Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Nanocochleates are novel lipid-based nanoparticles with a distinctive, multilayered, rolled-up structure that resembles the spirals of a cochlea. They form when bivalent cations, such as calcium, interact with negatively charged lipid bilayers. These structures are gaining popularity in drug delivery due to their stability, biocompatibility, and ability to encapsulate and shield a wide range of bioactive substances, including hydrophobic drugs, peptides, and nucleic acids. Nanocochelates can withstand harsh environmental conditions, such as acidic pH or enzymatic degradation, making them suitable carriers for oral, injectable, and transdermal medication administration. Their unique construction enables the gradual release of encapsulated medicines, thereby increasing bioavailability and therapeutic effectiveness. Additionally, nanocochleates can target specific tissues or cells, allowing for precision medical methods.

A recent study demonstrates their promise for overcoming issues in the administration of poorly water-soluble medicines, gene therapy agents, and vaccines. Nanocochleates have shown promise in preclinical trials for the management of inflammatory diseases, cancer, and infectious diseases. Despite their potential, further research is needed to optimize large-scale manufacturing, maintain uniform quality, and address regulatory challenges. This review provides a detailed discussion of nanocochleate preparation methods, with a particular focus on entrapment, hydrogel approaches, and dialysis methods. The paper reviews characterization experiments, including particle size measurements, encapsulation effectiveness, surface morphology, and in vitro release tests. Furthermore, the article discusses the feasibility of industrial-scale formation with pure lipid feedstock.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002381978250909113807
2025-09-29
2026-02-02
Loading full text...

Full text loading...

References

  1. BhosaleR.R. GhodakeP.P. ManeA.N. GhadgeA.A. Nanocochleates: A novel carrier for drug transfer.J. Sci. Ind. Res.20132964969
    [Google Scholar]
  2. TilawatM. BondeS. Nanocochleates: A potential drug delivery system.J. Mol. Liq.202133411611511611510.1016/j.molliq.2021.116115
    [Google Scholar]
  3. ZarifL. Elongated supramolecular assemblies in drug delivery.J. Control. Release2002811-272310.1016/S0168‑3659(02)00010‑X11992674
    [Google Scholar]
  4. ZarifL. GraybillJ.R. PerlinD. ManninoR.J. Cochleates: New lipid-based drug delivery system.J. Liposome Res.200010452353810.3109/08982100009031116
    [Google Scholar]
  5. ChangxueJ. ZeliangQ. ZhiwenY. Ping current development of a lipid-based nanocochleates containing amphotericin b for oral administration J. J.J. Drug Deliv. Sci. Technol.20249216
    [Google Scholar]
  6. HeH. LuY. QiJ. ZhuQ. ChenZ. WuW. Adapting liposomes for oral drug delivery.Acta Pharm. Sin. B201991364810.1016/j.apsb.2018.06.00530766776
    [Google Scholar]
  7. SongK.H. ChungS.J. ShimC.K. Enhanced intestinal absorption of salmon calcitonin (sCT) from proliposomes containing bile salts.J. Control. Release2005106329830810.1016/j.jconrel.2005.05.01615979756
    [Google Scholar]
  8. PanwarV. MahajanV. PanwarA.S. DarwhekarG.N. Jain Nanocochleate: As drug delivery vehicle Int.Int. J. Pharma Bio Sci.201113138
    [Google Scholar]
  9. VerekarR. DesaiS. AyyanarM. NadafS. GuravS. Nanocochleates: Revolutionizing lipid-based drug delivery with enhanced bioavailability, A review.Hybrid Adv.2024610021510.1016/j.hybadv.2024.100215
    [Google Scholar]
  10. AvelingE. ZhouJ. LimY.F. Mozafari Targeting lipidic nanocarriers: Current strategies and problems.Pharmakeftiki200619101109
    [Google Scholar]
  11. PopescuC. FranzblauS. ZarifL. Cochleates potentiate the efficacy of antibacterial drug, clofazimine.2001Available From: https://www.researchgate.net/publication/291159405_Cochleates_potentiate_the_efficacy_of_antibacterial_drug_clofazimine
  12. TipugadeO. PatilS. NakhareP. Insights of nanocochleates in conventional drug delivery system.2024Available From: https://www.researchgate.net/publication/378342401_Review_Article_Insights_of_Nanocochleates_in_Conventional_Drug_Delivery_System#:~:text=Nanocochleates%20are%20a%20novel%20drug,the%20harsh%20world%20around%20it
  13. RamasamyT. KhandasamyU. HinabindhuR. Kona nanocochleate-a new drug delivery system fabad J.J. Pharm. Sci.20093491101
    [Google Scholar]
  14. NadafS. Killedar Novel liposome derived nanoparticulate drug delivery system: Fabrication and prospects.Creat J. Pharm. Res.20151117128
    [Google Scholar]
  15. HuangL. YangJ. WangT. GaoJ. XuD. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery.J. Nanobiotechnology20222014910.1186/s12951‑022‑01257‑435073914
    [Google Scholar]
  16. BanerjeeS. KunduA. Lipid-drug conjugates: A potential nanocarrier system for oral drug delivery applications.Daru2018261657510.1007/s40199‑018‑0209‑130159763
    [Google Scholar]
  17. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  18. JalaliA. MoghimipourE. AkhgariA. Enhancing effect of bile salts on gastrointestinal absorption of insulin.Trop. J. Pharm. Res.201413111797180210.4314/tjpr.v13i11.4
    [Google Scholar]
  19. DegimZ. ÜnalN. EşsizD. AbbasogluU. The effect of various liposome formulations on insulin penetration across Caco-2 cell monolayer.Life Sci.200475232819282710.1016/j.lfs.2004.05.02715464833
    [Google Scholar]
  20. JanaS. LadM. SubramanianS. Sanap bilosomes as non-invasive drug delivery system.IJCRT202210858869
    [Google Scholar]
  21. Lipa-CastroA. LegrandF.X. BarrattG. Cochleate drug delivery systems: An approach to their characterization.Int. J. Pharm.202161012122510.1016/j.ijpharm.2021.12122534710542
    [Google Scholar]
  22. SuchitaB. KhairnarR.B. Nanocochleates: An overview.Int. J. Pharma Chem. Res.20173110.30750/ijpacr.3.1.2017.1
    [Google Scholar]
  23. PapahadjopoulosD. VailW.J. JacobsonK. PosteG. Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles.Biochim. Biophys. Acta Biomembr.1975394348349110.1016/0005‑2736(75)90299‑0805602
    [Google Scholar]
  24. EganW.J. LauriG. Prediction of intestinal permeability.Adv. Drug Deliv. Rev.200254327328910.1016/S0169‑409X(02)00004‑211922948
    [Google Scholar]
  25. FlorenceA.T. HussainN. Transcytosis of nanoparticle and dendrimer delivery systems: Evolving vistas.Adv. Drug Deliv. Rev.200150Suppl. 1S69S8910.1016/S0169‑409X(01)00184‑311576696
    [Google Scholar]
  26. Rohit Rajendra BhosaleP. Abhyangshree nandkumar mane, amruta avinash ghadge. nanocochleates: A novel carrier for drug transfer.J. Scient Inno Res.201325964969
    [Google Scholar]
  27. GolD. Nanocochleates: A novel approach for drug delivery.World J. Pharm. Res.192032
    [Google Scholar]
  28. YadavV. ParabB. ShidhayeS. Nanocochleate: A novel approach for delivery of biological molecules.Int. J. Pharm. Sci. Res.2021127
    [Google Scholar]
  29. MahendraR.P. Role of phenolic compounds in prevention and management of human disease. World J. Pharm.Life Sci.202391434910.5281/zenodo.7462190
    [Google Scholar]
  30. SurajR. KshitijV. MakeshwarA.D. DeshmukhR.M. Nanocochleate: A review. nanocochleate: A review research.J. Pharma Dosage Forms Tech.201243153159
    [Google Scholar]
  31. PriyankaD. SunilK. Overview of drug delivery system by Nanocochleates.J. Emerg. Technol. Innov. Res. JETIR2023202310
    [Google Scholar]
  32. DonnellF.E. Gould-FogeriteS. ManninoR.J. Apoprotein cochleate compositions.WO Patent 2005084642A12006
  33. GaberM. El-MarakbyS. OsmanA. Nanocochleates: A novel approach for enhanced oral drug delivery.Int. J. Pharm. Pharm. Sci.20157104957
    [Google Scholar]
  34. SankarY. Nanocochleate-a new approach in lipid drug delivery.Int. J. Pharm. Pharm. Sci.201024220223
    [Google Scholar]
  35. PanwarA.S. PanwarV. MahajanV. DarwhekarG.N. JainD.K. Nanocochleates- As drug delivery vehicle.Int. J. Biosci.201113138
    [Google Scholar]
  36. BhosaleR.R. GhodaleP.P. ManeA.N. GhadgeA.A. Nanocochiestas noли cartier for drug transfer, 2. sci, imov, res, 22015)-954-969 Road AB. Nanocochleate: As drug delivery vehicle.Int. J. Pharm. Biol. Sci.2011113188
    [Google Scholar]
  37. VieiraI.R.S. TessaroL. LimaA.K.O. VellosoI.P.S. Conte-JuniorC.A. Recent progress in nanotechnology improving the therapeutic potential of polyphenols for cancer.Nutrients20231514313610.3390/nu1514313637513554
    [Google Scholar]
  38. YeoleS.E. PimpleS.S. A review on nanocochleate - A novel lipid based drug delivery system.J. Biomed. Pharm. Res.20132117
    [Google Scholar]
  39. Jsirjournal.com2022Available from: [cited 2024 Dec 9] http://www.jsirjournal.com/Vol2Issue5018.pdf
  40. ZarifL. Drug delivery by lipid cochleates.Methods Enzymol.200539131432910.1016/S0076‑6879(05)91018‑515721389
    [Google Scholar]
  41. Ss PimpleP.D. A review on nanocochleate – A novel lipid based drug delivery system.J. Biomed. Pharmaceut Res.20132144510.30750/jbpr.2.1.2013.445
    [Google Scholar]
  42. SoodA. PanchagnulaR. Peroral route: An opportunity for protein and peptide drug delivery.Chem. Rev.2001101113275330410.1021/cr000700m11840987
    [Google Scholar]
  43. NayekS. VenkatachalamA. ChoudhuryS. Recent nanocochleate drug delivery system for cancer treatment: A review.Int. J. Curr. Pharm. Res.201928–32283210.22159/ijcpr.2019v11i6.36359
    [Google Scholar]
  44. Mesa-ArangoA.C. ScorzoniL. ZaragozaO. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug.Front. Microbiol.2012328610.3389/fmicb.2012.0028623024638
    [Google Scholar]
  45. DelmasG. ParkS. ChenZ.W. TanF. KashiwazakiR. ZarifL. PerlinD.S. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis.Antimicrob. Agents Chemother.20024682704270710.1128/AAC.46.8.2704‑2707.200212121962
    [Google Scholar]
  46. NelsonH.D. TyneK. NaikA. BougatsosC. ChanB.K. HumphreyL. Screening for breast cancer: An update for the U.S. Preventive Services Task Force.Ann Intern Med.200915110727737W237-4210.7326/0003‑4819‑151‑10‑200911170‑0000919920273
    [Google Scholar]
  47. Başaran Mutlu AğardanN. The Effectiveness of Raloxifene-Loaded Liposomes and Cochleates in Breast Cancer Therapy2018:1–27 Zelihagül Değim; Şükran Yılmaz; Levent Altıntaş; Turgut Topal, 2018, pp. 1-27.
    [Google Scholar]
  48. PhamC.V. VanM.C. ThiH.P. ThanhC.Đ. NgocB.T. VanB.N. Le ThienG. VanB.N. NguyenC.N. Development of ibuprofen-loaded solid lipid nanoparticle-based hydrogels for enhanced in vitro dermal permeation and in vivo topical anti-inflammatory activity.J. Drug Deliv. Sci. Technol.20205710175810175810.1016/j.jddst.2020.101758
    [Google Scholar]
  49. BelubbiT. ShevadeS. DhawanV. SridharV. MajumdarA. NunesR. AraújoF. SarmentoB. NagarsenkerK. SteinigerF. FahrA. MagarkarA. BunkerA. NagarsenkerM. Lipid Architectonics for Superior Oral Bioavailability of Nelfinavir Mesylate: Comparative in vitro and in vivo Assessment.AAPS PharmSciTech20181983584359810.1208/s12249‑018‑1156‑330209788
    [Google Scholar]
  50. BharadwajR. YuH. The spindle checkpoint, aneuploidy, and cancer.Oncogene200423112016202710.1038/sj.onc.120737415021889
    [Google Scholar]
  51. JoshiT. PierrozV. MariC. GemperleL. FerrariS. GasserG.A. Bis(dipyridophenazine)(2‐(2‐pyridyl)pyrimidine‐4‐carboxylic acid)ruthenium(II) Complex with Anticancer Action upon Photodeprotection.Angew. Chem. Int. Ed.201453112960296310.1002/anie.20130957624500767
    [Google Scholar]
  52. AcocellaG. ScottiR. Kinetic studies on the combination rifampicin-trimethoprim in man.J. Antimicrob. Chemother.19762327127710.1093/jac/2.3.271977527
    [Google Scholar]
  53. BiganzoliE. CavenaghiL.A. RossiR. BrunatiM.C. NolliM.L. Use of a Caco-2 cell culture model for the characterization of intestinal absorption of antibiotics.Farmaco199954959459910.1016/S0014‑827X(99)00069‑510555261
    [Google Scholar]
  54. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  55. ChanturiyaA. LeikinaE. ZimmerbergJ. ChernomordikL.V. Short-chain alcohols promote an early stage of membrane hemifusion.Biophys. J.19997742035204510.1016/S0006‑3495(99)77044‑X
    [Google Scholar]
  56. GnananathK. Sri NatarajK. Ganga RaoB. Phospholipid complex technique for superior bioavailability of phytoconstituents.Adv. Pharm. Bull.201771354210.15171/apb.2017.00528507935
    [Google Scholar]
  57. PanditaA. SharmaP. Pharmacosomes: An emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs.ISRN Pharm.2013201311010.1155/2013/34818624106615
    [Google Scholar]
  58. ZaruM. MourtasS. KlepetsanisP. FaddaA.M. AntimisiarisS.G. Liposomal and cochleate formulations of amphotericin B: Effect of preparation method and structure on drug incorporation and stability.J. Liposome Res.200717212513610.1080/08982100701375250
    [Google Scholar]
  59. BhosaleR. GhodakeP. ManeA. Nanocochleate: A novel carrier for druge transfer.J. Scient Inno Res.201325964969
    [Google Scholar]
  60. HsuL.W. HoY.C. ChuangE.Y. ChenC.T. JuangJ.H. SuF.Y. HwangS.M. SungH.W. Effects of pH on molecular mechanisms of chitosan–integrin interactions and resulting tight-junction disruptions.Biomaterials201334378479310.1016/j.biomaterials.2012.09.08223103155
    [Google Scholar]
  61. OxideG. NanohybridC. High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating.ACS Nano2018117
    [Google Scholar]
  62. LiuM. ZhongX. YangZ. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A.Sci. Rep.2017714132210.1038/srep4132228112262
    [Google Scholar]
  63. ZarifL. GraybillJ.R. PerlinD. NajvarL. BocanegraR. ManninoR.J. Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model.Antimicrob. Agents Chemother.20004461463146910.1128/AAC.44.6.1463‑1469.200010817694
    [Google Scholar]
  64. MerekarA.N. GodgeG.R. GaikwadM.R. Formulation and in-vitro evaluation of buccal mucoadhesive tablets of catopril by using natural and synthetic polymers.World J. Pharm. Res.20167512961315
    [Google Scholar]
  65. FogeriteS.G. ManninoR.J. Cochleate delivery vehicles.US Patent 5994318A1997
  66. DrK.S. SalunkheD.M.J. ChavanD.J.C. HundiwaleM. HarwalkarM. A review on nanocochleates novel approach for drug delivery.World J. Pharm. Pharm. Sci.2022717
    [Google Scholar]
  67. Gould-FogeriteS. CankiM. FeketeovaE. ScolpinoA.J. WangZ. ZhangF. KheiriM.T. Gould-FogeriteS. Targeting immune response induction with cochleate and liposome-based vaccines.Adv. Drug Deliv. Rev.199832327328710.1016/S0169‑409X(98)00014‑310837648
    [Google Scholar]
  68. NayekS. VenkatachalamA. ChaudhariS. Recent nanocochleate drug d system for cancer treatment; a review.Pharm. Res.202262832
    [Google Scholar]
  69. UwaisM.S. AmyfW. TuoJina. B.; Hua, Z. Cochleate bridged by drug molecules structure and function.Int. J. Pharm.200836311812510.1016/j.ijpharm.2008.06.026
    [Google Scholar]
  70. GodaseS.S. KulkarniN.S. DholeS.N. A comprehensive review on novel lipid-based nano drug delivery.Adv. Pharm. Bull.2024141344738585464
    [Google Scholar]
  71. VillaA.M. CaporizzoE. PapagniA. MiozzoL. ButteroP.D. GrilliM.D. AmboldiN. FazioF. DogliaS.M. GiglioniB. Choline and phosphatidylcholine fluorescent derivatives localization in carcinoma cells studied by laser scanning confocal fluorescence microscopy.Eur. J. Cancer200541101453145910.1016/j.ejca.2005.02.02815913986
    [Google Scholar]
  72. ZarifL. PerlinD. AmphotericB. Nanocochleates: Formulation to oral efficacy.Drug Dliv Tech.200243437
    [Google Scholar]
  73. SanapS.D. GarjeM.A. GodgeG.R. Probiotics, their health benefits and applications for development of human health: A review.Rev. J. Drug Del Therap20199S4631640
    [Google Scholar]
  74. GodgeG. HiremathS. Colonic delivery of film coated meloxicam tablets using natural polysaccharide polymer mixture.Int. Curr. Pharm. J.20121926427110.3329/icpj.v1i9.11617
    [Google Scholar]
  75. HiremathS.N. GodgeG.R. Recent advances in pharmaceutical approaches to colon specific drug delivery.Pharm. Technol.20118418
    [Google Scholar]
  76. HiremathS.N. GodgeG.R. KulkarniP.S. LandgeR.B. Discussion on tablets with special emphasis on formulation and coating defects: A Review.IJCRT202197124139
    [Google Scholar]
  77. VaidyaV.R. KarodiR.S. MohiteM.T. HiremathS.N. GodgeG.R. Formulation optimization of mucoadhesive buccal tablets of carvedilol using 32 full factorial design.Deccan Pharm. Cosmetol201012720
    [Google Scholar]
  78. SemaltyA. Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: A critical and meta-analysis.Expert Opin. Drug Deliv.20141181255127210.1517/17425247.2014.91627124909802
    [Google Scholar]
  79. LoombaL. ScarabelliT. Metallic nanoparticles and their medicinal potential. Part II: Aluminosilicates, nanobiomagnets, quantum dots and cochleates.Ther. Deliv.2013491179119610.4155/tde.13.7424024515
    [Google Scholar]
  80. LiS. ChenL. FuY. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects.J. Nanobiotechnol.202321123210.1186/s12951‑023‑01992‑237480102
    [Google Scholar]
  81. Medeiros-NevesB. NemitzM.C. Silveira FachelF.N. TeixeiraH.F. Recent patents concerning the use of nanotechnology-based delivery systems as skin penetration enhancers.Recent Pat. Drug Deliv. Formul.202013319220210.2174/187221131366619102411213731696814
    [Google Scholar]
  82. BratosinD. MazurierJ. TissierJ.P. SlomiannyC. EstaquierJ. Russo-MarieF. HuartJ.J. FreyssinetJ.M. AminoffD. AmeisenJ.C. MontreuilJ. Molecular mechanisms of erythrophagocytosis. Characterization of the senescent erythrocytes that are phagocytized by macrophages.C. R. Acad. Sci. III19973201081181810.1016/S0764‑4469(97)85017‑29436535
    [Google Scholar]
  83. KleiT.R. ShaoR. VinikY. SubramanianM. BoasF.E. CosmanM. Recognition and phagocytosis of senescent erythrocytes by macrophages: Molecular mechanisms and immune modulation.Front. Immunol.20178151310.3389/fimmu.2017.01513
    [Google Scholar]
  84. ManninoJ. Gould-FogeriteS. Krause-ElsmoreL. DelmarreD. LuR. Novel encochleation methods, cochleates and methods of use.WO Patent 20040915782005
    [Google Scholar]
  85. AignerM. Lass-FlörlC. Encochleated amphotericin B: Is the oral availability of amphotericin B finally reached?J. Fungi2020626610.3390/jof602006632443486
    [Google Scholar]
  86. VakhareA.G. WankhadeV.P. AtramS.C. BobadeN.N. PandeS.D. Advancements in nanocochleate drug delivery systems: A comprehensive review.Int. J. Creative Res. Thoughts2024121a646a661
    [Google Scholar]
  87. LeeS. NguyenM.T. Recent advances of vaccine adjuvants for infectious diseases.Immune Netw.2015152515710.4110/in.2015.15.2.5125922593
    [Google Scholar]
  88. LegrandP. Vertut-DoiA. BolardJ. Comparative internalization and recycling of different amphotericin B formulations by a macrophage-like cell line.J. Antimicrob. Chemother.199637351953310.1093/jac/37.3.5199182109
    [Google Scholar]
  89. StraussM. LevyH.C. BostinaM. FilmanD.J. HogleJ.M. RNA transfer from poliovirus accepted manuscript 37 135S particles across membranes is mediated by long umbilical connectors.J. Virol.2018873903391410.1128/JVI.03209‑1223365424
    [Google Scholar]
  90. IchihashiT. SatohT. SugimotoC. KajinoK. Emulsi ed phosphatidylserine, simple and E ective peptide carrier for induction of potent epitope-speci c T cell responses.PLoS One2018110
    [Google Scholar]
  91. PawarS.F. Nanocochleate- An important drug delivery system offering unique features.Feat World J. Pharm. Res.202099621637
    [Google Scholar]
  92. LandgeA. PawarA. ShaikhK. Investigation of cochleates as carriers for topical drug delivery.Int. J. Pharm. Pharm. Sci.201352314320
    [Google Scholar]
  93. WakchaureSM. MhaskeMP. Nanocochleate: A review.World J. Pharm. Sci.20211510.54037/WJPS.2021.91105
    [Google Scholar]
  94. Etcgroup.org2023Available from: [cited 2024 Dec 10] http://www.etcgroup.org/content/down-farm-impact-nano-scale-technologies-food-andagriculture
  95. SureshK. SrinivasanD. PalanivelV. BaluA. Nanocochleates: Versatile nanostructures for enhanced drug delivery and therapeutics.Int. J. Pharm. Investig.2024151495610.5530/ijpi.20250082
    [Google Scholar]
  96. VijetaP. VivekM. PanwarA.S. DarwhekarG.N. JainD.K. Nanocochleate: As drug delivery vehicle.Int. J. Pharm. Biol. Sci.201113138
    [Google Scholar]
  97. BelubbiT. ShevadeS. DhawanV. SridharV. MajumdarA. NunesR. AraújoF. SarmentoB. NagarsenkerK. SteinigerF. FahrA. MagarkarA. BunkerA. NagarsenkerM. Falı, Lipid architectomes for superior oral bioavailability of nelfinavir mesylate: Comparative in vitro and vivo assessment.AAPS PharmSciTech20181983584359810.1208/s12249‑018‑1156‑330209788
    [Google Scholar]
  98. MachínL. TamargoB. PiñónA. AriesR. SetzerW. MonzoteL. Bixa brellana L(Bixaceae) and Dysphania ambrosioides (L) Mosyakin & Clemants (Amaranthaceae) Essential oils formulated in nanocochleates against leishmania amazonensis. Molecules. 2019;24(23):1–10. elivery.Int. J. Pharm. Pharm. Sci.201352314320
    [Google Scholar]
  99. MarchioV. AugimeriG. MorelliC. VivacquaA. GiordanoC. CatalanoS. SisciD. BaroneI. BonofiglioD. Omega-3 fatty acids: Molecular weapons against chemoresistance in breast cancer.Cell. Mol. Biol. Lett.20253011110.1186/s11658‑025‑00694‑x39863855
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002381978250909113807
Loading
/content/journals/cdm/10.2174/0113892002381978250909113807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test