Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Diabetes mellitus, a widespread and chronic metabolic condition, creates significant challenges for healthcare systems due to complications from inadequate glycemic control, patient non-compliance, and the invasive nature of traditional treatments, including oral medications and insulin injections, which often lead to discomfort, variability in blood glucose levels, and low adherence.

Objective

To explore the potential of Transdermal Drug Delivery Systems (TDDS) as a non-invasive and effective alternative for diabetes management, highlighting their advantages, recent technological advancements, and associated challenges.

Methods

This review examines the role of TDDS in diabetes treatment, with an emphasis on recent innovations, including microneedles, hydrogels, and sonophoresis. The study also discusses the benefits of TDDS in maintaining stable plasma drug levels, reducing first-pass metabolism, and integrating with continuous glucose monitoring systems.

Results

Emerging TDDS technologies improve drug permeability, enhance bioavailability, and offer sustained drug release, potentially addressing limitations of conventional delivery methods. However, barriers such as skin permeability, high manufacturing costs, and patient variability remain significant challenges.

Discussion

Multi-drug patches and microneedle-based systems represent innovative approaches that enhance therapeutic efficacy and patient compliance by enabling painless, targeted, and combination drug delivery. With support from nanotechnology and pharmacogenomics, these platforms are evolving toward personalized medicine, offering optimized dosing and reduced side effects.

Conclusion

TDDS presents a promising alternative for diabetes management by improving patient adherence, ensuring controlled drug release, and reducing discomfort associated with injections. While further research is required to overcome existing limitations, advancements in biomaterials and personalized medicine approaches hold the potential to optimize TDDS for widespread clinical application. This research aims to summarize the advancements and address existing challenges for future development.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002382343250917074945
2025-10-06
2026-02-02
Loading full text...

Full text loading...

References

  1. DzungP.T. TrungN.T. Van KhanhL. ChinhD.D. Van DeD. Van TongH. ToanN.L. Clinical association and diagnostic significance of miRNA-29a and miRNA-147b in type 2 diabetes mellitus.Int. J. Med. Sci.202320101316132510.7150/ijms.8489937786444
    [Google Scholar]
  2. WangB. JiangC. QuY. WangJ. YanC. ZhangX. Nonlinear association between atherogenic index of plasma and chronic kidney disease: A nationwide cross-sectional study.Lipids Health Dis.202423131210.1186/s12944‑024‑02288‑639334373
    [Google Scholar]
  3. MalloneR. EizirikD.L. Presumption of innocence for beta cells: Why are they vulnerable autoimmune targets in type 1 diabetes?Diabetologia202063101999200610.1007/s00125‑020‑05176‑732894310
    [Google Scholar]
  4. AskenasyN. Mechanisms of diabetic autoimmunity: I—the inductive interface between islets and the immune system at onset of inflammation.Immunol. Res.201664236036810.1007/s12026‑015‑8753‑y26639356
    [Google Scholar]
  5. MizukamiH. KudohK. Diversity of pathophysiology in type 2 diabetes shown by islet pathology.J. Diabetes Investig.202213161310.1111/jdi.1367934562302
    [Google Scholar]
  6. LimaJ.E.B.F. MoreiraN.C.S. Sakamoto-HojoE.T. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2022874-87550343710.1016/j.mrgentox.2021.50343735151421
    [Google Scholar]
  7. MłynarskaE. CzarnikW. DzieżaN. JędraszakW. MajchrowiczG. PrusinowskiF. StabrawaM. RyszJ. FranczykB. Type 2 diabetes mellitus: New pathogenetic mechanisms, treatment and the most important complications.Int. J. Mol. Sci.2025263109410.3390/ijms2603109439940862
    [Google Scholar]
  8. RongY. PatelV. KiangT.K.L. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: Physiological, genomic, and drug interactions leading to the prediction of drug effects.Expert Opin. Drug Metab. Toxicol.202117121369140610.1080/17425255.2021.202790635000505
    [Google Scholar]
  9. CrummettL.T. AslamM.H. Diabetes websites lack information on dietary causes, risk factors, and preventions for type 2 diabetes.Front. Public Health202311115902410.3389/fpubh.2023.115902437521964
    [Google Scholar]
  10. AlamS. HasanM.K. NeazS. HussainN. HossainM.F. RahmanT. Diabetes mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management.Diabetology202122365010.3390/diabetology2020004
    [Google Scholar]
  11. DiaM. GomezL. ThibaultH. TessierN. LeonC. ChouabeC. DucreuxS. Gallo-BonaN. TubbsE. BendridiN. ChanonS. LerayA. BelmudesL. CoutéY. KurdiM. OvizeM. RieussetJ. PaillardM. Reduced reticulum–mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy.Basic Res. Cardiol.202011567410.1007/s00395‑020‑00835‑733258101
    [Google Scholar]
  12. AhmadA. KhanM.U. AslaniP. Patient preferences for the treatment of type 2 diabetes in Australia: A discrete choice experiment.J. Diabetes Metab. Disord.202221122924010.1007/s40200‑021‑00962‑535673490
    [Google Scholar]
  13. GalindoR.J. AliM.K. FunniS.A. DodgeA.B. KuraniS.S. ShahN.D. UmpierrezG.E. McCoyR.G. Hypoglycemic and hyperglycemic crises among u.s. adults with diabetes and end-stage kidney disease: Population-based study, 2013–2017.Diabetes Care202245110010710.2337/dc21‑157934740910
    [Google Scholar]
  14. AiharaM. JinnouchiH. YoshidaA. IjimaH. SakuraiY. HayashiT. KoizumiC. KubotaT. UsamiS. YamauchiT. SakataT. KadowakiT. KubotaN. Evaluation of glycated albumin levels in tears and saliva as a marker in patients with diabetes mellitus.Diabetes Res. Clin. Pract.202319911063710.1016/j.diabres.2023.11063736963507
    [Google Scholar]
  15. KalusA. ShinoharaM.M. WangR. BaranJ.D. DongX. KhakpourD. LuJ. HirschI.B. Evaluation of insulin pump infusion sites in type 1 diabetes: The DERMIS Study.Diabetes Care20234691626163210.2337/dc23‑042637450710
    [Google Scholar]
  16. LiuY. YuQ. YeL. YangL. CuiY. A wearable, minimally-invasive, fully electrochemically-controlled feedback minisystem for diabetes management.Lab Chip202323342143610.1039/D2LC00797E36597970
    [Google Scholar]
  17. KoleE. JadhavK. KhanZ. VermaR.K. ChatterjeeA. MujumdarA. NaikJ. Engineered vildagliptin-loaded polymeric nanoparticles via microfluidic and spray drying for enhanced antidiabetic activity.Future J. Pharma. Sci.202410115610.1186/s43094‑024‑00736‑9
    [Google Scholar]
  18. AbbasiM. HeathB. McGinnessL. Advances in metformin‐delivery systems for diabetes and obesity management.Diabetes Obes. Metab.20242693513352910.1111/dom.1575938984380
    [Google Scholar]
  19. McCoyR. Techniques for implementing continuous glucose monitoring in primary care: KEY CGM updates and highlights from the attd 2024 conference. [Podcast]Diabetes Metab. Syndr. Obes.2024173577358310.2147/DMSO.S49164239345824
    [Google Scholar]
  20. LundgrinE.L. KellyC.A. BelliniN. LewisC. RafiE. HatipogluB. Diabetes technology trends: A review of the latest innovations.J. Clin. Endocrinol. Metab.2025110S165S17410.1210/clinem/dgaf03439998918
    [Google Scholar]
  21. ManuP. RogozeaL.M. CerneaS. Pharmacological management of diabetes mellitus: A century of expert opinions in cecil textbook of medicine.Am. J. Ther.2021284e397e41010.1097/MJT.000000000000140134228650
    [Google Scholar]
  22. SudhirP.M. Advances in psychological interventions for lifestyle disorders.Curr. Opin. Psychiatry201730534635110.1097/YCO.000000000000034828682800
    [Google Scholar]
  23. NguyenV. AraP. SimmonsD. OsuagwuU.L. The role of digital health technology interventions in the prevention of type 2 diabetes mellitus: A systematic review.Clin. Med. Insights Endocrinol. Diabetes2024171179551424124641910.1177/1179551424124641938779330
    [Google Scholar]
  24. Szymczak-PajorI. WenclewskaS. ŚliwińskaA. Metabolic action of metformin.Pharmaceuticals202215781010.3390/ph1507081035890109
    [Google Scholar]
  25. LvW. WangX. XuQ. LuW. Mechanisms and characteristics of sulfonylureas and glinides.Curr. Top. Med. Chem.2020201375610.2174/156802662066619122414161731884929
    [Google Scholar]
  26. SajalH. PatilS.M. RajR. ShbeerA.M. AgeelM. RamuR. Computer-Aided screening of phytoconstituents from ocimum tenuiflorum against diabetes mellitus targeting dpp4 inhibition: A combination of molecular docking, molecular dynamics, and pharmacokinetics approaches.Molecules20222716513310.3390/molecules2716513336014373
    [Google Scholar]
  27. KimK. ChoiS.H. Cardiovascular Safety of SGLT2 Inhibitors Compared to DPP4 Inhibitors and Sulfonylureas as the Second-Line of Therapy in T2DM Using Large, Real-World Clinical Data in Korea.Diabetes Metab. J.202145450250410.4093/dmj.2021.015834352987
    [Google Scholar]
  28. MaiseyeuA. DiL. RavodinaA. Barajas-EspinosaA. SakamotoA. ChaplinA. ZhongJ. GaoH. MigneryM. NarulaN. FinnA.V. RajagopalanS. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis.Theranostics20221262741275710.7150/thno.6645635401813
    [Google Scholar]
  29. TilekarK. HessJ.D. UpadhyayN. BiancoA.L. SchweipertM. LaghezzaA. LoiodiceF. Meyer-AlmesF.J. AguileraR.J. LavecchiaA. C S, R. Thiazolidinedione “Magic Bullets” Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects.J. Med. Chem.202164106949697110.1021/acs.jmedchem.1c0049134006099
    [Google Scholar]
  30. AnwarK.R. Badruddeen; Akhtar, J.; Khan, M.I.; Ahmad, M. An outlook on pathological pathways of diabetes and molecular mechanisms of anti-diabetic phytobioactives.Letters in Functional Foods202311e18072321885810.2174/2666939001666230718142652
    [Google Scholar]
  31. MohapatraS. RanjitS. PattnaikG. ParidaP. DuttaS. GhoshG. RathG. KarB. Potential role of indian spices in the management of diabetic complication: A pre-clinical and clinical review.Curr. Rev. Clin. Exp. Pharmacol.202520214015710.2174/012772432833115324091809315740326265
    [Google Scholar]
  32. KaisermanK. JungH. BenabbadI. KargesB. PolakM. RosilioM. 20 Years of insulin lispro in pediatric type 1 diabetes: A review of available evidence.Pediatr. Diabetes2017182819410.1111/pedi.1240127390032
    [Google Scholar]
  33. PreumontV. BuysschaertM. Current status of insulin degludec in type 1 and type 2 diabetes based on randomized and observational trials.Diabetes Metab.2020462838810.1016/j.diabet.2019.04.00731055056
    [Google Scholar]
  34. ChanJ. Cheng-LaiA. Inhaled Insulin.Cardiol. Rev.201725314014610.1097/CRD.000000000000014328379903
    [Google Scholar]
  35. HuangQ. ZengY. QiuY. ZouJ. LiF. LiuX. Nezamzadeh-EjhiehA. SongH. LiuJ. Applications and prospects of new transdermal drug delivery system based on metal-organic frameworks for diabetic wound healing.Dyes Pigments202422211186510.1016/j.dyepig.2023.111865
    [Google Scholar]
  36. SchaferN. BalwierzR. BiernatP. Ochędzan-SiodłakW. LipokJ. Natural ingredients of transdermal drug delivery systems as permeation enhancers of active substances through the Stratum Corneum.Mol. Pharm.20232073278329710.1021/acs.molpharmaceut.3c0012637279070
    [Google Scholar]
  37. DeaconB.N. PiasentinN. CaiQ. ChenT. LianG. An examination of published datasets of skin permeability and partition coefficients.Toxicol. In Vitro20239310570210.1016/j.tiv.2023.10570237769857
    [Google Scholar]
  38. NaserY.A. TekkoI.A. VoraL.K. PengK. AnjaniQ.K. GreerB. ElliottC. McCarthyH.O. DonnellyR.F. Hydrogel-forming microarray patches with solid dispersion reservoirs for transdermal long-acting microdepot delivery of a hydrophobic drug.J. Control. Release202335641643310.1016/j.jconrel.2023.03.00336878320
    [Google Scholar]
  39. KirtaniaR. ParvinR. BarmanS. ChakrabortyS. DasL. GhosalK. A comprehensive review on management and treatment of arthritis specially emphasizing treatment with transdermal patch.Curr. Indian Sci.20231e2210299X27601510.2174/012210299X276015231102052904
    [Google Scholar]
  40. ChenY. AnQ. TengK. ZhangY. ZhaoY. Latest development and versatile applications of highly integrating drug delivery patch.Eur. Polym. J.202217011116410.1016/j.eurpolymj.2022.111164
    [Google Scholar]
  41. HermanA. HermanA.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review.J. Pharm. Pharmacol.201567447348510.1111/jphp.1233425557808
    [Google Scholar]
  42. LeeI.C. LinW.M. ShuJ.C. TsaiS.W. ChenC.H. TsaiM.T. Formulation of two‐layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice.J. Biomed. Mater. Res. A20171051849310.1002/jbm.a.3586927539509
    [Google Scholar]
  43. AungN.N. NgawhirunpatT. RojanarataT. PatrojanasophonP. PamornpathomkulB. OpanasopitP. Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles.Int. J. Pharm.202058611950810.1016/j.ijpharm.2020.11950832512227
    [Google Scholar]
  44. JinM. JeonW.J. LeeH. JungM. KimH.E. YooH. WonJ.H. KimJ.C. ParkJ.H. YangM.J. LeeH.K. ChoC.W. Preparation and evaluation of rapid disintegrating formulation from coated microneedle.Drug Deliv. Transl. Res.202212241542510.1007/s13346‑021‑01046‑w34494223
    [Google Scholar]
  45. PutriH.E. UtamiR.N. Aliyah; Wahyudin, E.; Oktaviani, W.W.; Mudjahid, M.; Permana, A.D. Dissolving microneedle formulation of ceftriaxone: Effect of polymer concentrations on characterisation and Ex Vivo Permeation Study.J. Pharm. Innov.20221741176118810.1007/s12247‑021‑09593‑y
    [Google Scholar]
  46. Al-NimryS.S. AlkilaniA.Z. Alda’ajehN.A. Transdermal drug delivery of rizatriptan using microneedles array patch: Preparation, characterization and ex-vivo/in-vivo study.Pharm. Dev. Technol.202429777678910.1080/10837450.2024.239321839159078
    [Google Scholar]
  47. DardanoP. De MartinoS. BattistiM. MirandaB. ReaI. De StefanoL. One-Shot fabrication of polymeric hollow microneedles by standard photolithography.Polymers202113452010.3390/polym1304052033572383
    [Google Scholar]
  48. AlbadrA.A. TekkoI.A. VoraL.K. AliA.A. LavertyG. DonnellyR.F. ThakurR.R.S. Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections.Drug Deliv. Transl. Res.202212493194310.1007/s13346‑021‑01032‑234302273
    [Google Scholar]
  49. ChoupaniA. TemucinE.S. CiftciE. BakanF. CamicB.T. OzkocG. SezenM. KorkusuzP. KorkusuzF. BedizB. Design of poly(vinyl pyrrolidone) and poly(ethylene glycol) microneedle arrays for delivering glycosaminoglycan, chondroitin sulfate, and hyaluronic acid.J. Biomater. Sci. Polym. Ed.2025361648510.1080/09205063.2024.239291439264737
    [Google Scholar]
  50. LimS.H. KathuriaH. AmirM.H.B. ZhangX. DuongH.T.T. HoP.C.L. KangL. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide.J. Control. Release202132990791810.1016/j.jconrel.2020.10.02133068646
    [Google Scholar]
  51. MaratheD. BhuvanashreeV.S. MehtaC.H. T, A.; Nayak, U.Y. Low‐Frequency Sonophoresis: A promising strategy for enhanced transdermal delivery.Adv. Pharmacol. Pharm. Sci.202420241124745010.1155/2024/124745038938593
    [Google Scholar]
  52. LiS. XuJ. LiR. WangY. ZhangM. LiJ. YinS. LiuG. ZhangL. LiB. GuQ. SuY. Stretchable electronic facial masks for sonophoresis.ACS Nano20221645961597410.1021/acsnano.1c1118135363481
    [Google Scholar]
  53. AmmarH.O. MohamedM.I. TadrosM.I. FoulyA.A. High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: Ex-vivo and in-vivo characterization studies.J. Pharm. Investig.202050661362410.1007/s40005‑020‑00491‑y
    [Google Scholar]
  54. XieX. KurashinaY. MatsuiM. NomotoT. ItohM. OkanoH.J. NakamuraK. NishiyamaN. KitamotoY. Transdermal delivery of bFGF with sonophoresis facilitated by chitosan nanocarriers.J. Drug Deliv. Sci. Technol.20227510367510.1016/j.jddst.2022.103675
    [Google Scholar]
  55. LiB. HuangG. MaZ. QinS. Ultrasound-assisted transdermal delivery of alendronate for the treatment of osteoporosis.Acta Biochim. Pol.202067217317910.18388/abp.2020_516232558528
    [Google Scholar]
  56. RamkanthS. AnithaP. GayathriR. MohanS. BabuD. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension.Eur. J. Pharm. Sci.202116210581110.1016/j.ejps.2021.10581133757828
    [Google Scholar]
  57. HalderJ. RathG. RaiV.K. Cyclosporine coated microneedle for transcutaneous delivery: Characterization, in vitro evaluation, and in vivo anti-psoriatic efficacy against IMQ-induced psoriasis.J. Drug Deliv. Sci. Technol.20227310345010.1016/j.jddst.2022.103450
    [Google Scholar]
  58. ParkD. WonJ. LeeG. LeeY. KimC.W. SeoJ. Sonophoresis with ultrasound‐responsive liquid‐core nuclei for transdermal drug delivery.Skin Res. Technol.202228229129810.1111/srt.1312935034386
    [Google Scholar]
  59. AhsanA. TianW.X. FarooqM.A. KhanD.H. An overview of hydrogels and their role in transdermal drug delivery.Int. J. Polym. Mater.202170857458410.1080/00914037.2020.1740989
    [Google Scholar]
  60. BahmaniS. KhajaviR. EhsaniM. RahimiM.K. KalaeeM.R. A development of a gelatin and sodium carboxymethyl cellulose hydrogel system for dual-release transdermal delivery of lidocaine hydrochloride.Int. J. Biol. Macromol.2025284Pt 213803410.1016/j.ijbiomac.2024.13803439613075
    [Google Scholar]
  61. PatilS.B. InamdarS.Z. ReddyK.R. RaghuA.V. AkamanchiK.G. InamadarA.C. DasK.K. KulkarniR.V. Functionally tailored electro-sensitive poly(acrylamide)-g-pectin copolymer hydrogel for transdermal drug delivery application: Synthesis, characterization, in-vitro and ex-vivo evaluation.Drug Deliv. Lett.202010318519610.2174/2210303110666200206114632
    [Google Scholar]
  62. PanthiV.K. ImranM. ChaudharyA. PaudelK.R. MohammedY. The significance of quercetin-loaded advanced nanoformulations for the management of diabetic wounds.Nanomedicine (Lond.)202318439141110.2217/nnm‑2022‑028137140389
    [Google Scholar]
  63. ZhangL. HuangT. BiJ. ZhengY. LuC. HuiQ. WangX. LinX. Long-Term Toxicity Study of Topical Administration of a Highly-Stable rh-aFGF Carbomer 940 Hydrogel in a Rabbit Skin Wound Model.Front. Pharmacol.2020115810.3389/fphar.2020.0005832153396
    [Google Scholar]
  64. HouX. LiJ. HongY. RuanH. LongM. FengN. ZhangY. Advances and prospects for hydrogel-forming microneedles in transdermal drug delivery.Biomedicines2023118211910.3390/biomedicines1108211937626616
    [Google Scholar]
  65. KshirsagarS.M. ViswaroopanN. GhoshM. JunaidM.S.A. HaqueS. KhanJ. MuzaffarS. SrivastavaR.K. AtharM. BangaA.K. Development of 4-phenylbutyric acid microsponge gel formulations for the treatment of lewisite-mediated skin injury.Drug Deliv. Transl. Res.202515263865410.1007/s13346‑024‑01620‑y38802678
    [Google Scholar]
  66. ZhengY. YeR. GongX. YangJ. LiuB. XuY. NieG. XieX. JiangL. Iontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules.Microsyst. Nanoeng.2023913510.1038/s41378‑023‑00515‑136987502
    [Google Scholar]
  67. SivadasanD. MadkhaliO.A. The design features, quality by design approach, characterization, therapeutic applications, and clinical considerations of transdermal drug delivery systems—a comprehensive review.Pharmaceuticals20241710134610.3390/ph1710134639458987
    [Google Scholar]
  68. HuJ. AnY. WangW. YangJ. NiuW. JiangX. LiK. JiangC. YeJ. Enhanced transdermal delivery of pioglitazone hydrochloride via conductive hydrogel microneedles combined with iontophoresis.Int. J. Pharm. X2025910031710.1016/j.ijpx.2025.10031740026644
    [Google Scholar]
  69. NoorA.M. ZakariaZ. JohariS. SabaniN. WahabY. ManafA.A. Numerical simulation of transdermal iontophoretic drug delivery system.J. Phys. Conf. Ser.20212071101202610.1088/1742‑6596/2071/1/012026
    [Google Scholar]
  70. BakshiP. VoraD. HemmadyK. BangaA.K. Iontophoretic skin delivery systems: Success and failures.Int. J. Pharm.202058611958410.1016/j.ijpharm.2020.11958432603836
    [Google Scholar]
  71. ArshadM.S. HussainS. ZafarS. RanaS.J. AhmadN. JalilN.A. AhmadZ. Improved transdermal delivery of rabies vaccine using iontophoresis coupled microneedle approach.Pharm. Res.20234082039204910.1007/s11095‑023‑03521‑037186072
    [Google Scholar]
  72. ItaK. Transdermal iontophoretic drug delivery: Advances and challenges.J. Drug Target.201624538639110.3109/1061186X.2015.109044226406291
    [Google Scholar]
  73. VaseemR.S. D’cruzA. ShettyS. Hafsa; Vardhan, A.; R, S.S.; Marques, S.M.; Kumar, L.; Verma, R. Transdermal drug delivery systems: A focused review of the physical methods of permeation enhancement.Adv. Pharm. Bull.2023110.34172/apb.2024.01838585458
    [Google Scholar]
  74. ManiwongwichitN. MoraradR. SakunpongpitipornP. ParinyanitikulN. ParadeeN. SirivatA. Magnetically controlled transdermal delivery of gemcitabine via xanthan gum-coated magnetic nanoparticles embedded in gellan gum cryogel.Mater. Chem. Phys.202432612983610.1016/j.matchemphys.2024.129836
    [Google Scholar]
  75. RassolovP. AliJ. SiegristT. HumayunM. MohammadigoushkiH. Magnetophoresis of paramagnetic metal ions in porous media.Soft Matter202420112496250810.1039/D3SM01607B38385969
    [Google Scholar]
  76. ImranM. AffandiA.M. AlamM.M. KhanA. KhanA.I. Advanced biomedical applications of iron oxide nanostructures based ferrofluids.Nanotechnology2021324242200110.1088/1361‑6528/ac137a34252891
    [Google Scholar]
  77. AyansijiA.O. DigheA.V. LinningerA.A. SinghM.R. Constitutive relationship and governing physical properties for magnetophoresis.Proc. Natl. Acad. Sci. USA202011748302083021410.1073/pnas.201856811733203682
    [Google Scholar]
  78. Torres-CastroK. Acuña-UmañaK. Lesser-RojasL. ReyesD. Microfluidic blood separation: Key technologies and critical figures of merit.Micromachines20231411211710.3390/mi1411211738004974
    [Google Scholar]
  79. RajeswariR. JothilakshmiR. Magnetic Nanoparticles as Drug Carriers. Review.Mater. Sci. Forum2014807112[Review]..10.4028/www.scientific.net/MSF.807.1
    [Google Scholar]
  80. ChenX. ZhuL. LiR. PangL. ZhuS. MaJ. DuL. JinY. Electroporation-enhanced transdermal drug delivery: Effects of logP, pKa, solubility and penetration time.Eur. J. Pharm. Sci.202015110541010.1016/j.ejps.2020.10541032505795
    [Google Scholar]
  81. KougkolosG. LaudebatL. DinculescuS. SimonJ. GolzioM. Valdez-NavaZ. FlahautE. Skin electroporation for transdermal drug delivery: Electrical measurements, numerical model and molecule delivery.J. Control. Release202436723524710.1016/j.jconrel.2024.01.03638244842
    [Google Scholar]
  82. LeeD.H. LimS. KwakS.S. KimJ. Advancements in skin‐mediated drug delivery: Mechanisms, techniques, and applications.Adv. Healthc. Mater.2024137230237510.1002/adhm.20230237538009520
    [Google Scholar]
  83. ZorecB. ŠkrabeljD. MarinčekM. MiklavčičD. PavšeljN. The effect of pulse duration, power and energy of fractional Er:YAG laser for transdermal delivery of differently sized FITC dextrans.Int. J. Pharm.20175161-220421310.1016/j.ijpharm.2016.10.06027818244
    [Google Scholar]
  84. ThitilertdechaP. WannawittayapaT. BuranapornP. Rejuso-KalbitC.R.B.S. KupwiwatR. PoungpairojP. TantithavornV. OnlamoonN. ManuskiattiW. Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery: Impact of triamcinolone acetonide formulation on drug permeation.Drug Deliv. Transl. Res.202410.1007/s13346‑024‑01771‑y39719540
    [Google Scholar]
  85. PandaP. MohantyT. MohapatraR. Advancements in transdermal drug delivery systems: Harnessing the potential of macromolecular assisted permeation enhancement and novel techniques.AAPS PharmSciTech20252612910.1208/s12249‑024‑03029‑939789371
    [Google Scholar]
  86. AbbasiM. HeathB. Iontophoresis and electroporation-assisted microneedles: Advancements and therapeutic potentials in transdermal drug delivery.Drug Deliv. Transl. Res.20251561962198410.1007/s13346‑024‑01722‑739433696
    [Google Scholar]
  87. PhataleV. VaipheiK.K. JhaS. PatilD. AgrawalM. AlexanderA. Overcoming skin barriers through advanced transdermal drug delivery approaches.J. Control. Release202235136138010.1016/j.jconrel.2022.09.02536169040
    [Google Scholar]
  88. ShahSWA. LiX. YuanH. ShenH. QuanS. PanG. Innovative transdermal drug delivery systems: Benefits, challenges, and emerging application.BMEMat2025e7000110.1002/bmm2.70001
    [Google Scholar]
  89. PracaF.G. PetrilliR. EloyJ.O. LeeR.J. Lopes Badra BentleyM.V. Liquid-Crystalline nanodispersions containing monoolein for photodynamic therapy of skin diseases: A Mini-Review.Curr. Nanosci.201713510.2174/1573413713666170529115831
    [Google Scholar]
  90. GeorgeA. ShrivastavP.S. Photodynamic therapy with light emitting fabrics: A review.Arch. Dermatol. Res.20213141092993610.1007/s00403‑021‑02301‑334797414
    [Google Scholar]
  91. AbdallahM. ShawkyS. ShahienM. El-HoranyH. AhmedE. El-HousinyS. Development and evaluation of nano-vesicular emulsion-based gel as a promising approach for dermal atorvastatin delivery against inflammation.Int. J. Nanomedicine202419114151143210.2147/IJN.S47700139530108
    [Google Scholar]
  92. GargU. JainK. Dermal and transdermal drug delivery through vesicles and particles: Preparation and applications.Adv. Pharm. Bull.2021110.34172/apb.2022.00635517881
    [Google Scholar]
  93. SabareeshM. RajangamJ. Prakash RajK.P. YanadaiahJ. Formulation and evaluation of novel vesicular nanoethosomal patches for transdermal delivery of zidovudine: In vitro, ex vivo, and in vivo pharmacokinetic investigations.J. Dispers. Sci. Technol.202411410.1080/01932691.2024.2444976
    [Google Scholar]
  94. MahmoudA. RadyM. Abdel-HalimM. El-ShenawyB.M. MansourS. Transdermal delivery of tofacitinib citrate via mannose-decorated transferosomes loaded with tofacitinib citrate in arthritic joints.Mol. Pharm.202421126458647210.1021/acs.molpharmaceut.4c0049639562501
    [Google Scholar]
  95. SudhakarK. MishraV. JainS. RompicherlaN.C. MalviyaN. TambuwalaM.M. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin.Int. J. Pharm.202161012122610.1016/j.ijpharm.2021.12122634710540
    [Google Scholar]
  96. MadhumithaV. SangeethaS. Transfersomes: A novel vesicular drug delivery system for enhanced permeation through skin.Res. J. Pharm. Technol2020135249310.5958/0974‑360X.2020.00445.X
    [Google Scholar]
  97. GuptaR. KumarA. Transfersomes: The ultra-deformable carrier system for non-invasive delivery of drug.Curr. Drug Deliv.202118440842010.2174/156720181766620080410541632753015
    [Google Scholar]
  98. PatelD. ChatterjeeB. Identifying underlying issues related to the inactive excipients of transfersomes based drug delivery system.Curr. Pharm. Des.202127797198010.2174/138161282666620101614435433069192
    [Google Scholar]
  99. KhanD. QindeelM. AhmedN. AsadM.I. ShahK. Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis.Int. J. Pharm.202161012124210.1016/j.ijpharm.2021.12124234737113
    [Google Scholar]
  100. DengZ. YuR. GuoB. Stimuli-responsive conductive hydrogels: Design, properties, and applications.Mater. Chem. Front.2021552092212310.1039/D0QM00868K
    [Google Scholar]
  101. WongW.F. AngK.P. SethiG. LooiC.Y. Recent advancement of medical patch for transdermal drug delivery.Medicina202359477810.3390/medicina5904077837109736
    [Google Scholar]
  102. LeiY. YangG. DuF. YiJ. QuanL. LiuH. ZhouX. GongW. HanJ. WangY. GaoC. Formulation and evaluation of a drug-in-adhesive patch for transdermal delivery of colchicine.Pharmaceutics20221410224510.3390/pharmaceutics1410224536297680
    [Google Scholar]
  103. SaliyO. PopovaM. TarasenkoH. GetaloO. Development strategy of novel drug formulations for the delivery of doxycycline in the treatment of wounds of various etiologies.Eur. J. Pharm. Sci.202419510663610.1016/j.ejps.2023.10663638185273
    [Google Scholar]
  104. AkhlaqM. AzadA.K. FuloriaS. MeenakshiD.U. RazaS. SafdarM. NawazA. SubramaniyanV. SekarM. SathasivamK.V. WuY.S. MiretM.M. FuloriaN.K. Fabrication of tizanidine loaded patches using flaxseed oil and coriander oil as a penetration enhancer for transdermal delivery.Polymers20211323421710.3390/polym1323421734883720
    [Google Scholar]
  105. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  106. ShafiqueN. SiddiquiT. ZamanM. IqbalZ. RasoolS. IshaqueA. SiddiqueW. AlviM.N. Transdermal patch, co-loaded with Pregabalin and Ketoprofen for improved bioavailability; in vitro studies.Polym. Polymer Compos.2021299_supplS376S38810.1177/09673911211004516
    [Google Scholar]
  107. YeohS.C. LohP.L. MurugaiyahV. GohC.F. Development and characterisation of a topical methyl salicylate patch: Effect of solvents on adhesion and skin permeation.Pharmaceutics20221411249110.3390/pharmaceutics1411249136432686
    [Google Scholar]
  108. KumarM. TrivediV. ShuklaA.K. DevS.K. Effect of polymers on the physicochemical and drug release properties of transdermal patches of atenolol.Int. J. Appl. Pharm.20181046810.22159/ijap.2018v10i4.24916
    [Google Scholar]
  109. KumariR. Kumar SharmaV. Optimization of the formulation of transdermal patches of amiodarone.Res. J. Pharm. Technol.20233739–423739374210.52711/0974‑360X.2023.00617
    [Google Scholar]
  110. VarshosazJ. MinayianM. AhmadiM. GhassamiE. Enhancement of solubility and antidiabetic effects of Repaglinide using spray drying technique in STZ-induced diabetic rats.Pharm. Dev. Technol.201722675476310.3109/10837450.2016.114300126895041
    [Google Scholar]
  111. AngellottiG. Di PrimaG. ScarpaciA.G. D’AgostinoF. CampisiG. De CaroV. Spray-Dried cytisine-loaded matrices: Development of transbuccal sustained-release tablets as a promising tool in smoking cessation therapy.Pharmaceutics2022148158310.3390/pharmaceutics1408158336015209
    [Google Scholar]
  112. A, S; Reddy, M; A, J In vivo evaluation of a novel zero order drug releasing transdermal system of rotigotine.Asian J. Pharm. Pharmacol.2021712613010.31024/ajpp.2021.7.3.3
    [Google Scholar]
  113. KanmazD. OsmanB. KaracaE. A new lotus-leaf-inspired beaded nanofiber strategy for the development of cryogel/nanofiber hybrid structures.Fibers Polym.20242541233124210.1007/s12221‑024‑00516‑5
    [Google Scholar]
  114. SrikakulamS.R. DevineniJ. MokkapatiC. VenigallaY. PothuriA. AcchiA. SharmaS. A novel targeted nanoliposomal atorvastatin transdermal patch assisted with solid microneedles for improved bioavailability.Indian J. Pharm. Educ. Res.202458373675010.5530/ijper.58.3.82
    [Google Scholar]
  115. ZulcaifZ.N. ZafarN. MahmoodA. SarfrazR.M. ElaissariA. Simvastatin loaded dissolvable microneedle patches with improved pharmacokinetic performance.Micromachines2022138130410.3390/mi1308130436014226
    [Google Scholar]
  116. SuT. TangZ. HuJ. ZhuY. ShenT. Innovative freeze-drying technique in the fabrication of dissolving microneedle patch: Enhancing transdermal drug delivery efficiency.Drug Deliv. Transl. Res.202414113112312710.1007/s13346‑024‑01531‑y38431532
    [Google Scholar]
  117. ObaidatR. Al-Shar’iN. TashtoushB. AthamnehT. Enhancement of levodopa stability when complexed with β-cyclodextrin in transdermal patches.Pharm. Dev. Technol.2018231098699710.1080/10837450.2016.124531927808002
    [Google Scholar]
  118. BácskayI. HosszúZ. BudaiI. UjhelyiZ. FehérP. KósaD. HaimhofferÁ. PetőÁ. Formulation and evaluation of transdermal patches containing BGP-15.Pharmaceutics20231613610.3390/pharmaceutics1601003638258047
    [Google Scholar]
  119. MusazziU.M. OrtenziM.A. GennariC.G.M. CasiraghiA. MinghettiP. CilurzoF. Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing.Int. J. Pharm.202058611960710.1016/j.ijpharm.2020.11960732652181
    [Google Scholar]
  120. TombsE.L. NikolaouV. NurumbetovG. HaddletonD.M. Transdermal delivery of ibuprofen utilizing a novel solvent-free pressure-sensitive adhesive (PSA): TEPI® Technology.J. Pharm. Innov.2018131485710.1007/s12247‑017‑9305‑x29497462
    [Google Scholar]
  121. KimE.J. ChoiD.H. Quality by design approach to the development of transdermal patch systems and regulatory perspective.J. Pharm. Investig.202151666969010.1007/s40005‑021‑00536‑w
    [Google Scholar]
  122. LiparotiS. FrancoP. PantaniR. De MarcoI. Supercritical CO2 impregnation of caffeine in biopolymer films to produce anti-cellulite devices.J. Supercrit. Fluids202217910541110.1016/j.supflu.2021.105411
    [Google Scholar]
  123. MottolaS. ViscusiG. BelvedereR. PetrellaA. De MarcoI. GorrasiG. Production of mono and bilayer devices for wound dressing by coupling of electrospinning and supercritical impregnation techniques.Int. J. Pharm.202466012430810.1016/j.ijpharm.2024.12430838848800
    [Google Scholar]
  124. GeevargheseR. ShirolkarS. Formulation and evaluation of fluvastatin sodium drug-in-adhesive transdermal system.J. Res. Pharm.202024456257110.35333/jrp.2020.204
    [Google Scholar]
  125. RavulaR. HerwadkarA.K. AblaM.J. LittleJ. BangaA.K. Formulation optimization of a drug in adhesive transdermal analgesic patch.Drug Dev. Ind. Pharm.201642686287010.3109/03639045.2015.1071832
    [Google Scholar]
  126. SharmaA. VermaN. Formulation and Evaluation of Double-layered (Matrix and Drug-in-adhesive) Transdermal Patches of Diclofenac Diethylamine: In vitro and ex vivo Permeation Studies.Indian J. Pharm. Educ. Res.2023572ss234s24310.5530/ijper.57.2s.27
    [Google Scholar]
  127. ČukićM. GalovicS. Mathematical modeling of anomalous diffusive behavior in transdermal drug-delivery including time-delayed flux concept.Chaos Solitons Fractals202317211358410.1016/j.chaos.2023.113584
    [Google Scholar]
  128. ZhaoJ. XuG. YaoX. ZhouH. LyuB. PeiS. WenP. Microneedle-based insulin transdermal delivery system: Current status and translation challenges.Drug Deliv. Transl. Res.202212102403242710.1007/s13346‑021‑01077‑334671948
    [Google Scholar]
  129. XieY. WuH. ChenZ. SunQ. LiuX. JiangJ. WangB. ChenZ. Non-invasive evaluation of transdermal drug delivery using 3-D transient triplet differential (TTD) photoacoustic imaging.Photoacoustics20233210053010.1016/j.pacs.2023.10053037645257
    [Google Scholar]
  130. KaushikU. JoshiS.C. Formulation and evaluation of Momordica charantia fruit extract based transdermal drug delivery against diabetes.Biomedical and Therapeutics Letters202411110.62110/sciencein.btl.2024.v11.905
    [Google Scholar]
  131. KarwasraR. SharmaS. SharmaI. ShahidN. UmarT. Diabetology and Nanotechnology: A Compelling Combination.Recent Pat. Nanotechnol.202519141610.2174/011872210525305523101615561837937555
    [Google Scholar]
  132. NgL.C. GuptaM. Transdermal drug delivery systems in diabetes management: A review.Asian J. Pharma. Sci.2020151132510.1016/j.ajps.2019.04.00632175015
    [Google Scholar]
  133. PrasadP.S. ImamS.S. AqilM. SultanaY. AliA. QbD-based carbopol transgel formulation: Characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes.Drug Deliv.20162331047105610.3109/10717544.2014.93653625033041
    [Google Scholar]
  134. QadirA. UllahS.N.M.N. GuptaD.K. KhanN. WarsiM.H. KamalM. Combinatorial drug‐loaded quality by design adapted transliposome gel formulation for dermal delivery: In vitro and dermatokinetic study.J. Cosmet. Dermatol.202322102839285110.1111/jocd.1579237309263
    [Google Scholar]
  135. NabiI. BachirY.N. DjellouliS. SmainM. Hadj-Ziane-ZafourA. In vivo antidiabetic effect and antioxidant potential of Stevia Rebaudiana mixed with Tragacanth gum in orange nectar. Food.Hydrocolloids for Health.2023410014710.1016/j.fhfh.2023.100147
    [Google Scholar]
  136. LombardoF. PassanisiS. TintiD. MessinaM.F. SalzanoG. RabboneI. High frequency of dermatological complications in children and adolescents with type 1 diabetes: A web-based survey.J. Diabetes Sci. Technol.20211561377138110.1177/193229682094707232757778
    [Google Scholar]
  137. EricssonA. BorgströmK. KumlienC. Gershater AnnerstenM. RuzgasT. EngblomJ. GudmundssonP. LazerV. JankovskajaS. LavantE. Ågren-WitteschusS. BjörklundS. SalimS. ÅströmM. AcostaS. Treatment effects of two pharmaceutical skin care creams for xerotic feet among persons with diabetes: Rationale and design of a two-armed double blind randomized controlled trial.Contemp. Clin. Trials Commun.20244210137210.1016/j.conctc.2024.10137239345688
    [Google Scholar]
  138. GoswamiT. AudettJ. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.Ther. Deliv.2015691071107910.4155/tde.15.5726389777
    [Google Scholar]
  139. AoutaE. PatraC.N. Design, optimization and characterization of combined ethosomal transdermal patch of glimepiride and duloxetine drug regimen for diabetes and associated neuropathic pain management.Curr. Drug Ther.202217535936810.2174/1574885517666220525122859
    [Google Scholar]
  140. ZadymovaN.M. PoteshnovaM.V. Microemulsions and microheterogeneous microemulsion-based polymeric matrices for transdermal delivery of lipophilic drug (Felodipine).Colloid Polym. Sci.2019297345346810.1007/s00396‑018‑4447‑z
    [Google Scholar]
  141. M.A.Sudheer, P.; Sogali, B.S. Nanostructured lipid carrier mediated transdermal delivery system of glibenclamide for gestational diabetes: Pharmacokinetic and pharmacodynamic evaluation.Curr. Drug Deliv.2024211386140710.2174/0115672018274038231212105440
    [Google Scholar]
  142. NoorN.M. Abdul-AzizA. SheikhK. SomavarapuS. TaylorK.M.G. In vitro Performance of dutasteride-nanostructured lipid carriers coated with lauric acid-chitosan oligomer for dermal delivery.Pharmaceutics2020121099410.3390/pharmaceutics1210099433092119
    [Google Scholar]
  143. KanazawaT. HamasakiT. EndoT. TamanoK. SogabeK. SetaY. OhgiT. OkadaH. Functional peptide nanocarriers for delivery of novel anti-RelA RNA interference agents as a topical treatment of atopic dermatitis.Int. J. Pharm.20154891-226126710.1016/j.ijpharm.2015.05.00325956048
    [Google Scholar]
  144. DarvishhaS. AmiriS. (Trans) dermal insulin delivery based on polymeric systems.Int. J. Polym. Mater.201968181118113210.1080/00914037.2018.1534113
    [Google Scholar]
  145. MesserL.H. BergetC. BeatsonC. PolskyS. ForlenzaG.P. Preserving skin integrity with chronic device use in diabetes.Diabetes Technol. Ther.201820S25410.1089/dia.2018.0080
    [Google Scholar]
  146. SchaapM.J. BruinsF.M. van den BrinkN.J.M. OrroK. GroenewoudH.M.M. de JongE.M.G.J. van den BogaardE.H. SeygerM.M.B. Challenges in noninvasive skin biomarker measurements in daily practice: A longitudinal study on skin surface protein detection by the Transdermal Analysis Patch in pediatric psoriasis.Skin Pharmacol. Physiol.202235631932710.1159/00052725836202075
    [Google Scholar]
  147. KandilL.S. HanafyA.S. AbdelhadyS.A. Galantamine transdermal patch shows higher tolerability over oral galantamine in rheumatoid arthritis rat model.Drug Dev. Ind. Pharm.2020466996100410.1080/03639045.2020.176402532378971
    [Google Scholar]
  148. VidrineD.J. BuiT.C. BusinelleM.S. ShihY.C.T. SuttonS.K. ShahaniL. HooverD.S. BowlesK. VidrineJ.I. Evaluating the efficacy of automated smoking treatment for people with hiv: Protocol for a randomized controlled trial.JMIR Res. Protoc.20211011e3318310.2196/3318334787590
    [Google Scholar]
  149. SultanaN. WaheedA. AliA. JahanS. AqilM. SultanaY. MujeebM. Exploring new frontiers in drug delivery with minimally invasive microneedles: Fabrication techniques, biomedical applications, and regulatory aspects.Expert Opin. Drug Deliv.202320673975510.1080/17425247.2023.220149437038271
    [Google Scholar]
  150. YuanF. SpenceJ.D. TarrideJ. Cost‐utility analysis of low‐dose pioglitazone in a population with prediabetes and a history of stroke or transient ischemic attack.JAHA20242024e03453110.1161/JAHA.123.034531
    [Google Scholar]
  151. Kamrul-HasanA.B.M. HannanM.A. AlamM.S. RahmanM.M. AsaduzzamanM. MustariM. PaulA.K. KabirM.L. ChowdhuryS.R. TalukderS.K. SarkarS. HannanM.A. IslamM.R. IftekharM.H. RobelM.A.B. SelimS. Comparison of simplicity, convenience, safety, and cost-effectiveness between use of insulin pen devices and disposable plastic syringes by patients with type 2 diabetes mellitus: A cross-sectional study from Bangladesh.BMC Endocr. Disord.20232313710.1186/s12902‑023‑01292‑836782190
    [Google Scholar]
  152. ZhangY. YuJ. KahkoskaA.R. WangJ. BuseJ.B. GuZ. Advances in transdermal insulin delivery.Adv. Drug Deliv. Rev.2019139517010.1016/j.addr.2018.12.00630528729
    [Google Scholar]
  153. AbbasiM. BokaD.A. DeLoitH. Nanomaterial-Enhanced microneedles: Emerging therapies for diabetes and obesity.Pharmaceutics20241610134410.3390/pharmaceutics1610134439458672
    [Google Scholar]
  154. BeranD. EwenM. LipskaK. HirschI.B. YudkinJ.S. Availability and affordability of essential medicines: Implications for global diabetes treatment.Curr. Diab. Rep.20181884810.1007/s11892‑018‑1019‑z29907884
    [Google Scholar]
  155. AgirrezabalI. Sánchez-IrisoE. MandarK. CabasésJ.M. Real-World budget impact of the adoption of insulin glargine biosimilars in primary care in england (2015–2018).Diabetes Care20204381767177310.2337/dc19‑239532527798
    [Google Scholar]
  156. de VriesS.A.G. BakJ.C.G. VerheugtC.L. StangenbergerV.A. MulD. WoutersM.W.J.M. NieuwdorpM. SasT.C.J. Healthcare expenditure and technology use in pediatric diabetes care.BMC Endocr. Disord.20232317210.1186/s12902‑023‑01316‑337029362
    [Google Scholar]
  157. OkpalaP. Assessment of the influence of technology on the cost of healthcare service and patient’s satisfaction.Int. J. Healthc. Manag.201811435135510.1080/20479700.2017.1337623
    [Google Scholar]
  158. YangJ. ChenZ. YeR. LiJ. LinY. GaoJ. RenL. LiuB. JiangL. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery.Drug Deliv.20182511728173910.1080/10717544.2018.150706030182757
    [Google Scholar]
  159. WangC. JiangX. ZengY. TerryR.N. LiW. Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies.Medicine in Drug Discovery20221310011810.1016/j.medidd.2021.100118
    [Google Scholar]
  160. ChatterjeeB. ReddyA. SantraM. KhamangaS. Amorphization of drugs for transdermal delivery-a recent update.Pharmaceutics202214598310.3390/pharmaceutics1405098335631568
    [Google Scholar]
  161. AichK. SinghT. DangS. Advances in microneedle-based transdermal delivery for drugs and peptides.Drug Deliv. Transl. Res.20221271556156810.1007/s13346‑021‑01056‑834564827
    [Google Scholar]
  162. BlondeL. BaileyT. StrongJ. LevinP. Real-world evidence in diabetes: Relevance to clinical practice.J. Fam. Pract2019683jfp_6803l
    [Google Scholar]
  163. WilkinsC.H. EdwardsT.L. StroudM. KennedyN. JeromeR.N. LawrenceC.E. KusnoorS.V. NelsonS. ByrneL.M. BooneL.R. DunaganJ. IsraelT. RodwellerC. DruryB. KostR.G. PulleyJ.M. BernardG.R. HarrisP.A. The Recruitment Innovation Center: Developing novel, person-centered strategies for clinical trial recruitment and retention.J. Clin. Transl. Sci.202151e19410.1017/cts.2021.84134888064
    [Google Scholar]
  164. MeurerW.J. LewisR.J. TagleD. FettersM.D. LegockiL. BerryS. ConnorJ. DurkalskiV. ElmJ. ZhaoW. FrederiksenS. SilbergleitR. PaleschY. BerryD.A. BarsanW.G. An overview of the adaptive designs accelerating promising trials into treatments (ADAPT-IT) project.Ann. Emerg. Med.201260445145710.1016/j.annemergmed.2012.01.02022424650
    [Google Scholar]
  165. LentzT.A. CurtisL.H. RockholdF.W. MartinD. AnderssonT.L.G. AriasC. BerlinJ.A. BinnsC. CookA. CzirakyM. DentR. DesaiM. EmmettA. EssermanD. GeorgeJ. HantelS. HeagertyP. HernandezA.F. HuckoT. KhanN. LeeS.F. LoCasaleR. MardekianJ. McCallD. MondaK. NormandS.L. RiesmeyerJ. RoeM. RoessigL. ScottR. SiedentopH. WaldstreicherJ. WangL. WeerakkodyG. WolfM. EllenbergS.S. Designing, Conducting, Monitoring, and Analyzing Data from Pragmatic Randomized Clinical Trials: Proceedings from a Multi-stakeholder Think Tank Meeting.Ther. Innov. Regul. Sci.20205461477148810.1007/s43441‑020‑00175‑732514736
    [Google Scholar]
  166. CoertR.M.H. TimmisJ.K. BoorsmaA. PasmanW.J. Stakeholder perspectives on barriers and facilitators for the adoption of virtual clinical trials: Qualitative study.J. Med. Internet Res.2021237e2681310.2196/2681334255673
    [Google Scholar]
  167. SikaviC. NajarianL. SaabS. Similar sustained virologic response in real-world and clinical trial studies of hepatitis c/human immunodeficiency virus coinfection.Dig. Dis. Sci.201863112829283910.1007/s10620‑018‑5215‑030094623
    [Google Scholar]
  168. KobatH. ElkonaissiI. ForemanE. O’BrienM. DorakM.T. Nabhani-GebaraS. Investigating the efficacy of osimertinib and crizotinib in phase 3 clinical trials on anti-cancer treatment-induced cardiotoxicity: Are real-world studies the way forward?J. Oncol. Pharm. Pract.202329364666210.1177/1078155222107741735167392
    [Google Scholar]
  169. ShresthaN. ShahbaziM.A. AraújoF. MäkiläE. RaulaJ. KauppinenE.I. SalonenJ. SarmentoB. HirvonenJ. SantosH.A. Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system.Biomaterials20156892010.1016/j.biomaterials.2015.07.04526253804
    [Google Scholar]
  170. RabieiM. KashanianS. SamavatiS.S. JamasbS. McInnesS.J.P. Nanomaterial and advanced technologies in transdermal drug delivery.J. Drug Target.202028435636710.1080/1061186X.2019.169357931851847
    [Google Scholar]
  171. CoorayS.D. BoyleJ.A. SoldatosG. ThangaratinamS. TeedeH.J. The Need for personalized risk-stratified approaches to treatment for gestational diabetes: A narrative review.Semin. Reprod. Med.202038638438810.1055/s‑0041‑172377833648005
    [Google Scholar]
  172. EgorovE. PietersC. Korach-RechtmanH. ShkloverJ. SchroederA. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems.Drug Deliv. Transl. Res.202111234535210.1007/s13346‑021‑00929‑233585972
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002382343250917074945
Loading
/content/journals/cdm/10.2174/0113892002382343250917074945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test