Skip to content
2000
image of Bioactive Herbs for Liver Disorders: A Phyto-Pharmacological Review

Abstract

Introduction

This review aims to explore the therapeutic potential and safety of herbal bioactive compounds in the treatment of various liver disorders. As the liver plays a critical role in digestion, detoxification, energy storage, and protein synthesis, any impairment in its function can lead to significant health complications. The study aims to identify effective herbal agents that may support liver health.

Methods

A comprehensive literature search was conducted using scientific databases and platforms including Web of Science, Scopus, PubMed, HINARI, ScienceDirect, and Google Scholar. The review includes studies that investigate the hepatoprotective potential of herbal bioactives, while research related to hepatic cancers was excluded to maintain a focus on non-malignant liver disorders.

Results

The review identifies several medicinal plants and their active constituents that exhibit hepatoprotective properties. These bioactives function through various pharmacological mechanisms at the molecular level. Common liver conditions addressed include fatty liver, hepatitis, fibrosis, steatosis, and cirrhosis. The reviewed compounds demonstrate antioxidant, anti-inflammatory, and antifibrotic activities, supporting their role in liver disease management.

Discussion

The findings support growing evidence that herbal bioactives can modulate key molecular pathways involved in liver disorders. These results align with existing studies highlighting the benefits of plant-based treatments. However, the limitations include a lack of clinical trial data, poor bioavailability of some compounds, and the need for standardized formulations. Further research is necessary to validate these results in human populations.

Conclusion

Herbal bioactives such as flavonoids, polyphenols, alkaloids, glycosides, saponins, vitamins, and essential oils show promising hepatoprotective effects. This review emphasizes the importance of understanding their precise molecular mechanisms and ADME (absorption, distribution, metabolism, and excretion) profiles. These insights are crucial for developing safe, effective, and standardized herbal therapies for liver disease management.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002381436250721200746
2025-08-21
2025-11-04
Loading full text...

Full text loading...

References

  1. Kosanam S. Boyina R. Drug-induced liver injury: A review. Int. J. Pharmacol. Res. 2015 5 2 24 30 10.7439/ijpr
    [Google Scholar]
  2. Guicciardi M.E. Gores G.J. Apoptosis: A mechanism of acute and chronic liver injury. Gut 2005 54 7 1024 1033 10.1136/gut.2004.053850 15951554
    [Google Scholar]
  3. Ganesan M. Poluektova L.Y. Kharbanda K.K. Osna N.A. Human immunodeficiency virus and hepatotropic viruses co-morbidities as the inducers of liver injury progression. World J. Gastroenterol. 2019 25 4 398 410 10.3748/wjg.v25.i4.398 30700937
    [Google Scholar]
  4. Björnsson E.S. Drug-induced liver injury: An overview over the most critical compounds. Arch. Toxicol. 2015 89 3 327 334 10.1007/s00204‑015‑1456‑2 25618544
    [Google Scholar]
  5. Liaskou E Hirschfield GM Gershwin ME Mechanisms of tissue injury in autoimmune liver diseases. Semin Immunopathol 2014 36 5 553 568 10.1007/s00281‑014‑0439‑3 25082647
    [Google Scholar]
  6. Younossi Z. Henry L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology 2016 150 8 1778 1785 10.1053/j.gastro.2016.03.005 26980624
    [Google Scholar]
  7. Paschos P. Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 2009 13 1 9 19 19240815
    [Google Scholar]
  8. Nagy L.E. Ding W.X. Cresci G. Saikia P. Shah V.H. Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes. Gastroenterology 2016 150 8 1756 1768 10.1053/j.gastro.2016.02.035 26919968
    [Google Scholar]
  9. Rampes S. Ma D. Hepatic ischemia-reperfusion injury in liver transplant setting: Mechanisms and protective strategies. J. Biomed. Res. 2019 33 4 221 234 10.7555/JBR.32.20180087 32383437
    [Google Scholar]
  10. Shin E.C. Sung P.S. Park S.H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 2016 16 8 509 523 10.1038/nri.2016.69 27374637
    [Google Scholar]
  11. Bruha R. Dvorak K. Petrtyl J. Alcoholic liver disease. World J. Hepatol. 2012 4 3 81 90 10.4254/wjh.v4.i3.81 22489260
    [Google Scholar]
  12. Asrih M. Jornayvaz F.R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol. Cell. Endocrinol. 2015 418 Pt 1 55 65 10.1016/j.mce.2015.02.018 25724480
    [Google Scholar]
  13. Mathus-Vliegen E.M.H. Nikkel D. Brand H.S. Oral aspects of obesity. Int. Dent. J. 2007 57 4 249 256 10.1111/j.1875‑595X.2007.tb00128.x 17849683
    [Google Scholar]
  14. Andrade R.J. Chalasani N. Björnsson E.S. Suzuki A. Kullak-Ublick G.A. Watkins P.B. Devarbhavi H. Merz M. Lucena M.I. Kaplowitz N. Aithal G.P. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019 5 1 58 10.1038/s41572‑019‑0105‑0 31439850
    [Google Scholar]
  15. Gufler S. Seeboeck R. Schatz C. Haybaeck J. The translational bridge between inflammation and hepatocarcinogenesis. Cells 2022 11 3 533 10.3390/cells11030533 35159342
    [Google Scholar]
  16. Glass L.M. Dickson R.C. Hemochromatosis, wilson’s disease, and alpha‐1‐antitrypsin deficiency. Practical Gastroenterology and Hepatology Board Review Toolkit Wiley-Blackwell 2016 530 537 10.1002/9781119127437.ch84
    [Google Scholar]
  17. Chanprasert S. Scaglia F. Adult liver disorders caused by inborn errors of metabolism: Review and update. Mol. Genet. Metab. 2015 114 1 1 10 10.1016/j.ymgme.2014.10.011 25467056
    [Google Scholar]
  18. Hirschfield G.M. Gershwin M.E. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu. Rev. Pathol. 2013 8 1 303 330 10.1146/annurev‑pathol‑020712‑164014 23347352
    [Google Scholar]
  19. Li M.K. Crawford J.M. The pathology of cholestasis. Semin. Liver Dis. 2004 24 1 21 42 10.1055/s‑2004‑823099 15085484
    [Google Scholar]
  20. Gjorgjieva M. Mithieux G. Rajas F. Hepatic stress associated with pathologies characterized by disturbed glucose production. Cell Stress 2019 3 3 86 99 10.15698/cst2019.03.179 31225503
    [Google Scholar]
  21. Pannen B.H.J. New insights into the regulation of hepatic blood flow after ischemia and reperfusion. Anesth. Analg. 2002 94 6 1448 1457 10.1213/00000539‑200206000‑00012 12032004
    [Google Scholar]
  22. Moon A.M. Singal A.G. Tapper E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol. 2020 18 12 2650 2666 10.1016/j.cgh.2019.07.060 31401364
    [Google Scholar]
  23. Traub J Reiss L Aliwa B Stadlbauer V Malnutrition in patients with liver cirrhosis. Nutrients 2021 13 2 540 10.3390/nu13020540 33562292
    [Google Scholar]
  24. Ramos G.P. Papadakis K.A. Mechanisms of disease: inflammatory bowel diseases. Mayo Clin. Proc. 2019 94 1 155 165 10.1016/j.mayocp.2018.09.013 30611442
    [Google Scholar]
  25. Halim A. Kanayama N. El Maradny E. Maehara K. Takahashi A. Nosaka K. Fukuo S. Amamiya A. Kobayashi T. Terao T. Immunohistological study in cases of HELLP syndrome (hemolysis, elevated liver enzymes and low platelets) and acute fatty liver of pregnancy. Gynecol. Obstet. Invest. 1996 41 2 106 112 10.1159/000292053 8838970
    [Google Scholar]
  26. Zhang H.Y. Wang H.L. Zhong G.Y. Zhu J.X. Molecular mechanism and research progress on pharmacology of traditional Chinese medicine in liver injury. Pharm. Biol. 2018 56 1 594 611 10.1080/13880209.2018.1517185 31070528
    [Google Scholar]
  27. Malhi H. Gores G.J. Cellular and molecular mechanisms of liver injury. Gastroenterology 2008 134 6 1641 1654 10.1053/j.gastro.2008.03.002 18471544
    [Google Scholar]
  28. Kroemer G. Galluzzi L. Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 2007 87 1 99 163 10.1152/physrev.00013.2006 17237344
    [Google Scholar]
  29. Martins A.C. Virgolini M.B. Ávila D.S. Scharf P. Li J. Tinkov A.A. Skalny A.V. Bowman A.B. Rocha J.B.T. Aschner M. Mitochondria in the spotlight: C. elegans as a model organism to evaluate xenobiotic-induced dysfunction. Cells 2023 12 17 2124 10.3390/cells12172124 37681856
    [Google Scholar]
  30. Villanueva-Paz M. Morán L. López-Alcántara N. Freixo C. Andrade R.J. Lucena M.I. Cubero F.J. Oxidative stress in drug-induced liver injury (DILI): From mechanisms to biomarkers for use in clinical practice. Antioxidants 2021 10 3 390 10.3390/antiox10030390 33807700
    [Google Scholar]
  31. Wang K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis. 2014 5 1 e996 e996 10.1038/cddis.2013.499 24434519
    [Google Scholar]
  32. Gupta PK Gupta PK Target organ toxicity. Problem Solving Questions in Toxicology: A Study Guide for the Board and other Examinations Springer Cham 2020 83 117 10.1007/978‑3‑030‑50409‑0_7
    [Google Scholar]
  33. Jiang Y. Zhang T. Kusumanchi P. Han S. Yang Z. Liangpunsakul S. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines 2020 8 3 50 10.3390/biomedicines8030050 32143280
    [Google Scholar]
  34. Teschke R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines 2018 6 4 106 10.3390/biomedicines6040106 30424581
    [Google Scholar]
  35. Martel J. Chang S.H. Ko Y.F. Hwang T.L. Young J.D. Ojcius D.M. Gut barrier disruption and chronic disease. Trends Endocrinol. Metab. 2022 33 4 247 265 10.1016/j.tem.2022.01.002 35151560
    [Google Scholar]
  36. Bishehsari F. Magno E. Swanson G. Desai V. Voigt R.M. Forsyth C.B. Keshavarzian A. Alcohol and gut-derived inflammation. Alcohol Res. 2017 38 2 163 171 28988571
    [Google Scholar]
  37. Ali M Khan T Fatima K Ali QUA Ovais M Khalil AT Ullah I Raza A Shinwari ZK Idrees M Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother. Res. 2018 32 2 199 215 10.1002/ptr.5957 29047177
    [Google Scholar]
  38. Aragno M. Tomasinelli C.E. Vercellinatto I. Catalano M.G. Collino M. Fantozzi R. Danni O. Boccuzzi G. SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radic. Biol. Med. 2009 47 7 1067 1074 10.1016/j.freeradbiomed.2009.07.016 19616615
    [Google Scholar]
  39. Sharma V Kaur R Sharma VL Ameliorative potential of Adhatoda vasica against anti-tubercular drugs induced hepatic impairments in female Wistar rats in relation to oxidative stress and xeno-metabolism. J Ethnopharmacol 2021 270 113771 10.1016/j.jep.2020.113771 33388427
    [Google Scholar]
  40. Lu Q. Gu W. Luo C. Wang L. Hua W. Sun Y. Tang L. Phytochemical characterization and hepatoprotective effect of active fragment from Adhatoda vasica Nees. against tert-butyl hydroperoxide induced oxidative impairment via activating AMPK/p62/Nrf2 pathway. J. Ethnopharmacol. 2021 266 113454 10.1016/j.jep.2020.113454 33065254
    [Google Scholar]
  41. Ali SK Makeen HA Khuwaja G Alhazmi HA Sharma M Koty A Mazahirul I Parveen H Mohammed A Mukhtar S Alam MF Assessment of the phytochemical profile, antioxidant capacity, and hepatoprotective effect of Andrographis paniculata against CCl4-induced liver dysfunction in Wistar Albino rats. Medicina 2023 59 7 1260 10.3390/medicina59071260 37512069
    [Google Scholar]
  42. Dey D. Chaskar S. Bhatt N. Chitre D. Hepatoprotective activity of BV‐7310, a proprietary herbal formulation of Phyllanthus niruri, Tephrosia purpurea, Boerhavia diffusa, and Andrographis paniculata, in alcohol‐induced HepG2 cells and alcohol plus a haloalkane, CCl 4, induced liver damage in rats. Evid. Based Complement. Alternat. Med. 2020 2020 1 6428906 10.1155/2020/6428906 32308713
    [Google Scholar]
  43. Wei J Zhang C Tang X Huang J Liu H He Y Zhu R Gao J Synergistic protection of combined Aronia melanocarpa Elliot anthocyanins with Aloe polysaccharides inhibits alcoholic liver injury in mice. Food Bioscience 2023 Oct 55 102938 10.1016/j.fbio.2023.102938
    [Google Scholar]
  44. Padmanabhan P Jangle SN Hepatoprotective activity of herbal preparation (Hp-4) against alcohol induced hepatotoxicity in mice. Int. J. Appl. Sci. Biotechnol. 2014 2 1 50 58 10.3126/ijasbt.v2i1.9346
    [Google Scholar]
  45. Mazhar M Agrawal SS Standardization of Berberis aristata DC and Nigella sativa L. using HPTLC and GCMS and their antineoplasia activity in 7,12-dimethylbenz[a]anthracene-induced mouse models. Front Pharmacol 2021 12 642067 10.3389/fphar.2021.642067 34916928
    [Google Scholar]
  46. Ahmad S Hussain A Hussain A Abdullah I Ali MS Froeyen M Mirza MU Quantification of berberine in Berberis vulgaris L. root extract and its curative and prophylactic role in cisplatin-induced in vivo toxicity and in vitro cytotoxicity. Antioxidants 2019 8 6 185 10.3390/antiox8060185 31248160
    [Google Scholar]
  47. Goswami P. Damor S. Kaushik U. Mitigating of paracetamol-induced hepatotoxicity in albino mice using Boerhaavia diffusa extracts. Uttar Pradesh J. Zool. 2024 45 15 103 109 10.56557/upjoz/2024/v45i154225
    [Google Scholar]
  48. Ibrahima MS Eugène AS Justin BG Madjid AA Machioud SM Rodrigue A Felix G Latifou L Alphonse S Lamine BM Seri B The effect of methanolic leaf extract of Boerhavia diffusa Linn. (Nictaginaceae) on the activities of antidiabetic, anti-inflammatory, and antioxidant enzymes in experimental diabetes. J Pharm Res Int 2018 24 5 1 25 10.9734/JPRI/2018/45640
    [Google Scholar]
  49. Sfar M Souid G Alminderej FM Mzoughi Z El-Ghoul Y Rihouey C Le Cerf D Majdoub H Structural characterization of polysaccharides from Coriandrum sativum seeds: Hepatoprotective effect against cadmium toxicity in vivo. Antioxidants 2023 12 2 455 10.3390/antiox12020455 36830010
    [Google Scholar]
  50. Gu MJ Ahn Y Lee YR Yoo G Kim Y Choi I Ha SK Kim D Coriandrum sativum L. leaf extract ameliorates metabolic dysfunction-associated steatotic liver disease by modulating the AMPK pathway in high fat-fed C57BL/6 mice. Nutrients 2024 16 23 4165 10.3390/nu16234165 39683561
    [Google Scholar]
  51. Ibrahim J Kabiru AY Abdulrasheed-Adeleke T Lawal B Adewuyi AH Antioxidant and hepatoprotective potentials of curcuminoid isolates from turmeric ( Curcuma longa ) rhizome on CCl 4 -induced hepatic damage in Wistar rats. J. Taibah Univ. Sci. 2020 14 1 908 915 10.1080/16583655.2020.1790928
    [Google Scholar]
  52. Kim Y. You Y. Yoon H.G. Lee Y.H. Kim K. Lee J. Kim M.S. Kim J.C. Jun W. Hepatoprotective effects of fermented Curcuma longa L. on carbon tetrachloride-induced oxidative stress in rats. Food Chem. 2014 151 151 148 153 10.1016/j.foodchem.2013.11.058 24423514
    [Google Scholar]
  53. Bhatia G. Singh J. Nehru B. Neuroprotective effects of hydro-alcoholic extract of Eclipta alba against 1-methyl-4-phenylpyridinium-induced in vitro and in vivo models of Parkinson’s disease. Environ. Sci. Pollut. Res. Int. 2021 28 8 9390 9406 10.1007/s11356‑020‑11452‑1 33145730
    [Google Scholar]
  54. Satheesh Naik K. Gurushanthaiah M. Kavimani M. Prabhu K. Lokanadham S. Hepatoprotective role of Eclipta alba against high fatty diet treated experimental models - A histopathological study. Maedica 2018 13 3 217 222 10.26574/maedica.2018.13.3.217 31490461
    [Google Scholar]
  55. Kamel FO Karim S Bafail DA Aldawsari HM Kotta S Ilyas UK Hepatoprotective effects of bioactive compounds from traditional herb tulsi (Ocimum sanctum Linn) against galactosamine-induced hepatotoxicity in rats. Front Pharmacol 2023 14 1213052 10.3389/fphar.2023.1213052 37860117
    [Google Scholar]
  56. Teofilović B. Tomas A. Martić N. Stilinović N. Popović M. Čapo I. Grujić N. Ilinčić B. Rašković A. Antioxidant and hepatoprotective potential of sweet basil (Ocimum basilicum L.) extract in acetaminophen-induced hepatotoxicity in rats. J. Funct. Foods 2021 87 104783 10.1016/j.jff.2021.104783
    [Google Scholar]
  57. Raut A. Dhami-Shah H. Phadke A. Shindikar A. Udipi S. Joshi J. Vaidya R. Vaidya A.D.B. Picrorhiza kurroa, Royle ex Benth:Traditional uses, phytopharmacology, and translational potential in therapy of fatty liver disease. J. Ayurveda Integr. Med. 2023 14 1 100558 10.1016/j.jaim.2022.100558 35659739
    [Google Scholar]
  58. Bigoniya P. Warathe A. Singh C. Protective action of picroliv isolated from Picrorhiza kurroa against radiation clastogenecity on mice and cyclophosphamide-induced cytotoxicity in Allium cepa Root. J. Radiat. Cancer Res. 2019 10 1 58 65 10.4103/jrcr.jrcr_23_18
    [Google Scholar]
  59. Yin K. Li X. Luo X. Sha Y. Gong P. Gu J. Tan R. Hepatoprotective effect and potential mechanism of aqueous extract from Phyllanthus emblica on carbon-tetrachloride-induced liver fibrosis in rats. Evid. Based Complement. Alternat. Med. 2021 2021 1 1 12 10.1155/2021/5345821 34712342
    [Google Scholar]
  60. Huang C.Z. Tung Y.T. Hsia S.M. Wu C.H. Yen G.C. The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats. Food Funct. 2017 8 2 842 850 10.1039/C6FO01585A 28128372
    [Google Scholar]
  61. Sowjanya K. Girish C. Bammigatti C. Lakshmi N.C.P. Efficacy of Phyllanthus niruri on improving liver functions in patients with alcoholic hepatitis. Indian J. Pharmacol. 2021 53 6 448 456 10.4103/ijp.IJP_540_20 34975132
    [Google Scholar]
  62. Mehta M. Gupta S. Duseja A. Evaluation of Hepatoprotective effect of Phyllanthus niruri in experimental model of NAFLD. Res. J. Pharm. Technol. 2021 14 9 4685 4690 10.52711/0974‑360X.2021.00814
    [Google Scholar]
  63. Gora R. Baxla S. Kerketta P. Patnaik S. Roy B. Hepatoprotective activity of Tephrosia purpurea against arsenic induced toxicity in rats. Indian J. Pharmacol. 2014 46 2 197 200 10.4103/0253‑7613.129317 24741193
    [Google Scholar]
  64. Gunjegaonkar S.M. Saraswathi C.D. Hrishikeshavan H.J. Harish M.S. Nargund L.V. Hepatoprotective and antioxidant activity of Tephrosia purpurea whole plant aqueous extract. Pharmacologyonline 2010 2 568 574
    [Google Scholar]
  65. Khan S. Noor F. Sohail I. Imtiaz S. Anum F. Sarmad S. Kabir S. Raza S. Hepatoprotective role of fruit extract of Terminalia arjuna in acetaminophen intoxicated mice. Adv. Life Sci. 2020 8 1 63 67 10.62940/als.v8i1.919
    [Google Scholar]
  66. Sangamithira S.P. Revathy J. Abdullah S.S. Kumar P.S. The hepatoprotective effect of ethanolic bark extract of Terminalia arjuna on paracetamol induced liver damage. Biosci. Biotechnol. Res. Asia 2011 8 2 777 781 10.13005/bbra/934
    [Google Scholar]
  67. Gupta A. Kumar R. Ganguly R. Singh A.K. Rana H.K. Pandey A.K. Antioxidant, anti-inflammatory and hepatoprotective activities of Terminalia bellirica and its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity. Toxicol. Rep. 2021 8 44 52 10.1016/j.toxrep.2020.12.010 33391996
    [Google Scholar]
  68. Kuriakose J. Lal Raisa H. A V. Eldhose B. M S L. Terminalia bellirica (Gaertn.) Roxb. fruit mitigates CCl4 induced oxidative stress and hepatotoxicity in rats. Biomed. Pharmacother. 2017 93 327 333 10.1016/j.biopha.2017.06.080 28651233
    [Google Scholar]
  69. Shetty M. Shenoy S. Devi V. Kumar N. Amuthan A. Shenoy K G. P P. Protective effect of kadukkai maathirai (Terminalia chebula-based polyherbal siddha formulation) in ethanol-induced liver disease in rats. Asian J. Pharm. Clin. Res. 2018 11 11 368 371 10.22159/ajpcr.2018.v11i11.26773
    [Google Scholar]
  70. Ahmadi-Naji R. Heidarian E. Ghatreh-Samani K. Evaluation of the effects of the hydroalcoholic extract of Terminalia chebula fruits on diazinon-induced liver toxicity and oxidative stress in rats. Avicenna J. Phytomed. 2017 7 5 454 466 29062807
    [Google Scholar]
  71. Hussien H.T. Tag H.M. Ahmed E. Nabil Z.I. El-Naggar M.S. The antioxidant and hepatoprotective activities of the ethanolic extract of Tinospora Cordifolia leaves: In vitro and in vivo studies. Egypt. J. Zool. 2023 79 79 48 65 10.21608/ejz.2022.139640.1083
    [Google Scholar]
  72. Mani D. Singh D.P. Awasthi H. Luqman S. Singh S. Hepatoprotective effect of a polyherbal extract containing Andrographis Paniculata, Tinospora Cordifolia and Solanum Nigrum against paracetamol induced hepatotoxicity. Pharmacogn. Mag. 2015 11 44 Suppl. 3 375 10.4103/0973‑1296.168945 26929570
    [Google Scholar]
  73. Haque M.R. Ahmad M.A. Ashraf K. Akhter M.H. Jameel M. Ali A. Akhtar W. Dhaka M. Rana K. Arq ajwain protects nonalcoholic fatty liver disease on high-fat diet-induced obese rat. Trends in Phytochemical Research. 2021 5 4 209 221
    [Google Scholar]
  74. Khalil H.M.A. Eliwa H.A. El-Shiekh R.A. Al-Mokaddem A.K. Hassan M. Tawfek A.M. El-Maadawy W.H. Ashwagandha (Withania somnifera) root extract attenuates hepatic and cognitive deficits in thioacetamide-induced rat model of hepatic encephalopathy via induction of Nrf2/HO-1 and mitigation of NF-κB/MAPK signaling pathways. J. Ethnopharmacol. 2021 277 114141 10.1016/j.jep.2021.114141 33905819
    [Google Scholar]
  75. Fahmi A. Hassanen N. Abdur-Rahman M. Shams-Eldin E. Phytochemicals, antioxidant activity and hepatoprotective effect of ginger ( Zingiber officinale ) on diethylnitrosamine toxicity in rats. Biomarkers 2019 24 5 436 447 10.1080/1354750X.2019.1606280 30979347
    [Google Scholar]
  76. Zhu Y. Liu W. Qi S. Wang H. Wang Y. Deng G. Zhang Y. Li S. Ma C. Wang Y. Cheng X. Wang C. Stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic pharmacodynamics, and toxic properties of vasicine enantiomers in vitro and in vivo. Eur. J. Pharm. Sci. 2018 123 459 474 10.1016/j.ejps.2018.07.058 30077712
    [Google Scholar]
  77. Xu F. Fu S. Gu S. Wang Z. Wang Z. He X. Xiao W. Simultaneous determination of andrographolide, dehydroandrographolide and neoandrographolide in dog plasma by LC–MS/MS and its application to a dog pharmacokinetic study of Andrographis paniculata tablet. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015 990 125 131 10.1016/j.jchromb.2015.03.014 25864014
    [Google Scholar]
  78. Songvut P. Rangkadilok N. Pholphana N. Suriyo T. Panomvana D. Puranajoti P. Akanimanee J. Satayavivad J. Comparative pharmacokinetics and safety evaluation of high dosage regimens of Andrographis paniculata aqueous extract after single and multiple oral administration in healthy participants. Front. Pharmacol. 2023 14 1230401 10.3389/fphar.2023.1230401 37663270
    [Google Scholar]
  79. Kumar S. Yadav J.P. Ethnobotanical and pharmacological properties of Aloe vera: A review. J. Med. Plants Res. 2014 48 8 1387 1398 10.5897/JMPR2014.5336x
    [Google Scholar]
  80. Desai N.D. Sawant N.D. Tatke P.A. Chapter 1 Biopotentiation using herbals: Novel approach for poorly bioavailable drugs. Drug Delivery Technology: Herbal Bioenhancers in Pharmaceuticals De Gruyter Berlin, Boston 2022 1 26 10.1515/9783110746808‑001
    [Google Scholar]
  81. Malhotra B. Kulkarni G.T. Dhiman N. Joshi D.D. Chander S. Kharkwal A. Sharma A.K. Kharkwal H. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J. Herb. Med. 2021 27 100433 10.1016/j.hermed.2021.100433
    [Google Scholar]
  82. Bhatnagar A. Saini R. Dagar P. Mishra A. Molecular modelling and in vitro studies of Daruharidra as a potent alpha-amylase inhibitor. J. Biomol. Struct. Dyn. 2023 41 9 3872 3883 10.1080/07391102.2022.2058093 35412420
    [Google Scholar]
  83. Das S. Singh P.K. Ameeruddin S. Kumar Bindhani B. Obaidullah W.J. Obaidullah A.J. Mishra S. Mohapatra R.K. Ethnomedicinal values of Boerhaavia diffusa L. as a panacea against multiple human ailments: A state of art review. Front Chem. 2023 11 1297300 10.3389/fchem.2023.1297300 38033469
    [Google Scholar]
  84. Mukherjee A. Pandey D.K. Head C.O. Implications of phytochemicals as disease-modifying agents against Huntington's disease (HD): Bioactivity, animal models and transgenics, synergism and structure–activity studies. Stud Nat Prod Chem 2021 67 27 79 10.1016/B978‑0‑12‑819483‑6.00002‑3
    [Google Scholar]
  85. Patil V.S. Rajput K.S. Malpathak N.P. Comparative study on morpho-anatomy of leaf, stem and root of Boerhaavia diffusa L. (Nyctaginaceae) and its adulterant plants. Braz. J. Pharm. Sci. 2016 52 3 433 442 10.1590/s1984‑82502016000300009
    [Google Scholar]
  86. Mahleyuddin N.N. Moshawih S. Ming L.C. Zulkifly H.H. Kifli N. Loy M.J. Sarker M.M.R. Al-Worafi Y.M. Goh B.H. Thuraisingam S. Goh H.P. Coriandrum sativum L.: A review on ethnopharmacology, phytochemistry, and cardiovascular benefits. Molecules 2021 27 1 209 10.3390/molecules27010209 35011441
    [Google Scholar]
  87. Hajlaoui H. Arraouadi S. Noumi E. Aouadi K. Adnan M. Khan M.A. Kadri A. Snoussi M. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules 2021 26 12 3625 10.3390/molecules26123625 34199316
    [Google Scholar]
  88. Fahmy H. Shreif N.H. Gharib O.A. The protective effect of Coriandium sativum extract on hepato-renal toxicity induced in irradiated rats. European J. Med. Plants 2014 4 2 196 205 10.9734/EJMP/2014/7238
    [Google Scholar]
  89. Vareed S.K. Kakarala M. Ruffin M.T. Crowell J.A. Normolle D.P. Djuric Z. Brenner D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev. 2008 17 6 1411 1417 10.1158/1055‑9965.EPI‑07‑2693 18559556
    [Google Scholar]
  90. Mohanty C. Sahoo S.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 2010 31 25 6597 6611 10.1016/j.biomaterials.2010.04.062 20553984
    [Google Scholar]
  91. Upadhyay K. Gupta N.K. Dixit V.K. Development and characterization of phyto-vesicles of wedelolactone for hepatoprotective activity. Drug Dev. Ind. Pharm. 2012 38 9 1152 1158 10.3109/03639045.2011.643892 22204306
    [Google Scholar]
  92. Mani S.T. Rathinavel T. Ammashi S. Nasir Iqbal M. Polycyclic aromatic bioactive compounds from eclipta alba and its anticancer potential against breast cancer target proteins: An antibreast cancer intervention through in silico and in vitro validations. Polycycl. Aromat. Compd. 2024 44 5 3313 3342 10.1080/10406638.2023.2233661
    [Google Scholar]
  93. Hasan M.R. Alotaibi B.S. Althafar Z.M. Mujamammi A.H. Jameela J. An update on the therapeutic anticancer potential of Ocimum sanctum L.: “Elixir of life”. Molecules 2023 28 3 1193 10.3390/molecules28031193 36770859
    [Google Scholar]
  94. Kumar B. Bajpai V. Tiwari S. Pandey R. Phytochemistry of plants of genus Ocimum. CRC Press 2020 10.1201/9781003014850
    [Google Scholar]
  95. Upadhyay D. Dash R.P. Anandjiwala S. Nivsarkar M. Comparative pharmacokinetic profiles of picrosides I and II from kutkin, Picrorhiza kurroa extract and its formulation in rats. Fitoterapia 2013 85 76 83 10.1016/j.fitote.2013.01.004 23333583
    [Google Scholar]
  96. Arya R. Faruquee H.M. Shakya H. Rahman S.A. Begum M.M. Biswas S.K. Apu M.A.I. Islam M.A. Sheikh M.M.I. Kim J.J. Harnessing the antibacterial, anti-diabetic and anti-carcinogenic properties of Ocimum sanctum Linn (Tulsi). Plants 2024 13 24 3516 10.3390/plants13243516 39771214
    [Google Scholar]
  97. Rachitha P. Krishnaswamy K. Lazar R.A. Gupta V.K. Inbaraj B.S. Raghavendra V.B. Sharma M. Sridhar K. Attenuation of hyperlipidemia by medicinal formulations of Emblica officinalis synergized with nanotechnological approaches. Bioengineering 2023 10 1 64 10.3390/bioengineering10010064 36671636
    [Google Scholar]
  98. Prananda A.T. Dalimunthe A. Harahap U. Simanjuntak Y. Peronika E. Karosekali N.E. Hasibuan P.A.Z. Syahputra R.A. Situmorang P.C. Nurkolis F. Phyllanthus emblica: A comprehensive review of its phytochemical composition and pharmacological properties. Front. Pharmacol. 2023 14 1288618 10.3389/fphar.2023.1288618 37954853
    [Google Scholar]
  99. Lee N.Y.S. Khoo W.K.S. Adnan M.A. Mahalingam T.P. Fernandez A.R. Jeevaratnam K. The pharmacological potential of Phyllanthus niruri. J. Pharm. Pharmacol. 2016 68 8 953 969 10.1111/jphp.12565 27283048
    [Google Scholar]
  100. Kaur N. Kaur B. Sirhindi G. Phytochemistry and pharmacology of Phyllanthus niruri L.: A review. Phytother. Res. 2017 31 7 980 1004 10.1002/ptr.5825 28512988
    [Google Scholar]
  101. Sharma P. Rastogi S. Bhatnagar S. Srivastava J.K. Dube A. Guru P.Y. Kulshrestha D.K. Mehrotra B.N. Dhawan B.N. Antileishmanial action of Tephrosia purpurea linn, extract and its fractions against experimental visceral leishmaniasis. Drug Dev. Res. 2003 60 4 285 293 10.1002/ddr.10324
    [Google Scholar]
  102. Kumar V. Singh S. Srivastava B. Patial P.K. Kondalkar S.A. Bharthi V. Volatile and semi-volatile compounds of Tephrosia purpurea and its medicinal activities: Experimental and computational studies. Biocatal. Agric. Biotechnol. 2019 20 101222 10.1016/j.bcab.2019.101222
    [Google Scholar]
  103. Varghese A. Savai J. Pandita N. Gaud R. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes. Toxicol. Rep. 2015 2 806 816 10.1016/j.toxrep.2015.02.008
    [Google Scholar]
  104. Wang C. Zhang H. Wang X. Wang X. Li X. Li C. Wang Y. Zhang M. Comprehensive review on fruit of Terminalia chebula: Traditional uses, phytochemistry, pharmacology, toxicity, and pharmacokinetics. Molecules 2024 29 23 5547 10.3390/molecules29235547 39683707
    [Google Scholar]
  105. Rawat D Shrivastava S Naik RA Chhonker SK Mehrotra A Koiri RK An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer Agents Med Chem 2018 18 13 1838 1859 10.2174/1871520618666180604085612 29866017
    [Google Scholar]
  106. Ramesh P. Palaniappan A. Terminalia arjuna, a cardioprotective herbal medicine–relevancy in the modern era of pharmaceuticals and green nanomedicine-A review. Pharmaceuticals 2023 16 1 126 10.3390/ph16010126 36678623
    [Google Scholar]
  107. Shanmuganathan S. Angayarkanni N. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascul. Pharmacol. 2018 108 23 35 10.1016/j.vph.2018.04.005 29678603
    [Google Scholar]
  108. Yadav M.K. Yadav K.S. Patil S. Characterization of antidiabetic herbs &potential therapeutic agents in Indian species: A Review. IOSR J Appl Dent Med Sci. 2017 16 2 70 78 10.9790/0853‑1602037078
    [Google Scholar]
  109. Dhama K. Sachan S. Khandia R. Munjal A. Iqbal H.M.N. Latheef S.K. Karthik K. Samad H.A. Tiwari R. Dadar M. Medicinal and beneficial health applications of Tinospora cordifolia (Guduchi): A miraculous herb countering various diseases/disorders and its immunomodulatory effects. Recent Pat. Endocr. Metab. Immune Drug Discov. 2017 10 2 96 111 10.2174/1872214811666170301105101 28260522
    [Google Scholar]
  110. Yao G. Miao X. Wu M. Lv Z. Bai Y. Chang Y. Ouyang H. He J. Pharmacokinetics of active compounds of a Terminalia chebula Retz. Ethanolic extract after oral administration rats using UPLC-MS/MS. Front. Pharmacol. 2023 14 1067089 10.3389/fphar.2023.1067089 36713843
    [Google Scholar]
  111. Ahsan R. Mishra A. Badar B. Owais M. Mishra V. Therapeutic application, phytoactives and pharmacology of Tinospora cordifolia: An evocative review. Chin. J. Integr. Med. 2023 29 6 549 555 10.1007/s11655‑023‑3733‑2 37017881
    [Google Scholar]
  112. Sharma H. Yang H. Sharma N. An S.S.A. Trachyspermum ammi bioactives promote neuroprotection by inhibiting acetylcholinesterase, aβ-oligomerization/fibrilization, and mitigating oxidative stress in vitro. Antioxidants 2023 13 1 9 10.3390/antiox13010009 38275629
    [Google Scholar]
  113. Singh N. Sharma U. Mishra B. Kandalkar A.M. Jain S.K. Herbs and herbal formulations for the management and prevention of gastrointestinal diseases. Herbal Medicine Phytochemistry: Applications and Trends. Cham Springer International Publishing 2024 657 691 10.1007/978‑3‑031‑43199‑9_24
    [Google Scholar]
  114. Alluri V.K.R. Thanawala S. Upadhyay V. A comparative pharmacokinetics study of Ashwagandha (Withania somnifera) root extract sustained-release capsules: An open-label, randomized, two treatment, two-sequence, two period, single-dose crossover clinical study. Int. J. Basic Clin. Pharmacol. 2021 11 1 26 10.18203/2319‑2003.ijbcp20214831
    [Google Scholar]
  115. Dar N.J. Hamid A. Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell. Mol. Life Sci. 2015 72 23 4445 4460 10.1007/s00018‑015‑2012‑1 26306935
    [Google Scholar]
  116. Li L.L. Cui Y. Guo X.H. Ma K. Tian P. Feng J. Wang J.M. Pharmacokinetics and tissue distribution of gingerols and shogaols from ginger (zingiber officinale rosc.) in rats by UPLC–Q-Exactive–HRMS. Molecules 2019 24 3 512 10.3390/molecules24030512 30708987
    [Google Scholar]
  117. Yu Y. Zick S. Li X. Zou P. Wright B. Sun D. Examination of the pharmacokinetics of active ingredients of ginger in humans. AAPS J. 2011 13 3 417 426 10.1208/s12248‑011‑9286‑5 21638149
    [Google Scholar]
  118. Sharma B. Sharma M. Rai S. More A.B. Review of clinical and preclinical studies on Ayurveda drugs used in management of liver diseases. J. Indian Syst. Med. 2021 9 4 226 234 10.4103/jism.jism_60_21
    [Google Scholar]
  119. Bansal J. Kumar N. Malviya R. Kumar Sharma P. Hepatoprotective models and various natural product used in hepatoprotective agents: A review. Pharmacogn. Commun. 2014 4 3 2 30 10.5530/pc.2014.3.2
    [Google Scholar]
  120. Nagalekshmi R. Menon A. Chandrasekharan D.K. Nair C.K.K. Hepatoprotective activity of Andrographis paniculata and Swertia chirayita. Food Chem. Toxicol. 2011 49 12 3367 3373 10.1016/j.fct.2011.09.026 21983487
    [Google Scholar]
  121. Mondal M. Sarkar C. Saha S. Hossain M.N. Norouzi R. Mubarak M.S. Siyadatpanah A. Wilairatana P. Hossain R. Islam M.T. Coutinho H.D.M. Hepatoprotective activity of andrographolide possibly through antioxidative defense mechanism in Sprague-Dawley rats. Toxicol. Rep. 2022 9 1013 1022 10.1016/j.toxrep.2022.04.007 36518448
    [Google Scholar]
  122. Catalano A. Ceramella J. Iacopetta D. Marra M. Conforti F. Lupi F.R. Gabriele D. Borges F. Sinicropi M.S. Aloe vera―an extensive review focused on recent studies. Foods 2024 13 13 2155 10.3390/foods13132155 38998660
    [Google Scholar]
  123. Reynolds T. Dweck A.C. Aloe vera leaf gel: A review update. J. Ethnopharmacol. 1999 68 1-3 3 37 10.1016/S0378‑8741(99)00085‑9 10624859
    [Google Scholar]
  124. Nie Q. Li M. Huang C. Yuan Y. Liang Q. Ma X. Qiu T. Li J. The clinical efficacy and safety of berberine in the treatment of non-alcoholic fatty liver disease: A meta-analysis and systematic review. J. Transl. Med. 2024 22 1 225 10.1186/s12967‑024‑05011‑2 38429794
    [Google Scholar]
  125. Caliceti C. Franco P. Spinozzi S. Roda A. Cicero A.F. Berberine: New insights from pharmacological aspects to clinical evidences in the management of metabolic disorders. Curr. Med. Chem. 2016 23 14 1460 1476 10.2174/0929867323666160411143314 27063256
    [Google Scholar]
  126. Kumar S. Ratha K.K. Jaiswal S. Rao M.M. Acharya R. Exploring the potential of andrographis paniculata and its bioactive compounds in the management of liver diseases: A comprehensive food chemistry perspective. Food Chem. Adv. 2024 4 100674 10.1016/j.focha.2024.100674
    [Google Scholar]
  127. Lee O.Y.A. Wong A.N.N. Ho C.Y. Tse K.W. Chan A.Z. Leung G.P.H. Kwan Y.W. Yeung M.H.Y. Potentials of natural antioxidants in reducing inflammation and oxidative stress in chronic kidney disease. Antioxidants 2024 13 6 751 10.3390/antiox13060751 38929190
    [Google Scholar]
  128. Matera R. Lucchi E. Valgimigli L. Plant essential oils as healthy functional ingredients of nutraceuticals and diet supplements: A review. Molecules 2023 28 2 901 10.3390/molecules28020901 36677959
    [Google Scholar]
  129. Anwar H. Hussain G. Imran M. Nawaz L. Navaid S. Saleem S. Coriander as antioxidant in biological animal models. Handbook of Coriander (Coriandrum sativum) CRC Press 2023 10 145 158
    [Google Scholar]
  130. Zhang C.Y. Liu S. Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J. Hepatol. 2023 15 2 180 200 10.4254/wjh.v15.i2.180 36926234
    [Google Scholar]
  131. Fu K. Wang C. Ma C. Zhou H. Li Y. The potential application of Chinese medicine in liver diseases: A new opportunity. Front. Pharmacol. 2021 12 771459 10.3389/fphar.2021.771459 34803712
    [Google Scholar]
  132. Said A.A. Reda R.M. Metwally M.M.M. Abd El-Hady H.M. Therapeutic efficacy of coriander (Coriandrum sativum) enriched diets in Oreochromis niloticus: Effect on hepatic-renal functions, the antioxidant-immune response and resistance to Aeromonas veronii. Fish Physiol. Biochem. 2023 49 4 687 709 10.1007/s10695‑023‑01220‑6 37438674
    [Google Scholar]
  133. Kumari I. Kaurav H. Chaudhary G. Eclipta alba (bhringraj): A promising hepatoprotective and hair growth stimulating herb. Asian J. Pharm. Clin. Res. 2021 14 7 16 23 10.22159/ajpcr.2021.v14i7.41569
    [Google Scholar]
  134. Timalsina D. Devkota H.P. Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal uses, chemical constituents, and biological activities. Biomolecules 2021 11 11 1738 10.3390/biom11111738 34827736
    [Google Scholar]
  135. Pradhan D. Biswasroy P. Haldar J. Cheruvanachari P. Dubey D. Rai V.K. Kar B. Kar D.M. Rath G. Ghosh G. A comprehensive review on phytochemistry, molecular pharmacology, clinical and translational outfit of Ocimum sanctum L. S. Afr. J. Bot. 2022 150 342 360 10.1016/j.sajb.2022.07.037
    [Google Scholar]
  136. Satapathy S. Das N. Bandyopadhyay D. Mahapatra S.C. Sahu D.S. Meda M. Effect of Tulsi (Ocimum sanctum Linn.) supplementation on metabolic parameters and liver enzymes in young overweight and obese subjects. Indian J. Clin. Biochem. 2017 32 3 357 363 10.1007/s12291‑016‑0615‑4 28811698
    [Google Scholar]
  137. Adhvaryu M.R. Reddy N. Parabia M.H. Effects of four Indian medicinal herbs on Isoniazid-, Rifampicin- and Pyrazinamide-induced hepatic injury and immunosuppression in guinea pigs. World J. Gastroenterol. 2007 13 23 3199 3205 10.3748/wjg.v13.i23.3199 17589898
    [Google Scholar]
  138. Soren P. Sharma R. Mal G. Singh B. Kumar P. Patil R.D. Singh B. Hepatoprotective activity of Picrorhiza kurroa and Berberis lycium is mediated by inhibition of COX-2 and TGF-β expression in lantadenes-induced sub-chronic toxicity in guinea pigs. Phytomed. Plus 2022 2 3 100288 10.1016/j.phyplu.2022.100288
    [Google Scholar]
  139. Avinash P.G. Hamid Shams R. Dash K.K. Shaikh A.M. Ungai D. Harsányi E. Suthar T. Kovács B. Recent insights into the morphological, nutritional and phytochemical properties of Indian gooseberry (Phyllanthus emblica) for the development of functional foods. Plants 2024 13 5 574 10.3390/plants13050574 38475421
    [Google Scholar]
  140. Gandhi Y. Grewal J. Jain V. Rawat H. Mishra S.K. Kumar V. Kumar R. Shakya S.K. Sharma P. Dhanjal D.S. Prasad S.B. Charde V. Arya J.C. Narasimhaji C.V. Singh A. Singh R. Srikanth N. Acharya R. Emblica officinalis: A promising herb confining versatile applications. S. Afr. J. Bot. 2023 159 519 531 10.1016/j.sajb.2023.06.041
    [Google Scholar]
  141. Arulkumaran S. Ramprasath V.R. Shanthi P. Sachdanandam P. Free radical quenching and immunomodulatory effect of a modified siddha preparation, kalpaamruthaa. J. Health Sci. 2007 53 2 170 176 10.1248/jhs.53.170
    [Google Scholar]
  142. Liu L. Wang B. Ma Y. Sun K. Wang P. Li M. Dong J. Qin M. Li M. Wei C. Tan Y. He J. Guo K. Yu X. A review of Phyllanthus urinaria L. in the treatment of liver disease: Viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma. Front. Pharmacol. 2024 15 1443667 10.3389/fphar.2024.1443667 39185304
    [Google Scholar]
  143. El-Tantawy W.H. Temraz A. Anti-fibrotic activity of natural products, herbal extracts and nutritional components for prevention of liver fibrosis: Review. Arch. Physiol. Biochem. 2022 128 2 382 393 10.1080/13813455.2019.1684952 31711319
    [Google Scholar]
  144. Kashyap H. Sekhon G. Varshney A. Khatri M. In silico screening of potential antidiabetic phytochemicals from Tephrosia purpurea: A polypharmacology approach. Biomedical and Therapeutics Letters 2024 11 2 911 10.62110/sciencein.btl.2024.v11.911
    [Google Scholar]
  145. Manna P. Sinha M. Sil P.C. Phytomedicinal activity of Terminalia arjuna against carbon tetrachloride induced cardiac oxidative stress. Pathophysiology 2007 14 2 71 78 10.1016/j.pathophys.2007.05.002 17611085
    [Google Scholar]
  146. Singh G. Singh A.T. Abraham A. Bhat B. Mukherjee A. Verma R. Agarwal S.K. Jha S. Mukherjee R. Burman A.C. Protective effects of Terminalia arjuna against Doxorubicin-induced cardiotoxicity. J. Ethnopharmacol. 2008 117 1 123 129 10.1016/j.jep.2008.01.022 18346858
    [Google Scholar]
  147. Jayesh K. Helen L.R. Vysakh A. Binil E. Latha M.S. Protective role of Terminalia bellirica (Gaertn.) roxb fruits against CCl 4 induced oxidative stress and liver injury in rodent model. Indian J. Clin. Biochem. 2019 34 2 155 163 10.1007/s12291‑017‑0732‑8 31092988
    [Google Scholar]
  148. Naqvi R. Mehdi A. Das G.K. Hepatoprotective action of Terminalia Chebula, Terminalia Billerica, and Emblica Officinalis (Triphala): A Review. Int. J. Integr. Sci. 2024 3 5 499 506 10.55927/ijis.v3i5.9085
    [Google Scholar]
  149. Ahmed S. Ding X. Sharma A. Exploring scientific validation of Triphala Rasayana in ayurveda as a source of rejuvenation for contemporary healthcare: An update. J. Ethnopharmacol. 2021 273 113829 10.1016/j.jep.2021.113829 33465446
    [Google Scholar]
  150. Tarasiuk A. Mosińska P. Fichna J. Triphala: Current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chin. Med. 2018 13 1 39 10.1186/s13020‑018‑0197‑6 30034512
    [Google Scholar]
  151. Bishayi B. Roychowdhury S. Ghosh S. Sengupta M. Hepatoprotective and immunomodulatory properties of Tinospora cordifolia in CCl4 intoxicated mature albino rats. J. Toxicol. Sci. 2002 27 3 139 146 10.2131/jts.27.139 12238138
    [Google Scholar]
  152. Yates C.R. Bruno E.J. Yates M.E.D. Tinospora Cordifolia : A review of its immunomodulatory properties. J. Diet. Suppl. 2022 19 2 271 285 10.1080/19390211.2021.1873214 33480818
    [Google Scholar]
  153. Asif H.M. Sultana S. Akhtar N. A panoramic view on phytochemical, nutritional, ethanobotanical uses and pharmacological values of Trachyspermum ammi Linn. Asian Pac. J. Trop. Biomed. 2014 4 S545 S553 10.12980/APJTB.4.2014APJTB‑2014‑0242
    [Google Scholar]
  154. Mueed A. Shibli S. Al-Quwaie D.A. Ashkan M.F. Alharbi M. Alanazi H. Binothman N. Aljadani M. Majrashi K.A. Huwaikem M. Abourehab M.A.S. Korma S.A. El-Saadony M.T. Extraction, characterization of polyphenols from certain medicinal plants and evaluation of their antioxidant, antitumor, antidiabetic, antimicrobial properties, and potential use in human nutrition. Front. Nutr. 2023 10 1125106 10.3389/fnut.2023.1125106 37415912
    [Google Scholar]
  155. Devarasetti A.K. Bharani K.K. Khurana A. Anand S. Kollipaka R. Saranu V.D.T. Veera Hanuman D.D. Addanki V.K. Chetla V.S. Banothu A.K. Adaptogenic Ashwagandha root extract modulates inflammatory markers in feline stress management: A double-blind placebo-controlled clinical trial. J. Appl. Anim. Res. 2024 52 1 2335921 10.1080/09712119.2024.2335921
    [Google Scholar]
  156. Al-Harrasi A Bhatia S Chigurupati S Behl T Plant profile, phytochemistry, and ethnopharmacological uses of ashoka, ashwagandha, and amla. Recent Advances in Natural Products Science 1st ed CRC Press 2022 99 142 10.1201/9781003274124‑3
    [Google Scholar]
  157. Kayesth S. Gupta K.K. Tyagi K. Mohan R.R. Arora J. Nissapatorn V. Natural products and human health— A special focus on Indian Ginseng Withania somnifera (L.) Dunal. Indian J. Nat. Prod. Resour. 2024 15 2 244 259 10.56042/ijnpr.v15i2.11665
    [Google Scholar]
  158. Ridruejo E. Treatment of chronic hepatitis B in clinical practice with entecavir or tenofovir. World J. Gastroenterol. 2014 20 23 7169 7180 10.3748/wjg.v20.i23.7169 24966587
    [Google Scholar]
  159. Pol S. Lampertico P. First‐line treatment of chronic hepatitis B with entecavir or tenofovir in ‘real‐life’ settings: From clinical trials to clinical practice. J. Viral Hepat. 2012 19 6 377 386 10.1111/j.1365‑2893.2012.01602.x 22571899
    [Google Scholar]
  160. Spengler U. Direct antiviral agents (DAAs) - A new age in the treatment of hepatitis C virus infection. Pharmacol. Ther. 2018 183 118 126 10.1016/j.pharmthera.2017.10.009 29024739
    [Google Scholar]
  161. Llaneras J. Riveiro-Barciela M. Lens S. Diago M. Cachero A. García-Samaniego J. Conde I. Arencibia A. Arenas J. Gea F. Torras X. Luis Calleja J. Antonio Carrión J. Fernández I. María Morillas R. Rosales J.M. Carmona I. Fernández-Rodríguez C. Hernández-Guerra M. Llerena S. Bernal V. Turnes J. González-Santiago J.M. Montoliu S. Figueruela B. Badia E. Delgado M. Fernández-Bermejo M. Iñarrairaegui M. Pascasio J.M. Esteban R. Mariño Z. Buti M. Effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in patients with chronic hepatitis C previously treated with DAAs. J. Hepatol. 2019 71 4 666 672 10.1016/j.jhep.2019.06.002 31203153
    [Google Scholar]
  162. Hallsworth K. Adams L.A. Lifestyle modification in NAFLD/NASH: Facts and figures. JHEP Rep. Innov. Hepatol. 2019 1 6 468 479 10.1016/j.jhepr.2019.10.008 32039399
    [Google Scholar]
  163. Pouwels S. Sakran N. Graham Y. Leal A. Pintar T. Yang W. Kassir R. Singhal R. Mahawar K. Ramnarain D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022 22 1 63 10.1186/s12902‑022‑00980‑1 35287643
    [Google Scholar]
  164. Lonardo A. Mantovani A. Petta S. Carraro A. Byrne C.D. Targher G. Metabolic mechanisms for and treatment of NAFLD or NASH occurring after liver transplantation. Nat. Rev. Endocrinol. 2022 18 10 638 650 10.1038/s41574‑022‑00711‑5 35840803
    [Google Scholar]
  165. Wang F. Wang B.Y. Corticosteroids or non-corticosteroids: A fresh perspective on alcoholic hepatitis treatment. Hepatobiliary Pancreat. Dis. Int. 2011 10 5 458 464 10.1016/S1499‑3872(11)60079‑9 21947718
    [Google Scholar]
  166. Lu H. Narrative review: Glucocorticoids in alcoholic hepatitis—benefits, side effects, and mechanisms. J. Xenobiot. 2022 12 4 266 288 10.3390/jox12040019 36278756
    [Google Scholar]
  167. Xu X.Y. Ding H.G. Li W.G. Jia J.D. Wei L. Duan Z.P. Liu Y.L. Ling-Hu E.Q. Zhuang H. Hepatology C.S. Association C.M. Chinese guidelines on management of hepatic encephalopathy in cirrhosis. World J. Gastroenterol. 2019 25 36 5403 5422 10.3748/wjg.v25.i36.5403 31576089
    [Google Scholar]
  168. Zacharias HD Zacharias AP Gluud LL Morgan MY. P P: 9 Pharmacotherapies that specifically target ammonia for the prevention and treatment of hepatic encephalopathy in adults with cirrhosis. Am J Gastroenterol 2019 114 S4 10.14309/01.ajg.0000582012.98044.b4
    [Google Scholar]
  169. Licata A. Minissale M.G. Stankevičiūtė S. Sanabria-Cabrera J. Lucena M.I. Andrade R.J. Almasio P.L. N-acetylcysteine for preventing acetaminophen-induced liver injury: A comprehensive review. Front. Pharmacol. 2022 13 828565 10.3389/fphar.2022.828565 36034775
    [Google Scholar]
  170. Chughlay M.F. Kramer N. Spearman C.W. Werfalli M. Cohen K. N‐acetylcysteine for non‐paracetamol drug‐induced liver injury: A systematic review. Br. J. Clin. Pharmacol. 2016 81 6 1021 1029 10.1111/bcp.12880 26757427
    [Google Scholar]
  171. Philips C.A. Kedarisetty C.K. Palliative care for patients with end-stage liver disease. J. Clin. Exp. Hepatol. 2023 13 2 319 328 10.1016/j.jceh.2022.08.003 36950499
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002381436250721200746
Loading
/content/journals/cdm/10.2174/0113892002381436250721200746
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test