Skip to content
2000
image of Development of Transdermal Drug Delivery Approaches to Combat Diabetes: An Update

Abstract

Background

Diabetes mellitus, a widespread and chronic metabolic condition, creates significant challenges for healthcare systems due to complications from inadequate glycemic control, patient non-compliance, and the invasive nature of traditional treatments, including oral medications and insulin injections, which often lead to discomfort, variability in blood glucose levels, and low adherence.

Objective

To explore the potential of Transdermal Drug Delivery Systems (TDDS) as a non-invasive and effective alternative for diabetes management, highlighting their advantages, recent technological advancements, and associated challenges.

Methods

This review examines the role of TDDS in diabetes treatment, with an emphasis on recent innovations, including microneedles, hydrogels, and sonophoresis. The study also discusses the benefits of TDDS in maintaining stable plasma drug levels, reducing first-pass metabolism, and integrating with continuous glucose monitoring systems.

Results

Emerging TDDS technologies improve drug permeability, enhance bioavailability, and offer sustained drug release, potentially addressing limitations of conventional delivery methods. However, barriers such as skin permeability, high manufacturing costs, and patient variability remain significant challenges.

Discussion

Multi-drug patches and microneedle-based systems represent innovative approaches that enhance therapeutic efficacy and patient compliance by enabling painless, targeted, and combination drug delivery. With support from nanotechnology and pharmacogenomics, these platforms are evolving toward personalized medicine, offering optimized dosing and reduced side effects.

Conclusion

TDDS presents a promising alternative for diabetes management by improving patient adherence, ensuring controlled drug release, and reducing discomfort associated with injections. While further research is required to overcome existing limitations, advancements in biomaterials and personalized medicine approaches hold the potential to optimize TDDS for widespread clinical application. This research aims to summarize the advancements and address existing challenges for future development.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002382343250917074945
2025-10-06
2025-11-05
Loading full text...

Full text loading...

References

  1. Dzung P.T. Trung N.T. Van Khanh L. Chinh D.D. Van De D. Van Tong H. Toan N.L. Clinical association and diagnostic significance of miRNA-29a and miRNA-147b in type 2 diabetes mellitus. Int. J. Med. Sci. 2023 20 10 1316 1325 10.7150/ijms.84899 37786444
    [Google Scholar]
  2. Wang B. Jiang C. Qu Y. Wang J. Yan C. Zhang X. Nonlinear association between atherogenic index of plasma and chronic kidney disease: A nationwide cross-sectional study. Lipids Health Dis. 2024 23 1 312 10.1186/s12944‑024‑02288‑6 39334373
    [Google Scholar]
  3. Mallone R. Eizirik D.L. Presumption of innocence for beta cells: Why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia 2020 63 10 1999 2006 10.1007/s00125‑020‑05176‑7 32894310
    [Google Scholar]
  4. Askenasy N. Mechanisms of diabetic autoimmunity: I—the inductive interface between islets and the immune system at onset of inflammation. Immunol. Res. 2016 64 2 360 368 10.1007/s12026‑015‑8753‑y 26639356
    [Google Scholar]
  5. Mizukami H. Kudoh K. Diversity of pathophysiology in type 2 diabetes shown by islet pathology. J. Diabetes Investig. 2022 13 1 6 13 10.1111/jdi.13679 34562302
    [Google Scholar]
  6. Lima J.E.B.F. Moreira N.C.S. Sakamoto-Hojo E.T. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022 874-875 503437 10.1016/j.mrgentox.2021.503437 35151421
    [Google Scholar]
  7. Młynarska E. Czarnik W. Dzieża N. Jędraszak W. Majchrowicz G. Prusinowski F. Stabrawa M. Rysz J. Franczyk B. Type 2 diabetes mellitus: New pathogenetic mechanisms, treatment and the most important complications. Int. J. Mol. Sci. 2025 26 3 1094 10.3390/ijms26031094 39940862
    [Google Scholar]
  8. Rong Y. Patel V. Kiang T.K.L. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: Physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1369 1406 10.1080/17425255.2021.2027906 35000505
    [Google Scholar]
  9. Crummett L.T. Aslam M.H. Diabetes websites lack information on dietary causes, risk factors, and preventions for type 2 diabetes. Front. Public Health 2023 11 1159024 10.3389/fpubh.2023.1159024 37521964
    [Google Scholar]
  10. Alam S. Hasan M.K. Neaz S. Hussain N. Hossain M.F. Rahman T. Diabetes mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology 2021 2 2 36 50 10.3390/diabetology2020004
    [Google Scholar]
  11. Dia M. Gomez L. Thibault H. Tessier N. Leon C. Chouabe C. Ducreux S. Gallo-Bona N. Tubbs E. Bendridi N. Chanon S. Leray A. Belmudes L. Couté Y. Kurdi M. Ovize M. Rieusset J. Paillard M. Reduced reticulum–mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy. Basic Res. Cardiol. 2020 115 6 74 10.1007/s00395‑020‑00835‑7 33258101
    [Google Scholar]
  12. Ahmad A. Khan M.U. Aslani P. Patient preferences for the treatment of type 2 diabetes in Australia: A discrete choice experiment. J. Diabetes Metab. Disord. 2022 21 1 229 240 10.1007/s40200‑021‑00962‑5 35673490
    [Google Scholar]
  13. Galindo R.J. Ali M.K. Funni S.A. Dodge A.B. Kurani S.S. Shah N.D. Umpierrez G.E. McCoy R.G. Hypoglycemic and hyperglycemic crises among u.s. adults with diabetes and end-stage kidney disease: Population-based study, 2013–2017. Diabetes Care 2022 45 1 100 107 10.2337/dc21‑1579 34740910
    [Google Scholar]
  14. Aihara M. Jinnouchi H. Yoshida A. Ijima H. Sakurai Y. Hayashi T. Koizumi C. Kubota T. Usami S. Yamauchi T. Sakata T. Kadowaki T. Kubota N. Evaluation of glycated albumin levels in tears and saliva as a marker in patients with diabetes mellitus. Diabetes Res. Clin. Pract. 2023 199 110637 10.1016/j.diabres.2023.110637 36963507
    [Google Scholar]
  15. Kalus A. Shinohara M.M. Wang R. Baran J.D. Dong X. Khakpour D. Lu J. Hirsch I.B. Evaluation of insulin pump infusion sites in type 1 diabetes: The DERMIS Study. Diabetes Care 2023 46 9 1626 1632 10.2337/dc23‑0426 37450710
    [Google Scholar]
  16. Liu Y. Yu Q. Ye L. Yang L. Cui Y. A wearable, minimally-invasive, fully electrochemically-controlled feedback minisystem for diabetes management. Lab Chip 2023 23 3 421 436 10.1039/D2LC00797E 36597970
    [Google Scholar]
  17. Kole E. Jadhav K. Khan Z. Verma R.K. Chatterjee A. Mujumdar A. Naik J. Engineered vildagliptin-loaded polymeric nanoparticles via microfluidic and spray drying for enhanced antidiabetic activity. Future Journal of Pharmaceutical Sciences 2024 10 1 156 10.1186/s43094‑024‑00736‑9
    [Google Scholar]
  18. Abbasi M. Heath B. McGinness L. Advances in metformin‐delivery systems for diabetes and obesity management. Diabetes Obes. Metab. 2024 26 9 3513 3529 10.1111/dom.15759 38984380
    [Google Scholar]
  19. McCoy R. Techniques for implementing continuous glucose monitoring in primary care: KEY CGM updates and highlights from the attd 2024 conference.[Podcast] Diabetes Metab. Syndr. Obes. 2024 17 3577 3583 10.2147/DMSO.S491642 39345824
    [Google Scholar]
  20. Lundgrin E.L. Kelly C.A. Bellini N. Lewis C. Rafi E. Hatipoglu B. Diabetes technology trends: A review of the latest innovations. J. Clin. Endocrinol. Metab. 2025 110 S165 S174 10.1210/clinem/dgaf034 39998918
    [Google Scholar]
  21. Manu P. Rogozea L.M. Cernea S. Pharmacological management of diabetes mellitus: A century of expert opinions in cecil textbook of medicine. Am. J. Ther. 2021 28 4 e397 e410 10.1097/MJT.0000000000001401 34228650
    [Google Scholar]
  22. Sudhir P.M. Advances in psychological interventions for lifestyle disorders. Curr. Opin. Psychiatry 2017 30 5 346 351 10.1097/YCO.0000000000000348 28682800
    [Google Scholar]
  23. Nguyen V. Ara P. Simmons D. Osuagwu U.L. The role of digital health technology interventions in the prevention of type 2 diabetes mellitus: A systematic review. Clin. Med. Insights Endocrinol. Diabetes 2024 17 11795514241246419 10.1177/11795514241246419 38779330
    [Google Scholar]
  24. Szymczak-Pajor I. Wenclewska S. Śliwińska A. Metabolic action of metformin. Pharmaceuticals 2022 15 7 810 10.3390/ph15070810 35890109
    [Google Scholar]
  25. Lv W. Wang X. Xu Q. Lu W. Mechanisms and characteristics of sulfonylureas and glinides. Curr. Top. Med. Chem. 2020 20 1 37 56 10.2174/1568026620666191224141617 31884929
    [Google Scholar]
  26. Sajal H. Patil S.M. Raj R. Shbeer A.M. Ageel M. Ramu R. Computer-Aided screening of phytoconstituents from ocimum tenuiflorum against diabetes mellitus targeting dpp4 inhibition: A combination of molecular docking, molecular dynamics, and pharmacokinetics approaches. Molecules 2022 27 16 5133 10.3390/molecules27165133 36014373
    [Google Scholar]
  27. Kim K. Choi S.H. Cardiovascular Safety of SGLT2 Inhibitors Compared to DPP4 Inhibitors and Sulfonylureas as the Second-Line of Therapy in T2DM Using Large, Real-World Clinical Data in Korea. Diabetes Metab. J. 2021 45 4 502 504 10.4093/dmj.2021.0158 34352987
    [Google Scholar]
  28. Maiseyeu A. Di L. Ravodina A. Barajas-Espinosa A. Sakamoto A. Chaplin A. Zhong J. Gao H. Mignery M. Narula N. Finn A.V. Rajagopalan S. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis. Theranostics 2022 12 6 2741 2757 10.7150/thno.66456 35401813
    [Google Scholar]
  29. Tilekar K. Hess J.D. Upadhyay N. Bianco A.L. Schweipert M. Laghezza A. Loiodice F. Meyer-Almes F.J. Aguilera R.J. Lavecchia A. C S, R. Thiazolidinedione “Magic Bullets” Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects. J. Med. Chem. 2021 64 10 6949 6971 10.1021/acs.jmedchem.1c00491 34006099
    [Google Scholar]
  30. Anwar K.R. Badruddeen; Akhtar, J.; Khan, M.I.; Ahmad, M. An outlook on pathological pathways of diabetes and molecular mechanisms of anti-diabetic phytobioactives. Letters in Functional Foods 2023 1 1 e180723218858 10.2174/2666939001666230718142652
    [Google Scholar]
  31. Mohapatra S. Ranjit S. Pattnaik G. Parida P. Dutta S. Ghosh G. Rath G. Kar B. Potential role of indian spices in the management of diabetic complication: A pre-clinical and clinical review. Curr. Rev. Clin. Exp. Pharmacol. 2025 20 2 140 157 10.2174/0127724328331153240918093157 40326265
    [Google Scholar]
  32. Kaiserman K. Jung H. Benabbad I. Karges B. Polak M. Rosilio M. 20 Years of insulin lispro in pediatric type 1 diabetes: A review of available evidence. Pediatr. Diabetes 2017 18 2 81 94 10.1111/pedi.12401 27390032
    [Google Scholar]
  33. Preumont V. Buysschaert M. Current status of insulin degludec in type 1 and type 2 diabetes based on randomized and observational trials. Diabetes Metab. 2020 46 2 83 88 10.1016/j.diabet.2019.04.007 31055056
    [Google Scholar]
  34. Chan J. Cheng-Lai A. Inhaled Insulin. Cardiol. Rev. 2017 25 3 140 146 10.1097/CRD.0000000000000143 28379903
    [Google Scholar]
  35. Huang Q. Zeng Y. Qiu Y. Zou J. Li F. Liu X. Nezamzadeh-Ejhieh A. Song H. Liu J. Applications and prospects of new transdermal drug delivery system based on metal-organic frameworks for diabetic wound healing. Dyes Pigments 2024 222 111865 10.1016/j.dyepig.2023.111865
    [Google Scholar]
  36. Schafer N. Balwierz R. Biernat P. Ochędzan-Siodłak W. Lipok J. Natural ingredients of transdermal drug delivery systems as permeation enhancers of active substances through the Stratum Corneum. Mol. Pharm. 2023 20 7 3278 3297 10.1021/acs.molpharmaceut.3c00126 37279070
    [Google Scholar]
  37. Deacon B.N. Piasentin N. Cai Q. Chen T. Lian G. An examination of published datasets of skin permeability and partition coefficients. Toxicol. In Vitro 2023 93 105702 10.1016/j.tiv.2023.105702 37769857
    [Google Scholar]
  38. Naser Y.A. Tekko I.A. Vora L.K. Peng K. Anjani Q.K. Greer B. Elliott C. McCarthy H.O. Donnelly R.F. Hydrogel-forming microarray patches with solid dispersion reservoirs for transdermal long-acting microdepot delivery of a hydrophobic drug. J. Control. Release 2023 356 416 433 10.1016/j.jconrel.2023.03.003 36878320
    [Google Scholar]
  39. Kirtania R Parvin R Barman S Chakraborty S Das L Ghosal K. A comprehensive review on management and treatment of arthritis specially emphasizing treatment with transdermal patch. Curr. In-dian Sci. 2023 1 e2210299X276015 10.2174/012210299X276015231102052904
    [Google Scholar]
  40. Chen Y. An Q. Teng K. Zhang Y. Zhao Y. Latest development and versatile applications of highly integrating drug delivery patch. Eur. Polym. J. 2022 170 111164 10.1016/j.eurpolymj.2022.111164
    [Google Scholar]
  41. Herman A. Herman A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 2015 67 4 473 485 10.1111/jphp.12334 25557808
    [Google Scholar]
  42. Lee I.C. Lin W.M. Shu J.C. Tsai S.W. Chen C.H. Tsai M.T. Formulation of two‐layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J. Biomed. Mater. Res. A 2017 105 1 84 93 10.1002/jbm.a.35869 27539509
    [Google Scholar]
  43. Aung N.N. Ngawhirunpat T. Rojanarata T. Patrojanasophon P. Pamornpathomkul B. Opanasopit P. Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles. Int. J. Pharm. 2020 586 119508 10.1016/j.ijpharm.2020.119508 32512227
    [Google Scholar]
  44. Jin M. Jeon W.J. Lee H. Jung M. Kim H.E. Yoo H. Won J.H. Kim J.C. Park J.H. Yang M.J. Lee H.K. Cho C.W. Preparation and evaluation of rapid disintegrating formulation from coated microneedle. Drug Deliv. Transl. Res. 2022 12 2 415 425 10.1007/s13346‑021‑01046‑w 34494223
    [Google Scholar]
  45. Putri H.E. Utami R.N. Aliyah; Wahyudin, E.; Oktaviani, W.W.; Mudjahid, M.; Permana, A.D. Dissolving microneedle formulation of ceftriaxone: Effect of polymer concentrations on characterisation and Ex Vivo Permeation Study. J. Pharm. Innov. 2022 17 4 1176 1188 10.1007/s12247‑021‑09593‑y
    [Google Scholar]
  46. Al-Nimry S.S. Alkilani A.Z. Alda’ajeh N.A. Transdermal drug delivery of rizatriptan using microneedles array patch: Preparation, characterization and ex-vivo/in-vivo study. Pharm. Dev. Technol. 2024 29 7 776 789 10.1080/10837450.2024.2393218 39159078
    [Google Scholar]
  47. Dardano P. De Martino S. Battisti M. Miranda B. Rea I. De Stefano L. One-Shot fabrication of polymeric hollow microneedles by standard photolithography. Polymers 2021 13 4 520 10.3390/polym13040520 33572383
    [Google Scholar]
  48. Albadr A.A. Tekko I.A. Vora L.K. Ali A.A. Laverty G. Donnelly R.F. Thakur R.R.S. Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections. Drug Deliv. Transl. Res. 2022 12 4 931 943 10.1007/s13346‑021‑01032‑2 34302273
    [Google Scholar]
  49. Choupani A. Temucin E.S. Ciftci E. Bakan F. Camic B.T. Ozkoc G. Sezen M. Korkusuz P. Korkusuz F. Bediz B. Design of poly(vinyl pyrrolidone) and poly(ethylene glycol) microneedle arrays for delivering glycosaminoglycan, chondroitin sulfate, and hyaluronic acid. J. Biomater. Sci. Polym. Ed. 2025 36 1 64 85 10.1080/09205063.2024.2392914 39264737
    [Google Scholar]
  50. Lim S.H. Kathuria H. Amir M.H.B. Zhang X. Duong H.T.T. Ho P.C.L. Kang L. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J. Control. Release 2021 329 907 918 10.1016/j.jconrel.2020.10.021 33068646
    [Google Scholar]
  51. Marathe D. Bhuvanashree V.S. Mehta C.H. T, A.; Nayak, U.Y. Low‐Frequency Sonophoresis: A promising strategy for enhanced transdermal delivery. Adv. Pharmacol. Pharm. Sci. 2024 2024 1 1247450 10.1155/2024/1247450 38938593
    [Google Scholar]
  52. Li S. Xu J. Li R. Wang Y. Zhang M. Li J. Yin S. Liu G. Zhang L. Li B. Gu Q. Su Y. Stretchable electronic facial masks for sonophoresis. ACS Nano 2022 16 4 5961 5974 10.1021/acsnano.1c11181 35363481
    [Google Scholar]
  53. Ammar H.O. Mohamed M.I. Tadros M.I. Fouly A.A. High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: Ex-vivo and in-vivo characterization studies. J. Pharm. Investig. 2020 50 6 613 624 10.1007/s40005‑020‑00491‑y
    [Google Scholar]
  54. Xie X. Kurashina Y. Matsui M. Nomoto T. Itoh M. Okano H.J. Nakamura K. Nishiyama N. Kitamoto Y. Transdermal delivery of bFGF with sonophoresis facilitated by chitosan nanocarriers. J. Drug Deliv. Sci. Technol. 2022 75 103675 10.1016/j.jddst.2022.103675
    [Google Scholar]
  55. Li B. Huang G. Ma Z. Qin S. Ultrasound-assisted transdermal delivery of alendronate for the treatment of osteoporosis. Acta Biochim. Pol. 2020 67 2 173 179 10.18388/abp.2020_5162 32558528
    [Google Scholar]
  56. Ramkanth S. Anitha P. Gayathri R. Mohan S. Babu D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur. J. Pharm. Sci. 2021 162 105811 10.1016/j.ejps.2021.105811 33757828
    [Google Scholar]
  57. Halder J. Rath G. Rai V.K. Cyclosporine coated microneedle for transcutaneous delivery: Characterization, in vitro evaluation, and in vivo anti-psoriatic efficacy against IMQ-induced psoriasis. J. Drug Deliv. Sci. Technol. 2022 73 103450 10.1016/j.jddst.2022.103450
    [Google Scholar]
  58. Park D. Won J. Lee G. Lee Y. Kim C.W. Seo J. Sonophoresis with ultrasound‐responsive liquid‐core nuclei for transdermal drug delivery. Skin Res. Technol. 2022 28 2 291 298 10.1111/srt.13129 35034386
    [Google Scholar]
  59. Ahsan A. Tian W.X. Farooq M.A. Khan D.H. An overview of hydrogels and their role in transdermal drug delivery. Int. J. Polym. Mater. 2021 70 8 574 584 10.1080/00914037.2020.1740989
    [Google Scholar]
  60. Bahmani S. Khajavi R. Ehsani M. Rahimi M.K. Kalaee M.R. A development of a gelatin and sodium carboxymethyl cellulose hydrogel system for dual-release transdermal delivery of lidocaine hydrochloride. Int. J. Biol. Macromol. 2025 284 Pt 2 138034 10.1016/j.ijbiomac.2024.138034 39613075
    [Google Scholar]
  61. Patil S.B. Inamdar S.Z. Reddy K.R. Raghu A.V. Akamanchi K.G. Inamadar A.C. Das K.K. Kulkarni R.V. Functionally tailored electro-sensitive poly(acrylamide)-g-pectin copolymer hydrogel for transdermal drug delivery application: Synthesis, characterization, in-vitro and ex-vivo evaluation. Drug Deliv. Lett. 2020 10 3 185 196 10.2174/2210303110666200206114632
    [Google Scholar]
  62. Panthi V.K. Imran M. Chaudhary A. Paudel K.R. Mohammed Y. The significance of quercetin-loaded advanced nanoformulations for the management of diabetic wounds. Nanomedicine (Lond.) 2023 18 4 391 411 10.2217/nnm‑2022‑0281 37140389
    [Google Scholar]
  63. Zhang L. Huang T. Bi J. Zheng Y. Lu C. Hui Q. Wang X. Lin X. Long-Term Toxicity Study of Topical Administration of a Highly-Stable rh-aFGF Carbomer 940 Hydrogel in a Rabbit Skin Wound Model. Front. Pharmacol. 2020 11 58 10.3389/fphar.2020.00058 32153396
    [Google Scholar]
  64. Hou X. Li J. Hong Y. Ruan H. Long M. Feng N. Zhang Y. Advances and prospects for hydrogel-forming microneedles in transdermal drug delivery. Biomedicines 2023 11 8 2119 10.3390/biomedicines11082119 37626616
    [Google Scholar]
  65. Kshirsagar S.M. Viswaroopan N. Ghosh M. Junaid M.S.A. Haque S. Khan J. Muzaffar S. Srivastava R.K. Athar M. Banga A.K. Development of 4-phenylbutyric acid microsponge gel formulations for the treatment of lewisite-mediated skin injury. Drug Deliv. Transl. Res. 2025 15 2 638 654 10.1007/s13346‑024‑01620‑y 38802678
    [Google Scholar]
  66. Zheng Y. Ye R. Gong X. Yang J. Liu B. Xu Y. Nie G. Xie X. Jiang L. Iontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules. Microsyst. Nanoeng. 2023 9 1 35 10.1038/s41378‑023‑00515‑1 36987502
    [Google Scholar]
  67. Sivadasan D. Madkhali O.A. The design features, quality by design approach, characterization, therapeutic applications, and clinical considerations of transdermal drug delivery systems—a comprehensive review. Pharmaceuticals 2024 17 10 1346 10.3390/ph17101346 39458987
    [Google Scholar]
  68. Hu J. An Y. Wang W. Yang J. Niu W. Jiang X. Li K. Jiang C. Ye J. Enhanced transdermal delivery of pioglitazone hydrochloride via conductive hydrogel microneedles combined with iontophoresis. Int. J. Pharm. X 2025 9 100317 10.1016/j.ijpx.2025.100317 40026644
    [Google Scholar]
  69. Noor A.M. Zakaria Z. Johari S. Sabani N. Wahab Y. Manaf A.A. Numerical simulation of transdermal iontophoretic drug delivery system. J. Phys. Conf. Ser. 2021 2071 1 012026 10.1088/1742‑6596/2071/1/012026
    [Google Scholar]
  70. Bakshi P. Vora D. Hemmady K. Banga A.K. Iontophoretic skin delivery systems: Success and failures. Int. J. Pharm. 2020 586 119584 10.1016/j.ijpharm.2020.119584 32603836
    [Google Scholar]
  71. Arshad M.S. Hussain S. Zafar S. Rana S.J. Ahmad N. Jalil N.A. Ahmad Z. Improved transdermal delivery of rabies vaccine using iontophoresis coupled microneedle approach. Pharm. Res. 2023 40 8 2039 2049 10.1007/s11095‑023‑03521‑0 37186072
    [Google Scholar]
  72. Ita K. Transdermal iontophoretic drug delivery: Advances and challenges. J. Drug Target. 2016 24 5 386 391 10.3109/1061186X.2015.1090442 26406291
    [Google Scholar]
  73. Vaseem R.S. D’cruz A. Shetty S. Hafsa; Vardhan, A.; R, S.S.; Marques, S.M.; Kumar, L.; Verma, R. Transdermal drug delivery systems: A focused review of the physical methods of permeation enhancement. Adv. Pharm. Bull. 2023 ••• 1 10.34172/apb.2024.018 38585458
    [Google Scholar]
  74. Maniwongwichit N. Morarad R. Sakunpongpitiporn P. Parinyanitikul N. Paradee N. Sirivat A. Magnetically controlled transdermal delivery of gemcitabine via xanthan gum-coated magnetic nanoparticles embedded in gellan gum cryogel. Mater. Chem. Phys. 2024 326 129836 10.1016/j.matchemphys.2024.129836
    [Google Scholar]
  75. Rassolov P. Ali J. Siegrist T. Humayun M. Mohammadigoushki H. Magnetophoresis of paramagnetic metal ions in porous media. Soft Matter 2024 20 11 2496 2508 10.1039/D3SM01607B 38385969
    [Google Scholar]
  76. Imran M. Affandi A.M. Alam M.M. Khan A. Khan A.I. Advanced biomedical applications of iron oxide nanostructures based ferrofluids. Nanotechnology 2021 32 42 422001 10.1088/1361‑6528/ac137a 34252891
    [Google Scholar]
  77. Ayansiji A.O. Dighe A.V. Linninger A.A. Singh M.R. Constitutive relationship and governing physical properties for magnetophoresis. Proc. Natl. Acad. Sci. USA 2020 117 48 30208 30214 10.1073/pnas.2018568117 33203682
    [Google Scholar]
  78. Torres-Castro K. Acuña-Umaña K. Lesser-Rojas L. Reyes D. Microfluidic blood separation: Key technologies and critical figures of merit. Micromachines 2023 14 11 2117 10.3390/mi14112117 38004974
    [Google Scholar]
  79. Rajeswari R. Jothilakshmi R. Magnetic Nanoparticles as Drug Carriers.: Review. Mater. Sci. Forum 2014 807 1 12 [Review [Review 10.4028/www.scientific.net/MSF.807.1
    [Google Scholar]
  80. Chen X. Zhu L. Li R. Pang L. Zhu S. Ma J. Du L. Jin Y. Electroporation-enhanced transdermal drug delivery: Effects of logP, pKa, solubility and penetration time. Eur. J. Pharm. Sci. 2020 151 105410 10.1016/j.ejps.2020.105410 32505795
    [Google Scholar]
  81. Kougkolos G. Laudebat L. Dinculescu S. Simon J. Golzio M. Valdez-Nava Z. Flahaut E. Skin electroporation for transdermal drug delivery: Electrical measurements, numerical model and molecule delivery. J. Control. Release 2024 367 235 247 10.1016/j.jconrel.2024.01.036 38244842
    [Google Scholar]
  82. Lee D.H. Lim S. Kwak S.S. Kim J. Advancements in skin‐mediated drug delivery: Mechanisms, techniques, and applications. Adv. Healthc. Mater. 2024 13 7 2302375 10.1002/adhm.202302375 38009520
    [Google Scholar]
  83. Zorec B. Škrabelj D. Marinček M. Miklavčič D. Pavšelj N. The effect of pulse duration, power and energy of fractional Er:YAG laser for transdermal delivery of differently sized FITC dextrans. Int. J. Pharm. 2017 516 1-2 204 213 10.1016/j.ijpharm.2016.10.060 27818244
    [Google Scholar]
  84. Thitilertdecha P. Wannawittayapa T. Buranaporn P. Rejuso-Kalbit C.R.B.S. Kupwiwat R. Poungpairoj P. Tantithavorn V. Onlamoon N. Manuskiatti W. Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery: Impact of triamcinolone acetonide formulation on drug permeation. Drug Deliv. Transl. Res. 2024 10.1007/s13346‑024‑01771‑y 39719540
    [Google Scholar]
  85. Panda P. Mohanty T. Mohapatra R. Advancements in transdermal drug delivery systems: Harnessing the potential of macromolecular assisted permeation enhancement and novel techniques. AAPS PharmSciTech 2025 26 1 29 10.1208/s12249‑024‑03029‑9 39789371
    [Google Scholar]
  86. Abbasi M. Heath B. Iontophoresis and electroporation-assisted microneedles: Advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv. Transl. Res. 2025 15 6 1962 1984 10.1007/s13346‑024‑01722‑7 39433696
    [Google Scholar]
  87. Phatale V. Vaiphei K.K. Jha S. Patil D. Agrawal M. Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release 2022 351 361 380 10.1016/j.jconrel.2022.09.025 36169040
    [Google Scholar]
  88. Shah SWA Li X Yuan H Shen H Quan S Pan G Innovative transdermal drug delivery systems: Benefits, challenges, and emerg-ing application. BMEMat 2025 e70001 10.1002/bmm2.70001
    [Google Scholar]
  89. Praca F.G. Petrilli R. Eloy J.O. Lee R.J. Lopes Badra Bentley M.V. Liquid-Crystalline nanodispersions containing monoolein for photodynamic therapy of skin diseases: A Mini-Review. Curr. Nanosci. 2017 13 5 10.2174/1573413713666170529115831
    [Google Scholar]
  90. George A. Shrivastav P.S. Photodynamic therapy with light emitting fabrics: A review. Arch. Dermatol. Res. 2021 314 10 929 936 10.1007/s00403‑021‑02301‑3 34797414
    [Google Scholar]
  91. Abdallah M. Shawky S. Shahien M. El-Horany H. Ahmed E. El-Housiny S. Development and evaluation of nano-vesicular emulsion-based gel as a promising approach for dermal atorvastatin delivery against inflammation. Int. J. Nanomedicine 2024 19 11415 11432 10.2147/IJN.S477001 39530108
    [Google Scholar]
  92. Garg U. Jain K. Dermal and transdermal drug delivery through vesicles and particles: Preparation and applications. Adv. Pharm. Bull. 2021 ••• 1 10.34172/apb.2022.006 35517881
    [Google Scholar]
  93. Sabareesh M. Rajangam J. Prakash Raj K.P. Yanadaiah J. Formulation and evaluation of novel vesicular nanoethosomal patches for transdermal delivery of zidovudine: In vitro, ex vivo, and in vivo pharmacokinetic investigations. J. Dispers. Sci. Technol. 2024 ••• 1 14 10.1080/01932691.2024.2444976
    [Google Scholar]
  94. Mahmoud A. Rady M. Abdel-Halim M. El-Shenawy B.M. Mansour S. Transdermal delivery of tofacitinib citrate via mannose-decorated transferosomes loaded with tofacitinib citrate in arthritic joints. Mol. Pharm. 2024 21 12 6458 6472 10.1021/acs.molpharmaceut.4c00496 39562501
    [Google Scholar]
  95. Sudhakar K. Mishra V. Jain S. Rompicherla N.C. Malviya N. Tambuwala M.M. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. Int. J. Pharm. 2021 610 121226 10.1016/j.ijpharm.2021.121226 34710540
    [Google Scholar]
  96. Madhumitha V. Sangeetha S. Transfersomes: A novel vesicular drug delivery system for enhanced permeation through skin. Res. J. Pharm. Technol 2020 13 5 2493 10.5958/0974‑360X.2020.00445.X
    [Google Scholar]
  97. Gupta R. Kumar A. Transfersomes: The ultra-deformable carrier system for non-invasive delivery of drug. Curr. Drug Deliv. 2021 18 4 408 420 10.2174/1567201817666200804105416 32753015
    [Google Scholar]
  98. Patel D. Chatterjee B. Identifying underlying issues related to the inactive excipients of transfersomes based drug delivery system. Curr. Pharm. Des. 2021 27 7 971 980 10.2174/1381612826666201016144354 33069192
    [Google Scholar]
  99. Khan D. Qindeel M. Ahmed N. Asad M.I. Shah K. Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis. Int. J. Pharm. 2021 610 121242 10.1016/j.ijpharm.2021.121242 34737113
    [Google Scholar]
  100. Deng Z. Yu R. Guo B. Stimuli-responsive conductive hydrogels: Design, properties, and applications. Mater. Chem. Front. 2021 5 5 2092 2123 10.1039/D0QM00868K
    [Google Scholar]
  101. Wong W.F. Ang K.P. Sethi G. Looi C.Y. Recent advancement of medical patch for transdermal drug delivery. Medicina 2023 59 4 778 10.3390/medicina59040778 37109736
    [Google Scholar]
  102. Lei Y. Yang G. Du F. Yi J. Quan L. Liu H. Zhou X. Gong W. Han J. Wang Y. Gao C. Formulation and evaluation of a drug-in-adhesive patch for transdermal delivery of colchicine. Pharmaceutics 2022 14 10 2245 10.3390/pharmaceutics14102245 36297680
    [Google Scholar]
  103. Saliy O. Popova M. Tarasenko H. Getalo O. Development strategy of novel drug formulations for the delivery of doxycycline in the treatment of wounds of various etiologies. Eur. J. Pharm. Sci. 2024 195 106636 10.1016/j.ejps.2023.106636 38185273
    [Google Scholar]
  104. Akhlaq M. Azad A.K. Fuloria S. Meenakshi D.U. Raza S. Safdar M. Nawaz A. Subramaniyan V. Sekar M. Sathasivam K.V. Wu Y.S. Miret M.M. Fuloria N.K. Fabrication of tizanidine loaded patches using flaxseed oil and coriander oil as a penetration enhancer for transdermal delivery. Polymers 2021 13 23 4217 10.3390/polym13234217 34883720
    [Google Scholar]
  105. Bhairam M. Prasad J. Verma K. Jain P. Gidwani B. Formulation of transdermal patch of Losartan Potassium Glipizide for the treatment of hypertension diabetes. Mater. Today Proc. 2023 83 59 68 10.1016/j.matpr.2023.01.147
    [Google Scholar]
  106. Shafique N. Siddiqui T. Zaman M. Iqbal Z. Rasool S. Ishaque A. Siddique W. Alvi M.N. Transdermal patch, co-loaded with Pregabalin and Ketoprofen for improved bioavailability; in vitro studies. Polym. Polymer Compos. 2021 29 9 Suppl. S376 S388 10.1177/09673911211004516
    [Google Scholar]
  107. Yeoh S.C. Loh P.L. Murugaiyah V. Goh C.F. Development and characterisation of a topical methyl salicylate patch: Effect of solvents on adhesion and skin permeation. Pharmaceutics 2022 14 11 2491 10.3390/pharmaceutics14112491 36432686
    [Google Scholar]
  108. Kumar M. Trivedi V. Shukla A.K. Dev S.K. Effect of polymers on the physicochemical and drug release properties of transdermal patches of atenolol. Int. J. Appl. Pharm. 2018 10 4 68 10.22159/ijap.2018v10i4.24916
    [Google Scholar]
  109. Kumari R. Kumar Sharma V. Optimization of the formulation of transdermal patches of amiodarone. Research Journal of Pharmacy and Technology 2023 3739–42 3739 3742 10.52711/0974‑360X.2023.00617
    [Google Scholar]
  110. Varshosaz J. Minayian M. Ahmadi M. Ghassami E. Enhancement of solubility and antidiabetic effects of Repaglinide using spray drying technique in STZ-induced diabetic rats. Pharm. Dev. Technol. 2017 22 6 754 763 10.3109/10837450.2016.1143001 26895041
    [Google Scholar]
  111. Angellotti G. Di Prima G. Scarpaci A.G. D’Agostino F. Campisi G. De Caro V. Spray-Dried cytisine-loaded matrices: Development of transbuccal sustained-release tablets as a promising tool in smoking cessation therapy. Pharmaceutics 2022 14 8 1583 10.3390/pharmaceutics14081583 36015209
    [Google Scholar]
  112. A, S; Reddy, M; A, J In vivo evaluation of a novel zero order drug releasing transdermal system of rotigotine. Asian J. Pharm. Pharmacol. 2021 7 126 130 10.31024/ajpp.2021.7.3.3
    [Google Scholar]
  113. Kanmaz D. Osman B. Karaca E. A new lotus-leaf-inspired beaded nanofiber strategy for the development of cryogel/nanofiber hybrid structures. Fibers Polym. 2024 25 4 1233 1242 10.1007/s12221‑024‑00516‑5
    [Google Scholar]
  114. Srikakulam S.R. Devineni J. Mokkapati C. Venigalla Y. Pothuri A. Acchi A. Sharma S. A novel targeted nanoliposomal atorvastatin transdermal patch assisted with solid microneedles for improved bioavailability. Indian J. Pharm. Educ. Res. 2024 58 3 736 750 10.5530/ijper.58.3.82
    [Google Scholar]
  115. Zulcaif Z.N. Zafar N. Mahmood A. Sarfraz R.M. Elaissari A. Simvastatin loaded dissolvable microneedle patches with improved pharmacokinetic performance. Micromachines 2022 13 8 1304 10.3390/mi13081304 36014226
    [Google Scholar]
  116. Su T. Tang Z. Hu J. Zhu Y. Shen T. Innovative freeze-drying technique in the fabrication of dissolving microneedle patch: Enhancing transdermal drug delivery efficiency. Drug Deliv. Transl. Res. 2024 14 11 3112 3127 10.1007/s13346‑024‑01531‑y 38431532
    [Google Scholar]
  117. Obaidat R. Al-Shar’i N. Tashtoush B. Athamneh T. Enhancement of levodopa stability when complexed with β-cyclodextrin in transdermal patches. Pharm. Dev. Technol. 2018 23 10 986 997 10.1080/10837450.2016.1245319 27808002
    [Google Scholar]
  118. Bácskay I. Hosszú Z. Budai I. Ujhelyi Z. Fehér P. Kósa D. Haimhoffer Á. Pető Á. Formulation and evaluation of transdermal patches containing BGP-15. Pharmaceutics 2023 16 1 36 10.3390/pharmaceutics16010036 38258047
    [Google Scholar]
  119. Musazzi U.M. Ortenzi M.A. Gennari C.G.M. Casiraghi A. Minghetti P. Cilurzo F. Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing. Int. J. Pharm. 2020 586 119607 10.1016/j.ijpharm.2020.119607 32652181
    [Google Scholar]
  120. Tombs E.L. Nikolaou V. Nurumbetov G. Haddleton D.M. Transdermal delivery of ibuprofen utilizing a novel solvent-free pressure-sensitive adhesive (PSA): TEPI® Technology. J. Pharm. Innov. 2018 13 1 48 57 10.1007/s12247‑017‑9305‑x 29497462
    [Google Scholar]
  121. Kim E.J. Choi D.H. Quality by design approach to the development of transdermal patch systems and regulatory perspective. J. Pharm. Investig. 2021 51 6 669 690 10.1007/s40005‑021‑00536‑w
    [Google Scholar]
  122. Liparoti S. Franco P. Pantani R. De Marco I. Supercritical CO2 impregnation of caffeine in biopolymer films to produce anti-cellulite devices. J. Supercrit. Fluids 2022 179 105411 10.1016/j.supflu.2021.105411
    [Google Scholar]
  123. Mottola S. Viscusi G. Belvedere R. Petrella A. De Marco I. Gorrasi G. Production of mono and bilayer devices for wound dressing by coupling of electrospinning and supercritical impregnation techniques. Int. J. Pharm. 2024 660 124308 10.1016/j.ijpharm.2024.124308 38848800
    [Google Scholar]
  124. Geevarghese R. Shirolkar S. Formulation and evaluation of fluvastatin sodium drug-in-adhesive transdermal system. Journal of Research in Pharmacy 2020 24 4 562 571 10.35333/jrp.2020.204
    [Google Scholar]
  125. Ravula R. Herwadkar A.K. Abla M.J. Little J. Banga A.K. Formulation optimization of a drug in adhesive transdermal analgesic patch. Drug Dev. Ind. Pharm. 2016 42 6 862 870 10.3109/03639045.2015.1071832
    [Google Scholar]
  126. Sharma A. Verma N. Formulation and Evaluation of Double-layered (Matrix and Drug-in-adhesive) Transdermal Patches of Diclofenac Diethylamine: In vitro and ex vivo Permeation Studies. Indian J. Pharm. Educ. Res. 2023 57 2s s234 s243 10.5530/ijper.57.2s.27
    [Google Scholar]
  127. Čukić M. Galovic S. Mathematical modeling of anomalous diffusive behavior in transdermal drug-delivery including time-delayed flux concept. Chaos Solitons Fractals 2023 172 113584 10.1016/j.chaos.2023.113584
    [Google Scholar]
  128. Zhao J. Xu G. Yao X. Zhou H. Lyu B. Pei S. Wen P. Microneedle-based insulin transdermal delivery system: Current status and translation challenges. Drug Deliv. Transl. Res. 2022 12 10 2403 2427 10.1007/s13346‑021‑01077‑3 34671948
    [Google Scholar]
  129. Xie Y. Wu H. Chen Z. Sun Q. Liu X. Jiang J. Wang B. Chen Z. Non-invasive evaluation of transdermal drug delivery using 3-D transient triplet differential (TTD) photoacoustic imaging. Photoacoustics 2023 32 100530 10.1016/j.pacs.2023.100530 37645257
    [Google Scholar]
  130. Kaushik U. Joshi S.C. Formulation and evaluation of Momordica charantia fruit extract based transdermal drug delivery against diabetes. Biomedical and Therapeutics Letters 11 1 10.62110/sciencein.btl.2024.v11.905 2024
    [Google Scholar]
  131. Karwasra R. Sharma S. Sharma I. Shahid N. Umar T. Diabetology and Nanotechnology: A Compelling Combination. Recent Pat. Nanotechnol. 2025 19 1 4 16 10.2174/0118722105253055231016155618 37937555
    [Google Scholar]
  132. Ng L.C. Gupta M. Transdermal drug delivery systems in diabetes management: A review. Asian Journal of Pharmaceutical Sciences 2020 15 1 13 25 10.1016/j.ajps.2019.04.006 32175015
    [Google Scholar]
  133. Prasad P.S. Imam S.S. Aqil M. Sultana Y. Ali A. QbD-based carbopol transgel formulation: Characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes. Drug Deliv. 2016 23 3 1047 1056 10.3109/10717544.2014.936536 25033041
    [Google Scholar]
  134. Qadir A. Ullah S.N.M.N. Gupta D.K. Khan N. Warsi M.H. Kamal M. Combinatorial drug‐loaded quality by design adapted transliposome gel formulation for dermal delivery: In vitro and dermatokinetic study. J. Cosmet. Dermatol. 2023 22 10 2839 2851 10.1111/jocd.15792 37309263
    [Google Scholar]
  135. Nabi I. Bachir Y.N. Djellouli S. Smain M. Hadj-Ziane-Zafour A. In vivo antidiabetic effect and antioxidant potential of Stevia Rebaudiana mixed with Tragacanth gum in orange nectar. Food. Hydrocolloids for Health. 2023 4 100147 10.1016/j.fhfh.2023.100147
    [Google Scholar]
  136. Lombardo F. Passanisi S. Tinti D. Messina M.F. Salzano G. Rabbone I. High frequency of dermatological complications in children and adolescents with type 1 diabetes: A web-based survey. J. Diabetes Sci. Technol. 2021 15 6 1377 1381 10.1177/1932296820947072 32757778
    [Google Scholar]
  137. Ericsson A. Borgström K. Kumlien C. Gershater Annersten M. Ruzgas T. Engblom J. Gudmundsson P. Lazer V. Jankovskaja S. Lavant E. Ågren-Witteschus S. Björklund S. Salim S. Åström M. Acosta S. Treatment effects of two pharmaceutical skin care creams for xerotic feet among persons with diabetes: Rationale and design of a two-armed double blind randomized controlled trial. Contemp. Clin. Trials Commun. 2024 42 101372 10.1016/j.conctc.2024.101372 39345688
    [Google Scholar]
  138. Goswami T. Audett J. Chemistry, manufacturing and controls in passive transdermal drug delivery systems. Ther. Deliv. 2015 6 9 1071 1079 10.4155/tde.15.57 26389777
    [Google Scholar]
  139. Aouta E. Patra C.N. Design, optimization and characterization of combined ethosomal transdermal patch of glimepiride and duloxetine drug regimen for diabetes and associated neuropathic pain management. Curr. Drug Ther. 2022 17 5 359 368 10.2174/1574885517666220525122859
    [Google Scholar]
  140. Zadymova N.M. Poteshnova M.V. Microemulsions and microheterogeneous microemulsion-based polymeric matrices for transdermal delivery of lipophilic drug (Felodipine). Colloid Polym. Sci. 2019 297 3 453 468 10.1007/s00396‑018‑4447‑z
    [Google Scholar]
  141. M.A. Sudheer, P.; Sogali, B.S. Nanostructured lipid carrier mediated transdermal delivery system of glibenclamide for gestational diabetes: Pharmacokinetic and pharmacodynamic evaluation. Curr. Drug Deliv. 2024 21 1386 1407 10.2174/0115672018274038231212105440
    [Google Scholar]
  142. Noor N.M. Abdul-Aziz A. Sheikh K. Somavarapu S. Taylor K.M.G. In Vitro Performance of dutasteride-nanostructured lipid carriers coated with lauric acid-chitosan oligomer for dermal delivery. Pharmaceutics 2020 12 10 994 10.3390/pharmaceutics12100994 33092119
    [Google Scholar]
  143. Kanazawa T. Hamasaki T. Endo T. Tamano K. Sogabe K. Seta Y. Ohgi T. Okada H. Functional peptide nanocarriers for delivery of novel anti-RelA RNA interference agents as a topical treatment of atopic dermatitis. Int. J. Pharm. 2015 489 1-2 261 267 10.1016/j.ijpharm.2015.05.003 25956048
    [Google Scholar]
  144. Darvishha S. Amiri S. dermal insulin delivery based on polymeric systems. Int. J. Polym. Mater. 2019 68 18 1118 1132 10.1080/00914037.2018.1534113
    [Google Scholar]
  145. Messer L.H. Berget C. Beatson C. Polsky S. Forlenza G.P. Preserving skin integrity with chronic device use in diabetes. Diabetes Technol. Ther. 2018 20 S254 10.1089/dia.2018.0080
    [Google Scholar]
  146. Schaap M.J. Bruins F.M. van den Brink N.J.M. Orro K. Groenewoud H.M.M. de Jong E.M.G.J. van den Bogaard E.H. Seyger M.M.B. Challenges in noninvasive skin biomarker measurements in daily practice: A longitudinal study on skin surface protein detection by the Transdermal Analysis Patch in pediatric psoriasis. Skin Pharmacol. Physiol. 2022 35 6 319 327 10.1159/000527258 36202075
    [Google Scholar]
  147. Kandil L.S. Hanafy A.S. Abdelhady S.A. Galantamine transdermal patch shows higher tolerability over oral galantamine in rheumatoid arthritis rat model. Drug Dev. Ind. Pharm. 2020 46 6 996 1004 10.1080/03639045.2020.1764025 32378971
    [Google Scholar]
  148. Vidrine D.J. Bui T.C. Businelle M.S. Shih Y.C.T. Sutton S.K. Shahani L. Hoover D.S. Bowles K. Vidrine J.I. Evaluating the efficacy of automated smoking treatment for people with hiv: Protocol for a randomized controlled trial. JMIR Res. Protoc. 2021 10 11 e33183 10.2196/33183 34787590
    [Google Scholar]
  149. Sultana N. Waheed A. Ali A. Jahan S. Aqil M. Sultana Y. Mujeeb M. Exploring new frontiers in drug delivery with minimally invasive microneedles: Fabrication techniques, biomedical applications, and regulatory aspects. Expert Opin. Drug Deliv. 2023 20 6 739 755 10.1080/17425247.2023.2201494 37038271
    [Google Scholar]
  150. Yuan F. Spence J.D. Tarride J. Cost‐utility analysis of low‐dose pioglitazone in a population with prediabetes and a history of stroke or transient ischemic attack. JAHA 2024 2024 e034531 10.1161/JAHA.123.034531
    [Google Scholar]
  151. Kamrul-Hasan A.B.M. Hannan M.A. Alam M.S. Rahman M.M. Asaduzzaman M. Mustari M. Paul A.K. Kabir M.L. Chowdhury S.R. Talukder S.K. Sarkar S. Hannan M.A. Islam M.R. Iftekhar M.H. Robel M.A.B. Selim S. Comparison of simplicity, convenience, safety, and cost-effectiveness between use of insulin pen devices and disposable plastic syringes by patients with type 2 diabetes mellitus: A cross-sectional study from Bangladesh. BMC Endocr. Disord. 2023 23 1 37 10.1186/s12902‑023‑01292‑8 36782190
    [Google Scholar]
  152. Zhang Y. Yu J. Kahkoska A.R. Wang J. Buse J.B. Gu Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 2019 139 51 70 10.1016/j.addr.2018.12.006 30528729
    [Google Scholar]
  153. Abbasi M. Boka D.A. DeLoit H. Nanomaterial-Enhanced microneedles: Emerging therapies for diabetes and obesity. Pharmaceutics 2024 16 10 1344 10.3390/pharmaceutics16101344 39458672
    [Google Scholar]
  154. Beran D. Ewen M. Lipska K. Hirsch I.B. Yudkin J.S. Availability and affordability of essential medicines: Implications for global diabetes treatment. Curr. Diab. Rep. 2018 18 8 48 10.1007/s11892‑018‑1019‑z 29907884
    [Google Scholar]
  155. Agirrezabal I. Sánchez-Iriso E. Mandar K. Cabasés J.M. Real-World budget impact of the adoption of insulin glargine biosimilars in primary care in england (2015–2018). Diabetes Care 2020 43 8 1767 1773 10.2337/dc19‑2395 32527798
    [Google Scholar]
  156. de Vries S.A.G. Bak J.C.G. Verheugt C.L. Stangenberger V.A. Mul D. Wouters M.W.J.M. Nieuwdorp M. Sas T.C.J. Healthcare expenditure and technology use in pediatric diabetes care. BMC Endocr. Disord. 2023 23 1 72 10.1186/s12902‑023‑01316‑3 37029362
    [Google Scholar]
  157. Okpala P. Assessment of the influence of technology on the cost of healthcare service and patient’s satisfaction. Int. J. Healthc. Manag. 2018 11 4 351 355 10.1080/20479700.2017.1337623
    [Google Scholar]
  158. Yang J. Chen Z. Ye R. Li J. Lin Y. Gao J. Ren L. Liu B. Jiang L. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Deliv. 2018 25 1 1728 1739 10.1080/10717544.2018.1507060 30182757
    [Google Scholar]
  159. Wang C. Jiang X. Zeng Y. Terry R.N. Li W. Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies. Medicine in Drug Discovery 2022 13 100118 10.1016/j.medidd.2021.100118
    [Google Scholar]
  160. Chatterjee B. Reddy A. Santra M. Khamanga S. Amorphization of drugs for transdermal delivery-a recent update. Pharmaceutics 2022 14 5 983 10.3390/pharmaceutics14050983 35631568
    [Google Scholar]
  161. Aich K. Singh T. Dang S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv. Transl. Res. 2022 12 7 1556 1568 10.1007/s13346‑021‑01056‑8 34564827
    [Google Scholar]
  162. Blonde L Bailey T Strong J Levin P Real-world evidence in di-abetes: Relevance to clinical practice J. Fam. Pract 2019 68 3 jfp_6803l
    [Google Scholar]
  163. Wilkins C.H. Edwards T.L. Stroud M. Kennedy N. Jerome R.N. Lawrence C.E. Kusnoor S.V. Nelson S. Byrne L.M. Boone L.R. Dunagan J. Israel T. Rodweller C. Drury B. Kost R.G. Pulley J.M. Bernard G.R. Harris P.A. The Recruitment Innovation Center: Developing novel, person-centered strategies for clinical trial recruitment and retention. J. Clin. Transl. Sci. 2021 5 1 e194 10.1017/cts.2021.841 34888064
    [Google Scholar]
  164. Meurer W.J. Lewis R.J. Tagle D. Fetters M.D. Legocki L. Berry S. Connor J. Durkalski V. Elm J. Zhao W. Frederiksen S. Silbergleit R. Palesch Y. Berry D.A. Barsan W.G. An overview of the adaptive designs accelerating promising trials into treatments (ADAPT-IT) project. Ann. Emerg. Med. 2012 60 4 451 457 10.1016/j.annemergmed.2012.01.020 22424650
    [Google Scholar]
  165. Lentz T.A. Curtis L.H. Rockhold F.W. Martin D. Andersson T.L.G. Arias C. Berlin J.A. Binns C. Cook A. Cziraky M. Dent R. Desai M. Emmett A. Esserman D. George J. Hantel S. Heagerty P. Hernandez A.F. Hucko T. Khan N. Lee S.F. LoCasale R. Mardekian J. McCall D. Monda K. Normand S.L. Riesmeyer J. Roe M. Roessig L. Scott R. Siedentop H. Waldstreicher J. Wang L. Weerakkody G. Wolf M. Ellenberg S.S. Designing, Conducting, Monitoring, and Analyzing Data from Pragmatic Randomized Clinical Trials: Proceedings from a Multi-stakeholder Think Tank Meeting. Ther. Innov. Regul. Sci. 2020 54 6 1477 1488 10.1007/s43441‑020‑00175‑7 32514736
    [Google Scholar]
  166. Coert R.M.H. Timmis J.K. Boorsma A. Pasman W.J. Stakeholder perspectives on barriers and facilitators for the adoption of virtual clinical trials: Qualitative study. J. Med. Internet Res. 2021 23 7 e26813 10.2196/26813 34255673
    [Google Scholar]
  167. Sikavi C. Najarian L. Saab S. Similar sustained virologic response in real-world and clinical trial studies of hepatitis c/human immunodeficiency virus coinfection. Dig. Dis. Sci. 2018 63 11 2829 2839 10.1007/s10620‑018‑5215‑0 30094623
    [Google Scholar]
  168. Kobat H. Elkonaissi I. Foreman E. O’Brien M. Dorak M.T. Nabhani-Gebara S. Investigating the efficacy of osimertinib and crizotinib in phase 3 clinical trials on anti-cancer treatment-induced cardiotoxicity: Are real-world studies the way forward? J. Oncol. Pharm. Pract. 2023 29 3 646 662 10.1177/10781552221077417 35167392
    [Google Scholar]
  169. Shrestha N. Shahbazi M.A. Araújo F. Mäkilä E. Raula J. Kauppinen E.I. Salonen J. Sarmento B. Hirvonen J. Santos H.A. Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials 2015 68 9 20 10.1016/j.biomaterials.2015.07.045 26253804
    [Google Scholar]
  170. Rabiei M. Kashanian S. Samavati S.S. Jamasb S. McInnes S.J.P. Nanomaterial and advanced technologies in transdermal drug delivery. J. Drug Target. 2020 28 4 356 367 10.1080/1061186X.2019.1693579 31851847
    [Google Scholar]
  171. Cooray S.D. Boyle J.A. Soldatos G. Thangaratinam S. Teede H.J. The Need for personalized risk-stratified approaches to treatment for gestational diabetes: A narrative review. Semin. Reprod. Med. 2020 38 6 384 388 10.1055/s‑0041‑1723778 33648005
    [Google Scholar]
  172. Egorov E. Pieters C. Korach-Rechtman H. Shklover J. Schroeder A. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv. Transl. Res. 2021 11 2 345 352 10.1007/s13346‑021‑00929‑2 33585972
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002382343250917074945
Loading
/content/journals/cdm/10.2174/0113892002382343250917074945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test