Skip to content
2000
image of Nanocochleates in Clinical Trials: A Review of Current Status, Challenges, and Future Directions

Abstract

Nanocochleates are novel lipid-based nanoparticles with a distinctive, multilayered, rolled-up structure that resembles the spirals of a cochlea. They form when bivalent cations, such as calcium, interact with negatively charged lipid bilayers. These structures are gaining popularity in drug delivery due to their stability, biocompatibility, and ability to encapsulate and shield a wide range of bioactive substances, including hydrophobic drugs, peptides, and nucleic acids. Nanocochelates can withstand harsh environmental conditions, such as acidic pH or enzymatic degradation, making them suitable carriers for oral, injectable, and transdermal medication administration. Their unique construction enables the gradual release of encapsulated medicines, thereby increasing bioavailability and therapeutic effectiveness. Additionally, nanocochleates can target specific tissues or cells, allowing for precision medical methods.

A recent study demonstrates their promise for overcoming issues in the administration of poorly water-soluble medicines, gene therapy agents, and vaccines. Nanocochleates have shown promise in preclinical trials for the management of inflammatory diseases, cancer, and infectious diseases. Despite their potential, further research is needed to optimize large-scale manufacturing, maintain uniform quality, and address regulatory challenges. This review provides a detailed discussion of nanocochleate preparation methods, with a particular focus on entrapment, hydrogel approaches, and dialysis methods. The paper reviews characterization experiments, including particle size measurements, encapsulation effectiveness, surface morphology, and in vitro release tests. Furthermore, the article discusses the feasibility of industrial-scale formation with pure lipid feedstock.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002381978250909113807
2025-09-29
2025-11-05
Loading full text...

Full text loading...

References

  1. Bhosale R.R. Ghodake P.P. Mane A.N. Ghadge A.A. Nanocochleates: A novel carrier for drug transfer. J. Sci. Ind. Res. 2013 2 964 969
    [Google Scholar]
  2. Tilawat M. Bonde S. Nanocochleates: A potential drug delivery system. J. Mol. Liq. 2021 334 116115 116115 10.1016/j.molliq.2021.116115
    [Google Scholar]
  3. Zarif L. Elongated supramolecular assemblies in drug delivery. J. Control. Release 2002 81 1-2 7 23 10.1016/S0168‑3659(02)00010‑X 11992674
    [Google Scholar]
  4. Zarif L. Graybill J.R. Perlin D. Mannino R.J. Cochleates: New lipid-based drug delivery system. J. Liposome Res. 2000 10 4 523 538 10.3109/08982100009031116
    [Google Scholar]
  5. Changxue J. Zeliang Q. Zhiwen Y. Ping current development of a lipid-based nanocochleates containing amphotericin b for oral administration J. J. J. Drug Deliv. Sci. Technol. 2024 92 1 6
    [Google Scholar]
  6. He H. Lu Y. Qi J. Zhu Q. Chen Z. Wu W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019 9 1 36 48 10.1016/j.apsb.2018.06.005 30766776
    [Google Scholar]
  7. Song K.H. Chung S.J. Shim C.K. Enhanced intestinal absorption of salmon calcitonin (sCT) from proliposomes containing bile salts. J. Control. Release 2005 106 3 298 308 10.1016/j.jconrel.2005.05.016 15979756
    [Google Scholar]
  8. Panwar V. Mahajan V. Panwar A.S. Darwhekar G.N. Jain Nanocochleate: As drug delivery vehicle Int. Int. J. Pharma Bio Sci. 2011 1 31 38
    [Google Scholar]
  9. Verekar R. Desai S. Ayyanar M. Nadaf S. Gurav S. Nanocochleates: Revolutionizing lipid-based drug delivery with enhanced bioavailability, A review. Hybrid Adv. 2024 6 100215 10.1016/j.hybadv.2024.100215
    [Google Scholar]
  10. Aveling E. Zhou J. Lim Y.F. Mozafari Targeting lipidic nanocarriers: Current strategies and problems. Pharmakeftiki 2006 19 101 109
    [Google Scholar]
  11. Popescu C. Franzblau S. Zarif L. Cochleates potentiate the efficacy of antibacterial drug, clofazimine. 2001 Available from: https://www.researchgate.net/publication/291159405_Cochleates_potentiate_the_efficacy_of_antibacterial_drug_clofazimine
    [Google Scholar]
  12. Tipugade O. Patil S. Nakhare P. Insights of nanocochleates in conventional drug delivery system. 2024 Available From https://www.researchgate.net/publication/378342401_Review_Article_Insights_of_Nanocochleates_in_Conventional_Drug_Delivery_System#:~:text=Nanocochleates%20are%20a%20novel%20drug,the%20harsh%20world%20around%20it
    [Google Scholar]
  13. Ramasamy T. Khandasamy U. Hinabindhu R. Kona nanocochleate-a new drug delivery system fabad J. J. Pharm. Sci. 2009 34 91 101
    [Google Scholar]
  14. Nadaf S. Killedar Novel liposome derived nanoparticulate drug delivery system: Fabrication and prospects. Creat J. Pharm. Res. 2015 1 117 128
    [Google Scholar]
  15. Huang L. Yang J. Wang T. Gao J. Xu D. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J. Nanobiotechnology 2022 20 1 49 10.1186/s12951‑022‑01257‑4 35073914
    [Google Scholar]
  16. Banerjee S. Kundu A. Lipid-drug conjugates: A potential nanocarrier system for oral drug delivery applications. Daru 2018 26 1 65 75 10.1007/s40199‑018‑0209‑1 30159763
    [Google Scholar]
  17. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  18. Jalali A. Moghimipour E. Akhgari A. Enhancing effect of bile salts on gastrointestinal absorption of insulin. Trop. J. Pharm. Res. 2014 13 11 1797 1802 10.4314/tjpr.v13i11.4
    [Google Scholar]
  19. Degim Z. Ünal N. Eşsiz D. Abbasoglu U. The effect of various liposome formulations on insulin penetration across Caco-2 cell monolayer. Life Sci. 2004 75 23 2819 2827 10.1016/j.lfs.2004.05.027 15464833
    [Google Scholar]
  20. Jana S. Lad M. Subramanian S. Sanap bilosomes as non-invasive drug delivery system. IJCRT 2022 10 858 869
    [Google Scholar]
  21. Lipa-Castro A. Legrand F.X. Barratt G. Cochleate drug delivery systems: An approach to their characterization. Int. J. Pharm. 2021 610 121225 10.1016/j.ijpharm.2021.121225 34710542
    [Google Scholar]
  22. Suchita B. Khairnar R.B. Nanocochleates: An overview. Int. J. Pharma Chem. Res. 2017 3 1 10.30750/ijpacr.3.1.2017.1
    [Google Scholar]
  23. Papahadjopoulos D. Vail W.J. Jacobson K. Poste G. Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles. Biochim. Biophys. Acta Biomembr. 1975 394 3 483 491 10.1016/0005‑2736(75)90299‑0 805602
    [Google Scholar]
  24. Egan W.J. Lauri G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 2002 54 3 273 289 10.1016/S0169‑409X(02)00004‑2 11922948
    [Google Scholar]
  25. Florence A.T. Hussain N. Transcytosis of nanoparticle and dendrimer delivery systems: Evolving vistas. Adv. Drug Deliv. Rev. 2001 50 Suppl. 1 S69 S89 10.1016/S0169‑409X(01)00184‑3 11576696
    [Google Scholar]
  26. Rohit Rajendra Bhosale P. Abhyangshree nandkumar mane, amruta avinash ghadge. nanocochleates: A novel carrier for drug transfer. J. Scient Inno Res. 2013 2 5 964 969
    [Google Scholar]
  27. Gol D. Nanocochleates: A Novel Approach For Drug Delivery. World J. Pharm. Res. 1920 3 2
    [Google Scholar]
  28. Yadav V. Parab B. Shidhaye S. Nanocochleate: A novel approach for delivery of biological molecules. Int. J. Pharm. Sci. Res. 2021 12 7
    [Google Scholar]
  29. Mahendra R.P. Role of phenolic compounds in prevention and management of human disease. World J. Pharm. Life Sci. 2023 9 1 43 49 10.5281/zenodo.7462190
    [Google Scholar]
  30. Suraj R. Kshitij V. Makeshwar A.D. Deshmukh R.M. Nanocochleate: A review. nanocochleate: A review research. J. Pharma Dosage Forms Tech. 2012 4 3 153 159
    [Google Scholar]
  31. Priyanka D. Sunil K. Overview of drug delivery system by Nanocochleates. Journal of Emerging Technologies and Innovative Research (JETIR). JETIR 2023 2023 10
    [Google Scholar]
  32. Donnell F.E. Gould-Fogerite S. Mannino R.J. Apoprotein coch-leate compositions. WO Patent 2005084642A1 2006
  33. Gaber M. El-Marakby S. Osman A. Nanocochleates: A novel approach for enhanced oral drug delivery. Int. J. Pharm. Pharm. Sci. 2015 7 10 49 57
    [Google Scholar]
  34. Sankar Y. Nanocochleate-a new approach in lipid drug delivery. Int. J. Pharm. Pharm. Sci. 2010 2 4 220 223
    [Google Scholar]
  35. Panwar A.S. Panwar V. Mahajan V. Darwhekar G.N. Jain D.K. Nanocochleates- As drug delivery vehicle. Int. J. Biosci. 2011 1 31 38
    [Google Scholar]
  36. Bhosale R.R. Ghodale P.P. Mane A.N. Ghadge A.A. Nanocochiestas noли cartier for drug transfer, 2. sci, imov, res, 22015)-954-969 Road AB. Nanocochleate: As drug delivery vehicle. Int. J. Pharm. Biol. Sci. 2011 1 1 31 88
    [Google Scholar]
  37. Vieira I.R.S. Tessaro L. Lima A.K.O. Velloso I.P.S. Conte-Junior C.A. Recent progress in nanotechnology improving the therapeutic potential of polyphenols for cancer. Nutrients 2023 15 14 3136 10.3390/nu15143136 37513554
    [Google Scholar]
  38. Yeole S.E. Pimple S.S. A review on nanocochleate - A novel lipid based drug delivery system. J. Biomed. Pharm. Res. 2013 2 1 1 7
    [Google Scholar]
  39. Jsirjournal.com. 2022 Available from : [cited 2024 Dec 9]. http://www.jsirjournal.com/Vol2Issue5018.pdf
    [Google Scholar]
  40. Zarif L. Drug delivery by lipid cochleates. Methods Enzymol. 2005 391 314 329 10.1016/S0076‑6879(05)91018‑5 15721389
    [Google Scholar]
  41. Ss Pimple P.D. A review on nanocochleate – A novel lipid based drug delivery system. J. Biomed. Pharmaceut Res. 2013 2 1 445 10.30750/jbpr.2.1.2013.445
    [Google Scholar]
  42. Sood A. Panchagnula R. Peroral route: An opportunity for protein and peptide drug delivery. Chem. Rev. 2001 101 11 3275 3304 10.1021/cr000700m 11840987
    [Google Scholar]
  43. Nayek S. Venkatachalam A. Choudhury S. Recent nanocochleate drug delivery system for cancer treatment: A review. Int. J. Curr. Pharm. Res. 2019 28–32 28 32 10.22159/ijcpr.2019v11i6.36359
    [Google Scholar]
  44. Mesa-Arango A.C. Scorzoni L. Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 2012 3 286 10.3389/fmicb.2012.00286 23024638
    [Google Scholar]
  45. Delmas G. Park S. Chen Z.W. Tan F. Kashiwazaki R. Zarif L. Perlin D.S. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob. Agents Chemother. 2002 46 8 2704 2707 10.1128/AAC.46.8.2704‑2707.2002 12121962
    [Google Scholar]
  46. Nelson H.D. Tyne K. Naik A. Bougatsos C. Chan B.K. Humphrey L. Screening for breast cancer: An update for the U.S. Preventive Services Task Force. Ann Intern Med. 2009 151 10 727 737 W237-42. 10.7326/0003‑4819‑151‑10‑200911170‑00009 19920273
    [Google Scholar]
  47. Başaran Mutlu Ağardan N. The Effectiveness of Raloxifene-Loaded Liposomes and Cochleates in Breast Cancer Therapy 1–27 Zelihagül Değim; Şükran Yılmaz; Levent Altıntaş; Turgut Topal 2018 1 27
    [Google Scholar]
  48. Pham C.V. Van M.C. Thi H.P. Thanh C.Đ. Ngoc B.T. Van B.N. Le Thien G. Van B.N. Nguyen C.N. Development of ibuprofen-loaded solid lipid nanoparticle-based hydrogels for enhanced in vitro dermal permeation and in vivo topical anti-inflammatory activity. J. Drug Deliv. Sci. Technol. 2020 57 101758 101758 10.1016/j.jddst.2020.101758
    [Google Scholar]
  49. Belubbi T. Shevade S. Dhawan V. Sridhar V. Majumdar A. Nunes R. Araújo F. Sarmento B. Nagarsenker K. Steiniger F. Fahr A. Magarkar A. Bunker A. Nagarsenker M. Lipid Architectonics for Superior Oral Bioavailability of Nelfinavir Mesylate: Comparative in vitro and in vivo Assessment. AAPS PharmSciTech 2018 19 8 3584 3598 10.1208/s12249‑018‑1156‑3 30209788
    [Google Scholar]
  50. Bharadwaj R. Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 2004 23 11 2016 2027 10.1038/sj.onc.1207374 15021889
    [Google Scholar]
  51. Joshi T. Pierroz V. Mari C. Gemperle L. Ferrari S. Gasser G.A. Bis(dipyridophenazine)(2‐(2‐pyridyl)pyrimidine‐4‐carboxylic acid)ruthenium(II) Complex with Anticancer Action upon Photodeprotection. Angew. Chem. Int. Ed. 2014 53 11 2960 2963 10.1002/anie.201309576 24500767
    [Google Scholar]
  52. Acocella G. Scotti R. Kinetic studies on the combination rifampicin-trimethoprim in man. J. Antimicrob. Chemother. 1976 2 3 271 277 10.1093/jac/2.3.271 977527
    [Google Scholar]
  53. Biganzoli E. Cavenaghi L.A. Rossi R. Brunati M.C. Nolli M.L. Use of a Caco-2 cell culture model for the characterization of intestinal absorption of antibiotics. Farmaco 1999 54 9 594 599 10.1016/S0014‑827X(99)00069‑5 10555261
    [Google Scholar]
  54. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  55. Chanturiya A. Leikina E. Zimmerberg J. Chernomordik L.V. Short-chain alcohols promote an early stage of membrane hemifusion. Biophys. J. 1999 77 4 2035 2045 10.1016/S0006‑3495(99)77044‑X
    [Google Scholar]
  56. Gnananath K. Sri Nataraj K. Ganga Rao B. Phospholipid complex technique for superior bioavailability of phytoconstituents. Adv. Pharm. Bull. 2017 7 1 35 42 10.15171/apb.2017.005 28507935
    [Google Scholar]
  57. Pandita A. Sharma P. Pharmacosomes: An emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm. 2013 2013 1 10 10.1155/2013/348186 24106615
    [Google Scholar]
  58. Zaru M. Mourtas S. Klepetsanis P. Fadda A.M. Antimisiaris S.G. Liposomal and cochleate formulations of amphotericin B: Effect of preparation method and structure on drug incorporation and stability. J. Liposome Res. 2007 17 2 125 136 10.1080/08982100701375250
    [Google Scholar]
  59. Bhosale R. Ghodake P. Mane A. Nanocochleate: A novel carrier for druge transfer. J. Scient Inno Res. 2013 2 5 964 969
    [Google Scholar]
  60. Hsu L.W. Ho Y.C. Chuang E.Y. Chen C.T. Juang J.H. Su F.Y. Hwang S.M. Sung H.W. Effects of pH on molecular mechanisms of chitosan–integrin interactions and resulting tight-junction disruptions. Biomaterials 2013 34 3 784 793 10.1016/j.biomaterials.2012.09.082 23103155
    [Google Scholar]
  61. Oxide G. Nanohybrid C. High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating. ACS Nano 2018 ••• 1 17
    [Google Scholar]
  62. Liu M. Zhong X. Yang Z. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A. Sci. Rep. 2017 7 1 41322 10.1038/srep41322 28112262
    [Google Scholar]
  63. Zarif L. Graybill J.R. Perlin D. Najvar L. Bocanegra R. Mannino R.J. Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob. Agents Chemother. 2000 44 6 1463 1469 10.1128/AAC.44.6.1463‑1469.2000 10817694
    [Google Scholar]
  64. Merekar A.N. Godge G.R. Gaikwad M.R. Formulation and in-vitro evaluation of buccal mucoadhesive tablets of catopril by using natural and synthetic polymers. World J. Pharm. Res. 2016 7 5 1296 1315
    [Google Scholar]
  65. Fogerite S.G. Mannino R.J. Cochleate delivery vehicles. US Patent 5994318A, 1997
  66. Dr K.S. Salunkhe D.M.J. Chavan D.J.C. Hundiwale M. Harwalkar M. A review on nanocochleates novel approach for drug delivery. World J. Pharm. Pharm. Sci. 2022 7 1 7
    [Google Scholar]
  67. Gould-Fogerite S. Canki M. Feketeova E. Scolpino A.J. Wang Z. Zhang F. Kheiri M.T. Gould-Fogerite S. Targeting immune response induction with cochleate and liposome-based vaccines. Adv. Drug Deliv. Rev. 1998 32 3 273 287 10.1016/S0169‑409X(98)00014‑3 10837648
    [Google Scholar]
  68. Nayek S. Venkatachalam A. Chaudhari S. Recent nanocochleate drug d system for cancer treatment; a review. Pharm. Res. 2022 6 28 32
    [Google Scholar]
  69. Uwais M.S. Amyf W. Tuo Jina. B.; Hua, Z. Cochleate bridged by drug molecules structure and function. Int. J. Pharm. 2008 363 118 125 10.1016/j.ijpharm.2008.06.026
    [Google Scholar]
  70. Godase S.S. Kulkarni N.S. Dhole S.N. A comprehensive review on novel lipid-based nano drug delivery. Adv. Pharm. Bull. 2024 14 1 34 47 38585464
    [Google Scholar]
  71. Villa A.M. Caporizzo E. Papagni A. Miozzo L. Buttero P.D. Grilli M.D. Amboldi N. Fazio F. Doglia S.M. Giglioni B. Choline and phosphatidylcholine fluorescent derivatives localization in carcinoma cells studied by laser scanning confocal fluorescence microscopy. Eur. J. Cancer 2005 41 10 1453 1459 10.1016/j.ejca.2005.02.028 15913986
    [Google Scholar]
  72. Zarif L. Perlin D. Amphoteric B. Nanocochleates: Formulation to oral efficacy. Drug Dliv Tech. 2002 4 34 37
    [Google Scholar]
  73. Sanap S.D. Garje M.A. Godge G.R. Probiotics, their health benefits and applications for development of human health: A review. Rev. J. Drug Del Therap 2019 9 S4 631 640
    [Google Scholar]
  74. Godge G. Hiremath S. Colonic delivery of film coated meloxicam tablets using natural polysaccharide polymer mixture. Int. Curr. Pharm. J. 2012 1 9 264 271 10.3329/icpj.v1i9.11617
    [Google Scholar]
  75. Hiremath S.N. Godge G.R. Recent advances in pharmaceutical approaches to colon specific drug delivery. Pharm. Technol. 2011 8 4 1 8
    [Google Scholar]
  76. Hiremath S.N. Godge G.R. Kulkarni P.S. Landge R.B. Discussion on tablets with special emphasis on formulation and coating defects: A Review. IJCRT 2021 9 7 124 139
    [Google Scholar]
  77. Vaidya V.R. Karodi R.S. Mohite M.T. Hiremath S.N. Godge G.R. Formulation optimization of mucoadhesive buccal tablets of carvedilol using 32 full factorial design. Deccan Pharm. Cosmetol 2010 1 2 7 20
    [Google Scholar]
  78. Semalty A. Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: A critical and meta-analysis. Expert Opin. Drug Deliv. 2014 11 8 1255 1272 10.1517/17425247.2014.916271 24909802
    [Google Scholar]
  79. Loomba L. Scarabelli T. Metallic nanoparticles and their medicinal potential. Part II: Aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther. Deliv. 2013 4 9 1179 1196 10.4155/tde.13.74 24024515
    [Google Scholar]
  80. Li S. Chen L. Fu Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnology 2023 21 1 232 10.1186/s12951‑023‑01992‑2 37480102
    [Google Scholar]
  81. Medeiros-Neves B. Nemitz M.C. Silveira Fachel F.N. Teixeira H.F. Recent patents concerning the use of nanotechnology-based delivery systems as skin penetration enhancers. Recent Pat. Drug Deliv. Formul. 2020 13 3 192 202 10.2174/1872211313666191024112137 31696814
    [Google Scholar]
  82. Bratosin D. Mazurier J. Tissier J.P. Slomianny C. Estaquier J. Russo-Marie F. Huart J.J. Freyssinet J.M. Aminoff D. Ameisen J.C. Montreuil J. Molecular mechanisms of erythrophagocytosis. Characterization of the senescent erythrocytes that are phagocytized by macrophages. C. R. Acad. Sci. III 1997 320 10 811 818 10.1016/S0764‑4469(97)85017‑2 9436535
    [Google Scholar]
  83. Klei T.R. Shao R. Vinik Y. Subramanian M. Boas F.E. Cosman M. Recognition and phagocytosis of senescent erythrocytes by macrophages: Molecular mechanisms and immune modulation. Front. Immunol. 2017 8 1513 10.3389/fimmu.2017.01513
    [Google Scholar]
  84. Mannino J. Gould-Fogerite S. Krause-Elsmore L. Delmarre D. Lu R. Novel encochleation methods, cochleates and methods of use WO Patent 2004091578 2005
    [Google Scholar]
  85. Aigner M. Lass-Flörl C. Encochleated amphotericin B: Is the oral availability of amphotericin B finally reached? J. Fungi 2020 6 2 66 10.3390/jof6020066 32443486
    [Google Scholar]
  86. Vakhare A.G. Wankhade V.P. Atram S.C. Bobade N.N. Pande S.D. Advancements in nanocochleate drug delivery systems: A comprehensive review. Int. J. Creative Res. Thoughts 2024 12 1 a646 a661
    [Google Scholar]
  87. Lee S. Nguyen M.T. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015 15 2 51 57 10.4110/in.2015.15.2.51 25922593
    [Google Scholar]
  88. Legrand P. Vertut-Doi A. Bolard J. Comparative internalization and recycling of different amphotericin B formulations by a macrophage-like cell line. J. Antimicrob. Chemother. 1996 37 3 519 533 10.1093/jac/37.3.519 9182109
    [Google Scholar]
  89. Strauss M. Levy H.C. Bostina M. Filman D.J. Hogle J.M. RNA transfer from poliovirus accepted manuscript 37 135S particles across membranes is mediated by long umbilical connectors. J. Virol. 2018 87 3903 3914 10.1128/JVI.03209‑12 23365424
    [Google Scholar]
  90. Ichihashi T. Satoh T. Sugimoto C. Kajino K. Emulsi ed phosphatidylserine, simple and E ective peptide carrier for induction of potent epitope-speci c T cell responses. PLoS One 2018 1 10
    [Google Scholar]
  91. Pawar S.F. Nanocochleate- An important drug delivery system offering unique features. Feat World J. Pharm. Res. 2020 9 9 621 637
    [Google Scholar]
  92. Landge A. Pawar A. Shaikh K. Investigation of cochleates as carriers for topical drug delivery. Int. J. Pharm. Pharm. Sci. 2013 5 2 314 320
    [Google Scholar]
  93. Wakchaure SM Mhaske MP Nanocochleate: A review. World J. Pharm. Sci. 2021 1 5 10.54037/WJPS.2021.91105
    [Google Scholar]
  94. Etcgroup.org. 2023 Available from: [cited 2024 Dec 10]. http://www.etcgroup.org/content/down-farm-impact-nano-scale-technologies-food-andagriculture
  95. Suresh K. Srinivasan D. Palanivel V. Balu A. Nanocochleates: Versatile nanostructures for enhanced drug delivery and therapeutics. Int. J. Pharm. Investig. 2024 15 1 49 56 10.5530/ijpi.20250082
    [Google Scholar]
  96. Vijeta P. Vivek M. Panwar A.S. Darwhekar G.N. Jain D.K. Nanocochleate: As drug delivery vehicle. Int. J. Pharm. Biol. Sci. 2011 1 31 38
    [Google Scholar]
  97. Belubbi T. Shevade S. Dhawan V. Sridhar V. Majumdar A. Nunes R. Araújo F. Sarmento B. Nagarsenker K. Steiniger F. Fahr A. Magarkar A. Bunker A. Nagarsenker M. Falı, Lipid architectomes for superior oral bioavailability of nelfinavir mesylate: Comparative in vitro and vivo assessment. AAPS PharmSciTech 2018 19 8 3584 3598 10.1208/s12249‑018‑1156‑3 30209788
    [Google Scholar]
  98. Machín L. Tamargo B. Piñón A. Aries R. Setzer W. Monzote L. Bixa brellana L(Bixaceae) and Dysphania ambrosioides (L) Mosyakin Clemants (Amaranthaceae) Essential oils formulated in nanocochleates against leishmania amazonensis. Molecules. 2019;24(23):1–10. elivery. Int. J. Pharm. Pharm. Sci. 2013 5 2 314 320
    [Google Scholar]
  99. Marchio V. Augimeri G. Morelli C. Vivacqua A. Giordano C. Catalano S. Sisci D. Barone I. Bonofiglio D. Omega-3 fatty acids: Molecular weapons against chemoresistance in breast cancer. Cell. Mol. Biol. Lett. 2025 30 1 11 10.1186/s11658‑025‑00694‑x 39863855
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002381978250909113807
Loading
/content/journals/cdm/10.2174/0113892002381978250909113807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test