haleem A. Pratap Singh R. Suman R. Rab S. Significance of machine learning in healthcare: Features, pillars and applications. Int. J. Intell. Netw 2022 3 58 73 10.1016/j.ijin.2022.05.002
    [Google Scholar]
  49. Fan Z. Yan Z. Wen S. Deep learning and artificial intelligence in sustainability: A review of SDGs, renewable energy, and environmental health. Sustainability 2023 15 18 13493 10.3390/su151813493
    [Google Scholar]
  50. Tucker A. Wang Z. Rotalinti Y. Myles P. Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. NPJ Digit. Med. 2020 3 1 147 10.1038/s41746‑020‑00353‑9 33299100
    [Google Scholar]
  51. Relling M.V. Klein T.E. Gammal R.S. Whirl-Carrillo M. Hoffman J.M. Caudle K.E. The clinical pharmacogenetics implementation consortium: 10 years later. Clin. Pharmacol. Ther. 2020 107 1 171 175 10.1002/cpt.1651 31562822
    [Google Scholar]
  52. Chenoweth M.J. Giacomini K.M. Pirmohamed M. Hill S.L. van Schaik R.H.N. Schwab M. Shuldiner A.R. Relling M.V. Tyndale R.F. Global Pharmacogenomics Within Precision Medicine: Challenges and Opportunities. Clin. Pharmacol. Ther. 2020 107 1 57 61 10.1002/cpt.1664 31696505
    [Google Scholar]
  53. Zhao Chen Kang Jun Li Yuwen Wang Yan Tang Xiaoying Jiang, Zhenqi Carbon-based stimuli-responsive nanomaterials: Classi-fication and application Cyborg Bionic Syst 2023 4 0022 10.34133/cbsystems.0022
    [Google Scholar]
  54. Ma Z. Chen Z. Zheng X. Wang T. You Y. Zou S. Wang Y. A biological immunity-based neuro prototype for few-shot anomaly detection with character embedding. Cyborg Bionic Syst 2024 5 0086 10.34133/cbsystems.0086 38234315
    [Google Scholar]
  55. Wang Y. Li H. Fan R. Lv H. Hua S. Xie H. Tang T. Luo J. Xia Z. The effects of ferulic acid on the pharmacokinetics of warfarin in rats after biliary drainage. Drug Des. Devel. Ther. 2016 10 2173 2180 10.2147/DDDT.S107917 27462142
    [Google Scholar]
  56. Setty S.T. Scott-Boyer M.P. Cuppens T. Droit A. New developments and possibilities in reanalysis and reinterpretation of whole exome sequencing datasets for unsolved rare diseases using machine learning approaches. Int. J. Mol. Sci. 2022 23 12 6792 10.3390/ijms23126792 35743235
    [Google Scholar]
  57. Zhao X. Liu T. He Y.N. Fang W. Li X. Jiang W. Comparison of the efficacy and safety of low-dose antihypertensive combinations in patients with hypertension: Protocol for a systematic review and network meta-analysis. BMJ Open 2024 14 10 e086323 10.1136/bmjopen‑2024‑086323 39448211
    [Google Scholar]
  58. Feng C. Wang Y. Xu J. Zheng Y. Zhou W. Wang Y. Luo C. Precisely tailoring molecular structure of doxorubicin prodrugs to enable stable nanoassembly, rapid activation, and potent antitumor effect. Pharmaceutics 2024 16 12 1582 10.3390/pharmaceutics16121582 39771561
    [Google Scholar]
  59. Visibelli A. Roncaglia B. Spiga O. Santucci A. The impact of artificial intelligence in the odyssey of rare diseases. Biomedicines 2023 11 3 887 10.3390/biomedicines11030887 36979866
    [Google Scholar]
  60. Souza Í.P. Androlage J.S. Bellato R. A qualitative approach to rare genetic diseases: An integrative review of the national and international literature. Cien. Saude Colet. 2022 24 10 3683 3700 10.1590/1413‑812320182410.17822019 31576998
    [Google Scholar]
  61. Jeziorski K. Olszewski R. Artificial intelligence in oncology. Appl. Sci. (Basel) 2025 15 1 269 10.3390/app15010269
    [Google Scholar]
  62. Donadio D. Terry S.F. The application of artificial intelligence in the diagnosis of cancer and rare genetic diseases. Genet. Test. Mol. Biomarkers 2023 27 7 203 204 10.1089/gtmb.2023.29074.persp 37471205
    [Google Scholar]
  63. Xu J. Yang P. Xue S. Sharma B. Sanchez-Martin M. Wang F. Beaty K.A. Dehan E. Parikh B. Translating cancer genomics into precision medicine with artificial intelligence: Applications, challenges and future perspectives. Hum. Genet. 2019 138 2 109 124 10.1007/s00439‑019‑01970‑5 30671672
    [Google Scholar]
  64. Ivanisevic T. Sewduth R.N. Multi-omics integration for the design of novel therapies and the identification of novel biomarkers. Proteomes 2023 11 4 34 10.3390/proteomes11040034 37873876
    [Google Scholar]
  65. Tabor H.K. Goldenberg A. What precision medicine can learn from rare genetic disease research and translation. AMA J. Ethics 2018 20 9 E834 E840 10.1001/amajethics.2018.834 30242814
    [Google Scholar]
  66. Foksinska A. Crowder C.M. Crouse A.B. Henrikson J. Byrd W.E. Rosenblatt G. Patton M.J. He K. Tran-Nguyen T.K. Zheng M. Ramsey S.A. Amin N. Osborne J. Might M. The precision medicine process for treating rare disease using the artificial intelligence tool mediKanren. Front Artif. Intell. 2022 5 910216 10.3389/frai.2022.910216 36248623
    [Google Scholar]
  67. Sebastian A.M. Peter D. Artificial intelligence in cancer research: Trends, challenges and future directions. Life 2022 12 12 1991 10.3390/life12121991 36556356
    [Google Scholar]
  68. Topol E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019 25 1 44 56 10.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  69. Esteva A. Kuprel B. Novoa R.A. Ko J. Swetter S.M. Blau H.M. Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 542 7639 115 118 10.1038/nature21056 28117445
    [Google Scholar]
  70. Gulshan V. Peng L. Coram M. Stumpe M.C. Wu D. Narayanaswamy A. Venugopalan S. Widner K. Madams T. Cuadros J. Kim R. Raman R. Nelson P.C. Mega J.L. Webster D.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016 316 22 2402 2410 10.1001/jama.2016.17216 27898976
    [Google Scholar]
  71. Litjens G. Kooi T. Bejnordi B.E. Setio A.A.A. Ciompi F. Ghafoorian M. van der Laak J.A.W.M. van Ginneken B. Sánchez C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017 42 60 88 10.1016/j.media.2017.07.005 28778026
    [Google Scholar]
  72. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
  73. Obermeyer Z. Emanuel E.J. Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med. 2016 375 13 1216 1219 10.1056/NEJMp1606181 27682033
    [Google Scholar]
  74. Wright C.F. FitzPatrick D.R. Firth H.V. Paediatric genomics: Diagnosing rare disease in children. Nat. Rev. Genet. 2018 19 5 253 268 10.1038/nrg.2017.116 29398702
    [Google Scholar]
  75. Yang Y. Muzny D.M. Reid J.G. Bainbridge M.N. Willis A. Ward P.A. Braxton A. Beuten J. Xia F. Niu Z. Hardison M. Person R. Bekheirnia M.R. Leduc M.S. Kirby A. Pham P. Scull J. Wang M. Ding Y. Plon S.E. Lupski J.R. Beaudet A.L. Gibbs R.A. Eng C.M. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 2013 369 16 1502 1511 10.1056/NEJMoa1306555 24088041
    [Google Scholar]
  76. Lionel A.C. Costain G. Monfared N. Walker S. Reuter M.S. Hosseini S.M. Thiruvahindrapuram B. Merico D. Jobling R. Nalpathamkalam T. Pellecchia G. Sung W.W.L. Wang Z. Bikangaga P. Boelman C. Carter M.T. Cordeiro D. Cytrynbaum C. Dell S.D. Dhir P. Dowling J.J. Heon E. Hewson S. Hiraki L. Inbar-Feigenberg M. Klatt R. Kronick J. Laxer R.M. Licht C. MacDonald H. Mercimek-Andrews S. Mendoza-Londono R. Piscione T. Schneider R. Schulze A. Silverman E. Siriwardena K. Snead O.C. Sondheimer N. Sutherland J. Vincent A. Wasserman J.D. Weksberg R. Shuman C. Carew C. Szego M.J. Hayeems R.Z. Basran R. Stavropoulos D.J. Ray P.N. Bowdin S. Meyn M.S. Cohn R.D. Scherer S.W. Marshall C.R. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet. Med. 2018 20 4 435 443 10.1038/gim.2017.119 28771251
    [Google Scholar]
  77. Wenger A.M. Guturu H. Bernstein J.A. Bejerano G. Systematic reanalysis of clinical exome data yields additional diagnoses: Implications for providers. Genet. Med. 2017 19 2 209 214 10.1038/gim.2016.88 27441994
    [Google Scholar]
  78. Trujillano D. Bertoli-Avella A.M. Kumar Kandaswamy K. Weiss M.E.R. Köster J. Marais A. Paknia O. Schröder R. Garcia-Aznar J.M. Werber M. Brandau O. Calvo del Castillo M. Baldi C. Wessel K. Kishore S. Nahavandi N. Eyaid W. Al Rifai M.T. Al-Rumayyan A. Al-Twaijri W. Alothaim A. Alhashem A. Al-Sannaa N. Al-Balwi M. Alfadhel M. Rolfs A. Abou Jamra R. Clinical exome sequencing: Results from 2819 samples reflecting 1000 families. Eur. J. Hum. Genet. 2017 25 2 176 182 10.1038/ejhg.2016.146 27848944
    [Google Scholar]
  79. Retterer K. Juusola J. Cho M.T. Vitazka P. Millan F. Gibellini F. Vertino-Bell A. Smaoui N. Neidich J. Monaghan K.G. McKnight D. Bai R. Suchy S. Friedman B. Tahiliani J. Pineda-Alvarez D. Richard G. Brandt T. Haverfield E. Chung W.K. Bale S. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 2016 18 7 696 704 10.1038/gim.2015.148 26633542
    [Google Scholar]
  80. Stark Z. Tan T.Y. Chong B. Brett G.R. Yap P. Walsh M. Yeung A. Peters H. Mordaunt D. Cowie S. Amor D.J. Savarirayan R. McGillivray G. Downie L. Ekert P.G. Theda C. James P.A. Yaplito-Lee J. Ryan M.M. Leventer R.J. Creed E. Macciocca I. Bell K.M. Oshlack A. Sadedin S. Georgeson P. Anderson C. Thorne N. Gaff C. White S.M. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet. Med. 2016 18 11 1090 1096 10.1038/gim.2016.1 26938784
    [Google Scholar]
  81. Smedley D. Smith K.R. Martin A. Thomas E.A. McDonagh E.M. Cipriani V. Ellingford J.M. Arno G. Tucci A. Vandrovcova J. Chan G. Williams H.J. Ratnaike T. Wei W. Stirrups K. Ibanez K. Moutsianas L. Wielscher M. Need A. Barnes M.R. Vestito L. Buchanan J. Wordsworth S. Ashford S. Rehmström K. Li E. Fuller G. Twiss P. Spasic-Boskovic O. Halsall S. Floto R.A. Poole K. Wagner A. Mehta S.G. Gurnell M. Burrows N. James R. Penkett C. Dewhurst E. Gräf S. Mapeta R. Kasanicki M. Haworth A. Savage H. Babcock M. Reese M.G. Bale M. Baple E. Boustred C. Brittain H. de Burca A. Bleda M. Devereau A. Halai D. Haraldsdottir E. Hyder Z. Kasperaviciute D. Patch C. Polychronopoulos D. Matchan A. Sultana R. Ryten M. Tavares A.L.T. Tregidgo C. Turnbull C. Welland M. Wood S. Snow C. Williams E. Leigh S. Foulger R.E. Daugherty L.C. Niblock O. Leong I.U.S. Wright C.F. Davies J. Crichton C. Welch J. Woods K. Abulhoul L. Aurora P. Bockenhauer D. Broomfield A. Cleary M.A. Lam T. Dattani M. Footitt E. Ganesan V. Grunewald S. Compeyrot-Lacassagne S. Muntoni F. Pilkington C. Quinlivan R. Thapar N. Wallis C. Wedderburn L.R. Worth A. Bueser T. Compton C. Deshpande C. Fassihi H. Haque E. Izatt L. Josifova D. Mohammed S. Robert L. Rose S. Ruddy D. Sarkany R. Say G. Shaw A.C. Wolejko A. Habib B. Burns G. Hunter S. Grocock R.J. Humphray S.J. Robinson P.N. Haendel M. Simpson M.A. Banka S. Clayton-Smith J. Douzgou S. Hall G. Thomas H.B. O’Keefe R.T. Michaelides M. Moore A.T. Malka S. Pontikos N. Browning A.C. Straub V. Gorman G.S. Horvath R. Quinton R. Schaefer A.M. Yu-Wai-Man P. Turnbull D.M. McFarland R. Taylor R.W. O’Connor E. Yip J. Newland K. Morris H.R. Polke J. Wood N.W. Campbell C. Camps C. Gibson K. Koelling N. Lester T. Németh A.H. Palles C. Patel S. Roy N.B.A. Sen A. Taylor J. Cacheiro P. Jacobsen J.O. Seaby E.G. Davison V. Chitty L. Douglas A. Naresh K. McMullan D. Ellard S. Temple I.K. Mumford A.D. Wilson G. Beales P. Bitner-Glindzicz M. Black G. Bradley J.R. Brennan P. Burn J. Chinnery P.F. Elliott P. Flinter F. Houlden H. Irving M. Newman W. Rahman S. Sayer J.A. Taylor J.C. Webster A.R. Wilkie A.O.M. Ouwehand W.H. Raymond F.L. Chisholm J. Hill S. Bentley D. Scott R.H. Fowler T. Rendon A. Caulfield M. 100,000 genomes pilot on rare-disease diagnosis in health care — Preliminary report. N. Engl. J. Med. 2021 385 20 1868 1880 10.1056/NEJMoa2035790 34758253
    [Google Scholar]
  82. Jacob H.J. Abrams K. Bick D.P. Brodie K. Dimmock D.P. Farrell M. Genomics in clinical practice: Lessons from the front lines. Sci. Transl. Med. 2018 10 463 eaao0177 10.1126/scitranslmed.3006468 23863829
    [Google Scholar]
  83. Gonzalez-Garay M.L. McGuire A.L. Pereira S. Caskey C.T. Personalized genomic disease risk of volunteers. Proc. Natl. Acad. Sci. USA 2013 110 42 16957 16962 10.1073/pnas.1315934110 24082139
    [Google Scholar]
  84. Wright C.F. McRae J.F. Clayton S. Gallone G. Aitken S. FitzGerald T.W. Jones P. Prigmore E. Rajan D. Lord J. Sifrim A. Kelsell R. Parker M.J. Barrett J.C. Hurles M.E. FitzPatrick D.R. Firth H.V. Making new genetic diagnoses with old data: Iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders. Genet. Med. 2018 20 10 1216 1223 10.1038/gim.2017.246 29323667
    [Google Scholar]
  85. Jamei M. Marciniak S. Edwards D. Wragg K. Feng K. Barnett A. Rostami-Hodjegan A. The Simcyp population based simulator: Architecture, implementation, and quality assurance In Silico Pharmacol 2013 1 9.Jun 3; 10.1186/2193‑9616‑1‑9] 25505654
    [Google Scholar]
  86. Tyzack J.D. Kirchmair J. Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem. Biol. Drug Des. 2019 93 4 377 386 10.1111/cbdd.13445 30471192
    [Google Scholar]
  87. Sjögren E. Thörn H. Tannergren C. In silicomodeling of gastrointestinal drug absorption: Predictive performance of three physiologically based absorption models. Mol. Pharm. 2016 13 6 1763 1778 10.1021/acs.molpharmaceut.5b00861 26926043
    [Google Scholar]
  88. Lelieveld S.H. Reijnders M.R.F. Pfundt R. Yntema H.G. Kamsteeg E.J. de Vries P. de Vries B.B.A. Willemsen M.H. Kleefstra T. Löhner K. Vreeburg M. Stevens S.J.C. van der Burgt I. Bongers E.M.H.F. Stegmann A.P.A. Rump P. Rinne T. Nelen M.R. Veltman J.A. Vissers L.E.L.M. Brunner H.G. Gilissen C. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 2016 19 9 1194 1196 10.1038/nn.4352 27479843
    [Google Scholar]
  89. Rajpurkar P. Irvin J. Ball R.L. Zhu K. Yang B. Mehta H. Duan T. Ding D. Bagul A. Langlotz C.P. Patel B.N. Yeom K.W. Shpanskaya K. Blankenberg F.G. Seekins J. Amrhein T.J. Mong D.A. Halabi S.S. Zucker E.J. Ng A.Y. Lungren M.P. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018 15 11 e1002686 10.1371/journal.pmed.1002686 30457988
    [Google Scholar]
  90. Beam A.L. Kohane I.S. Big data and machine learning in health care. JAMA 2018 319 13 1317 1318 10.1001/jama.2017.18391 29532063
    [Google Scholar]
  91. Kelly C.J. Karthikesalingam A. Suleyman M. Corrado G. King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019 17 1 195 10.1186/s12916‑019‑1426‑2 31665002
    [Google Scholar]
  92. Amann J. Blasimme A. Vayena E. Frey D. Madai V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020 20 1 310 10.1186/s12911‑020‑01332‑6 33256715
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002383220250729100138
Loading
/content/journals/cdm/10.2174/0113892002383220250729100138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test