Skip to content
2000
image of Comprehensive Insights into Licochalcone A: its Distribution, Biosynthesis, Metabolism, and Pharmacological Effects

Abstract

Licochalcone A (LCA) is an important secondary metabolite in licorice that has attracted extensive attention due to its unique species-specific distribution characteristics and various pharmacodynamic activities, particularly its anti-inflammatory and anti-cancer effects. LCA was originally considered exclusive to Batal. However, further analyses have shown its distribution in different licorice species, extending its known distribution among licorice species and suggesting a broader role in secondary metabolism. Nevertheless, the complex chemical synthesis of LCA presents challenges in regioselectivity control. The oral bioavailability of LCA is limited due to the intestinal first-pass effect, and its metabolic mechanism has not yet been fully elucidated. These issues restrict the therapeutic effects and practical applications of LCA . In recent years, advancements in optimizing synthetic pathways and developing new delivery systems have significantly improved the efficacy of LCA while also achieving notable breakthroughs in its safety. This review examines the distribution patterns, synthesis methods, metabolic processes, pharmacological activities, and current application status of LCA, while also exploring future research directions. However, its metabolic mechanisms and prospects for clinical application still require further investigation in the future. A multi-source database search related literature employed “Licochalcone A”as the anchor term, synergized with species taxonomy (), biogeographic patterns, and phytochemical dynamics (biosynthesis/metabolism).

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002380407250730080035
2025-08-25
2025-11-05
Loading full text...

Full text loading...

References

  1. Bisht D. Rashid M. Arya R.K.K. Kumar D. Chaudhary S.K. Rana V.S. Sethiya N.K. Revisiting liquorice (Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: Potential pharmacological applications with mechanistic insight. Phytomed Plus 2022 2 1 100206 10.1016/j.phyplu.2021.100206 35403088
    [Google Scholar]
  2. Won S.R. Kim S.K. Kim Y.M. Lee P.H. Ryu J.H. Kim J.W. Rhee H.I. Licochalcone A. Licochalcone A. A lipase inhibitor from the roots of Glycyrrhiza uralensis. Food Res. Int. 2007 40 8 1046 1050 10.1016/j.foodres.2007.05.005
    [Google Scholar]
  3. Li M.T. Xie L. Jiang H.M. Huang Q. Tong R.S. Li X. Xie X. Liu H.M. Role of licochalcone A in potential pharmacological therapy: A review. Front. Pharmacol. 2022 13 878776 10.3389/fphar.2022.878776 35677438
    [Google Scholar]
  4. Bhatia H.S. Apweiler M. Sun L. Baron J. Tirkey A. Fiebich B.L. Licochalcone A. Licochalcone A inhibits prostaglandin E2 by targeting the MAPK pathway in LPS activated primary microglia. Molecules 2023 28 4 1927 10.3390/molecules28041927 36838914
    [Google Scholar]
  5. de Freitas K.S. Squarisi I.S. Acésio N.O. Nicolella H.D. Ozelin S.D. Reis Santos de Melo M. Guissone A.P.P. Fernandes G. Silva L.M. da Silva Filho A.A. Tavares D.C. Licochalcone A, a licorice flavonoid: Antioxidant, cytotoxic, genotoxic, and chemopreventive potential. J. Toxicol. Environ. Health A 2020 83 21-22 673 686 10.1080/15287394.2020.1813228 32886024
    [Google Scholar]
  6. Liu M. Du Y. Gao D. Licochalcone A. A review of its pharmacology activities and molecular mechanisms. Front. Pharmacol. 2024 15 1453426 10.3389/fphar.2024.1453426 39188947
    [Google Scholar]
  7. Farag M.A. Porzel A. Wessjohann L.A. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry 2012 76 60 72 10.1016/j.phytochem.2011.12.010 22336263
    [Google Scholar]
  8. Bai M. Yao G.D. Ren Q. Li Q. Liu Q.B. Zhang Y. Wang X.B. Huang X.X. Song S.J. Triterpenoid saponins and flavonoids from licorice residues with anti-inflammatory activity. Ind. Crops Prod. 2018 125 125 50 58 10.1016/j.indcrop.2018.08.075
    [Google Scholar]
  9. Dao T.T.H. Linthorst H.J.M. Verpoorte R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 2011 10 3 397 412 10.1007/s11101‑011‑9211‑7 21909286
    [Google Scholar]
  10. Yin Y. Zhang X. Gao Z. Hu T. Liu Y. The research progress of chalcone isomerase (CHI) in plants. Mol. Biotechnol. 2019 61 1 32 52 10.1007/s12033‑018‑0130‑3 30324542
    [Google Scholar]
  11. Wu Z. Singh S.K. Lyu R. Pattanaik S. Wang Y. Li Y. Yuan L. Liu Y. Metabolic engineering to enhance the accumulation of bioactive flavonoids licochalcone A and echinatin in Glycyrrhiza inflata (Licorice) hairy roots. Front Plant. Sci. 2022 13 932594 10.3389/fpls.2022.932594 36061790
    [Google Scholar]
  12. Liu J. Zhu Z. Yang Y. Adu-Frimpong M. Chen L. Ji H. Toreniyazov E. Wang Q. Yu J. Xu X. Preparation, characterization, pharmacokinetics, and antirenal injury activity studies of Licochalcone A‐loaded liposomes. J. Food Biochem. 2022 46 1 14007 10.1111/jfbc.14007 34811762
    [Google Scholar]
  13. Wu W. Wang Z. Wu Y. Wu H. Chen T. Xue Y. Wang Y. Jiang C. Shen C. Liu L. Zhu H. Liu Q. Mechanisms of penetration enhancement and transport utilizing skin keratine liposomes for the topical delivery of licochalcone A. Molecules 2022 27 8 2504 10.3390/molecules27082504 35458701
    [Google Scholar]
  14. Page M.J. Moher D. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Mayo-Wilson E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. McKenzie J.E. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021 372 160 10.1136/bmj.n160 33781993
    [Google Scholar]
  15. Wang H. Li L. Qing X. Zhang S. Li S. Efficacy of Qishen Yiqi drop pill for chronic heart failure: An updated meta-analysis of 85 studies. Cardiovasc. Ther. 2020 2020 1 14 10.1155/2020/8138764 33042225
    [Google Scholar]
  16. Wang M. Shan Y. Wu C. Cao P. Sun W. Han J. Shen L. Chen J. Yu P. Chen X. Efficacy and safety of Qishen Yiqi dripping pill for heart failure with preserved ejection fraction: A systematic review and meta-analysis. Front. Pharmacol. 2021 11 626375 10.3389/fphar.2020.626375 33633570
    [Google Scholar]
  17. Yang L. Liu Y.L. Lin S.Q. HPLC analysis of flavonoids in the root of six Glycyrrhiza species. Yao Xue Xue Bao 1990 25 11 840 848 2099092
    [Google Scholar]
  18. Wang H. Song W. Tao W. Zhang J. Zhang X. Zhao J. Yong J. Gao X. Guo L. Identification wild and cultivated licorice by multidimensional analysis. Food Chem. 2020 339 128111 10.1016/j.foodchem.2020.128111 33152888
    [Google Scholar]
  19. Simmler C. Anderson J.R. Gauthier L. Lankin D.C. McAlpine J.B. Chen S.N. Pauli G.F. Metabolite profiling and classification of DNA-authenticated licorice botanicals. J. Nat. Prod. 2015 78 8 2007 2022 10.1021/acs.jnatprod.5b00342 26244884
    [Google Scholar]
  20. Hatano T. Kagawa H. Yasuhara T. Okuda T. Two new flavonoids and other constituents in licorice root. Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988 36 6 2090 2097 10.1248/cpb.36.2090 3240445
    [Google Scholar]
  21. Zhao J. Wang M. Adams S.J. Lee J. Chittiboyina A.G. Avula B. Ali Z. Raman V. Li J. Wu C. Khan I.A. Metabolite variation and discrimination of five licorice (Glycyrrhiza) species: HPTLC and NMR explorations. J. Pharm. Biomed. Anal. 2022 220 115012 10.1016/j.jpba.2022.115012 36041397
    [Google Scholar]
  22. He R. Ma T. Gong M. Xie K. Wang Z. Li J. The correlation between pharmacological activity and contents of eight constituents of Glycyrrhiza uralensis Fisch. Heliyon 2023 9 3 14570 10.1016/j.heliyon.2023.e14570 36967897
    [Google Scholar]
  23. El-Saber Batiha G. Magdy Beshbishy A. El-Mleeh A. Abdel-Daim M.M. Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020 10 3 352 10.3390/biom10030352 32106571
    [Google Scholar]
  24. Song W. Qiao X. Chen K. Wang Y. Ji S. Feng J. Li K. Lin Y. Ye M. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids. Anal. Chem. 2017 89 5 3146 3153 10.1021/acs.analchem.6b04919 28192986
    [Google Scholar]
  25. Montoro P. Maldini M. Russo M. Postorino S. Piacente S. Pizza C. Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. J. Pharm. Biomed. Anal. 2011 54 3 535 544 10.1016/j.jpba.2010.10.004 21041055
    [Google Scholar]
  26. Bai H. Bao F. Fan X. Han S. Zheng W. Sun L. Yan N. Du H. Zhao H. Yang Z. Metabolomics study of different parts of licorice from different geographical origins and their anti‐inflammatory activities. J. Sep. Sci. 2020 43 8 1593 1602 10.1002/jssc.201901013 32032980
    [Google Scholar]
  27. Yu C. Zheng Q. Wang X. Sun J. Wei N. Sun X. Zhang Y. Xie J. Evaluation of the differences of sour jujuba fruits from diverse regions based on the collaborative analysis of organic acids and flavor characters. Rev. Bras. Farmacogn. 2025 35 1 224 237 10.1007/s43450‑024‑00611‑x
    [Google Scholar]
  28. Shang Z. Tian Y. Yi Y. Li K. Qiao X. Ye M. Comparative bioactivity evaluation and chemical profiling of different parts of the medicinal plant Glycyrrhiza uralensis. J. Pharm. Biomed. Anal. 2022 215 215 114793 10.1016/j.jpba.2022.114793 35489249
    [Google Scholar]
  29. Celano R. Docimo T. Piccinelli A.L. Rizzo S. Campone L. Di Sanzo R. Carabetta S. Rastrelli L. Russo M. Specialized metabolite profiling of different Glycyrrhiza glabra organs by untargeted UHPLC-HRMS. Ind. Crops Prod. 2021 170 113688 10.1016/j.indcrop.2021.113688
    [Google Scholar]
  30. Rasha H.B. Zeinat K. Ahmed M. Eman S. Antimicrobial potential of licorice: Leaves versus roots. Afr. J. Microbiol. Res. 2012 6 49 7485 7493 10.5897/AJMR12.1182
    [Google Scholar]
  31. Zhao C. Wang F. Lian Y. Xiao H. Zheng J. Biosynthesis of citrus flavonoids and their health effects. Crit. Rev. Food Sci. Nutr. 2020 60 4 566 583 10.1080/10408398.2018.1544885 30580548
    [Google Scholar]
  32. Li Y. Zhuang F. Zeng J. Yang C. Li Y. Luo M. Wang Y. Identification of the histone demethylases gene family in Glycyrrhiza inflata reveals genes responding to abiotic stresses. J. Cell. Biochem. 2022 123 11 1780 1792 10.1002/jcb.30315 35933705
    [Google Scholar]
  33. Zeng J. Huang Y. Zhou L. Liang X. Yang C. Wang H. Yuan L. Wang Y. Li Y. Histone deacetylase GiSRT2 negatively regulates flavonoid biosynthesis in Glycyrrhiza inflata. Cells 2023 12 11 1501 10.3390/cells12111501 37296622
    [Google Scholar]
  34. Vijayalakshmi U. Shourie A. Yeast extract-mediated elicitation of anti-cancerous compounds licoisoflavone B, licochalcone A, and liquirtigenin in callus cultures of Glycyrrhiza glabra. Biotechnologia 2019 100 4 441 451 10.5114/bta.2019.90245
    [Google Scholar]
  35. Naik J. Misra P. Trivedi P.K. Pandey A. Molecular components associated with the regulation of flavonoid biosynthesis. Plant Sci. 2022 317 111196 10.1016/j.plantsci.2022.111196 35193745
    [Google Scholar]
  36. Liu W. Feng Y. Yu S. Fan Z. Li X. Li J. Yin H. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 2021 22 23 12824 10.3390/ijms222312824 34884627
    [Google Scholar]
  37. Li Y. Xie Z. Huang Y. Zeng J. Yang C. Yuan L. Wang Y. Li Y. Integrated metabolomic and transcriptomic analysis provides insights into the flavonoid formation in different Glycyrrhiza species. Ind. Crops Prod. 2024 208 117796 10.1016/j.indcrop.2023.117796
    [Google Scholar]
  38. Aimiuwu J. Wang H. Chen P. Xie Z. Wang J. Liu S. Klisovic R. Mims A. Blum W. Marcucci G. Chan K.K. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood 2012 119 22 5229 5238 10.1182/blood‑2011‑11‑382226 22517893
    [Google Scholar]
  39. Ma X. Jiang N. Fu J. Li Y. Zhou L. Yuan L. Wang Y. Li Y. A cytosine analogue 5-azacitidine improves the accumulation of licochalcone A in licorice Glycyrrhiza inflata. J. Plant Physiol. 2024 292 154145 10.1016/j.jplph.2023.154145 38091890
    [Google Scholar]
  40. Zhang Z. Yang J. Wang X. Wang Y. Liu R. Chen W. Li H. Content determination of licoflavone and licochalcone A in Licorice residues and optimization in extraction and purification process. Chem. Bioen 2024 41 12 55 61 10.3969/j.issn.1672‑5425.2024.12.009
    [Google Scholar]
  41. Jun J-G. Jeon J-H. Kim M. Concise synthesis of licochalcone A through water-accelerated [3, 3]-sigmatropic rearrangement of an aryl prenyl ether. Synthesis 2011 2011 3 370 376 10.1055/s‑0030‑1258381
    [Google Scholar]
  42. Li W. Zhang Y. Tian N. Xie J. Exploring the protective effects of Spinosin against advanced glycation end product-induced cellular damage through modulation RAGE/MAPK/NF-κB pathway. Food Biosci. 2025 64 105951 10.1016/j.fbio.2025.105951
    [Google Scholar]
  43. Zhang Y. Li W. Hou P. Yang T. Xie J. Physicochemical and stability analysis of mung bean protein hydrolysates with lipid peroxidation inhibition. Food Chem. 2025 463 Pt 1 141135 10.1016/j.foodchem.2024.141135 39255708
    [Google Scholar]
  44. Kwon H.S. Park J.H. Kim D.H. Kim Y.H. Park J.H.Y. Shin H.K. Kim J.K. Licochalcone A isolated from licorice suppresses lipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. J. Mol. Med. 2008 86 11 1287 1295 10.1007/s00109‑008‑0395‑2 18825356
    [Google Scholar]
  45. Kolbe L. Immeyer J. Batzer J. Wensorra U. Dieck K. Mundt C. Wolber R. Stäb F. Schönrock U. Ceilley R.I. Wenck H. Anti-inflammatory efficacy of Licochalcone A: Correlation of clinical potency and in vitro effects. Arch. Dermatol. Res. 2006 298 1 23 30 10.1007/s00403‑006‑0654‑4 16552540
    [Google Scholar]
  46. Kontogiorgis C. Mantzanidou M. Hadjipavlou-Litina D. Chalcones and their potential role in inflammation. Mini Rev. Med. Chem. 2008 8 12 1224 1242 10.2174/138955708786141034 18855737
    [Google Scholar]
  47. Monti S. Manet I. Manoli F. Marconi G. Structure and properties of licochalcone A–human serum albumin complexes in solution: A spectroscopic, photophysical and computational approach to understand drug–protein interaction. Phys. Chem. Chem. Phys. 2008 10 44 6597 6606 10.1039/b809241a 18989470
    [Google Scholar]
  48. Funakoshi-Tago M. Nakamura K. Tsuruya R. Hatanaka M. Mashino T. Sonoda Y. Kasahara T. The fixed structure of Licochalcone A by α, β-unsaturated ketone is necessary for anti-inflammatory activity through the inhibition of NF-κB activation. Int. Immunopharmacol. 2010 10 5 562 571 10.1016/j.intimp.2010.02.003 20153843
    [Google Scholar]
  49. Zhuang C. Zhang W. Sheng C. Zhang W. Xing C. Miao Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017 117 12 7762 7810 10.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  50. Yang G. Lee H.E. Yeon S.H. Kang H.C. Cho Y.Y. Lee H.S. Zouboulis C.C. Han S.H. Lee J.H. Lee J.Y. Licochalcone A attenuates acne symptoms mediated by suppression of NLRP3 inflammasome. Phytother. Res. 2018 32 12 2551 2559 10.1002/ptr.6195 30281174
    [Google Scholar]
  51. Cargnello M. Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011 75 1 50 83 10.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  52. Cui Y. Ao M. Hu J. Yu L. Yu L. Anti-inflammatory activity of licochalcone A isolated from Glycyrrhiza inflata. Z. Naturforsch. C J. Biosci. 2008 63 5-6 361 365 10.1515/znc‑2008‑5‑609 18669021
    [Google Scholar]
  53. Cai M. Xu Y. Deng B. Chen J.B. Chen T.F. Zeng K.F. Chen S. Deng S. Tan Z. Ding W. Zhang S. Liu B. Zhang J. Radix Glycyrrhizae extract and licochalcone a exert an anti-inflammatory action by direct suppression of toll like receptor 4. J. Ethnopharmacol 2023302 Pt A 115869 10.1016/j.jep.2022.115869 36309116
    [Google Scholar]
  54. Song N. Kim J.E. Park J. Kim J. Kang H. Lee E. Kang Y.G. Son J. Seo S. Heo Y. Lee K. Licochalcone A, a polyphenol present in licorice, suppresses UV-induced COX-2 expression by targeting PI3K, MEK1, and B-Raf. Int. J. Mol. Sci. 2015 16 3 4453 4470 10.3390/ijms16034453 25710724
    [Google Scholar]
  55. Chu X. Ci X. Wei M. Yang X. Cao Q. Guan M. Li H. Deng Y. Feng H. Deng X. Licochalcone a inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. J. Agric. Food Chem. 2012 60 15 3947 3954 10.1021/jf2051587 22400806
    [Google Scholar]
  56. Tanifuji S. Aizu-Yokota E. Funakoshi-Tago M. Sonoda Y. Inoue H. Kasahara T. Licochalcones suppress degranulation by decreasing the intracellular Ca2+ level and tyrosine phosphorylation of ERK in RBL-2H3 cells. Int. Immunopharmacol. 2010 10 7 769 776 10.1016/j.intimp.2010.04.007 20399908
    [Google Scholar]
  57. Phan H.T.L. Kim H.J. Jo S. Kim W.K. Namkung W. Nam J.H. Anti-inflammatory effect of licochalcone a via regulation of ORAI1 and K+ channels in T-Lymphocytes. Int. J. Mol. Sci. 2021 22 19 10847 10.3390/ijms221910847 34639190
    [Google Scholar]
  58. Huang W.C. Liu C.Y. Shen S.C. Chen L.C. Yeh K.W. Liu S.H. Liou C.J. Protective effects of licochalcone A improve airway hyper-responsiveness and oxidative stress in a mouse model of asthma. Cells 2019 8 6 617 10.3390/cells8060617 31226782
    [Google Scholar]
  59. Rafi M.M. Rosen R.T. Vassil A. Ho C.T. Zhang H. Ghai G. Lambert G. DiPaola R.S. Modulation of bcl-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid. Anticancer Res. 2000 20 4 2653 2658 10953339
    [Google Scholar]
  60. Yo Y.T. Shieh G.S. Hsu K.F. Wu C.L. Shiau A.L. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway. J. Agric. Food Chem. 2009 57 18 8266 8273 10.1021/jf901054c 19711916
    [Google Scholar]
  61. Lin R.C. Yang S.F. Chiou H.L. Hsieh S.C. Wen S.H. Lu K.H. Hsieh Y.H. Licochalcone A-induced apoptosis through the activation of p38MAPK pathway mediated mitochondrial pathways of apoptosis in human osteosarcoma cells in vitro and in vivo. Cells 2019 8 11 1441 10.3390/cells8111441 31739642
    [Google Scholar]
  62. Yuan L.W. Jiang X.M. Xu Y.L. Huang M.Y. Chen Y.C. Yu W.B. Su M.X. Ye Z.H. Chen X. Wang Y. Lu J.J. Licochalcone A inhibits interferon-gamma-induced programmed death-ligand 1 in lung cancer cells. Phytomedicine 2021 80 153394 10.1016/j.phymed.2020.153394 33130472
    [Google Scholar]
  63. Liu X. Xing Y. Li M. Zhang Z. Wang J. Ri M. Jin C. Xu G. Piao L. Jin H. Zuo H. Ma J. Jin X. Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-κB and Ras/Raf/MEK pathways. J. Ethnopharmacol. 2021 273 113989 10.1016/j.jep.2021.113989 33677006
    [Google Scholar]
  64. Chuang C.Y. Tang C.M. Ho H.Y. Hsin C.H. Weng C.J. Yang S.F. Chen P.N. Lin C.W. Licochalcone A induces apoptotic cell death via JNK/p38 activation in human nasopharyngeal carcinoma cells. Environ. Toxicol. 2019 34 7 853 860 10.1002/tox.22753 30983163
    [Google Scholar]
  65. Kang T.H. Seo J.H. Oh H. Yoon G. Chae J.I. Shim J.H. Licochalcone A suppresses specificity protein 1 as a novel target in human breast cancer cells. J. Cell. Biochem. 2017 118 12 4652 4663 10.1002/jcb.26131 28498645
    [Google Scholar]
  66. Shen T.S. Hsu Y.K. Huang Y.F. Chen H.Y. Hsieh C.P. Chen C.L. Licochalcone A suppresses the proliferation of osteosarcoma cells through autophagy and ATM-Chk2 activation. Molecules 2019 24 13 2435 10.3390/molecules24132435 31269698
    [Google Scholar]
  67. Tsai J.P. Lee C.H. Ying T.H. Lin C.L. Lin C.L. Hsueh J.T. Hsieh Y.H. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells. Oncotarget 2015 6 30 28851 28866 10.18632/oncotarget.4767 26311737
    [Google Scholar]
  68. Xiao X. Hao M. Yang X. Ba Q. Li M. Ni S. Wang L.S. Du X. Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Lett. 2011 302 1 69 75 10.1016/j.canlet.2010.12.016 21216524
    [Google Scholar]
  69. Liu R. Wen X. Shao F. Zhang P. Huang H. Zhang S. Flavonoids from heartwood of Dalbergia cochinchinensis. Chin. Herb. Med. 2016 8 1 89 93 10.1016/S1674‑6384(16)60014‑X
    [Google Scholar]
  70. Lepetsos P. Papavassiliou A.G. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 4 576 591 10.1016/j.bbadis.2016.01.003 26769361
    [Google Scholar]
  71. Hao W. Yuan X. Yu L. Gao C. Sun X. Wang D. Zheng Q. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci. Rep. 2015 5 1 10336 10.1038/srep10336 25981581
    [Google Scholar]
  72. Huang C.F. Yang S.F. Chiou H.L. Hsu W.H. Hsu J.C. Liu C.J. Hsieh Y.H. Licochalcone A inhibits the invasive potential of human glioma cells by targeting the MEK/ERK and ADAM9 signaling pathways. Food Funct. 2018 9 12 6196 6204 10.1039/C8FO01643G 30465574
    [Google Scholar]
  73. Hu J. Liu J. Licochalcone A attenuates lipopolysaccharide-induced acute kidney injury by inhibiting NF-κB activation. Inflammation 2016 39 2 569 574 10.1007/s10753‑015‑0281‑3 26552405
    [Google Scholar]
  74. Haraguchi H. Ishikawa H. Mizutani K. Tamura Y. Kinoshita T. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem. 1998 6 3 339 347 10.1016/S0968‑0896(97)10034‑7 9568287
    [Google Scholar]
  75. Olloquequi J. Ettcheto M. Cano A. Fortuna A. Bicker J. Sánchez-Lopez E. Paz C. Ureña J. Verdaguer E. Auladell C. Camins A. Licochalcone A. Licochalcone A. A potential multitarget drug for Alzheimer’s disease treatment. Int. J. Mol. Sci. 2023 24 18 14177 10.3390/ijms241814177 37762479
    [Google Scholar]
  76. Ara I. Turcio R. Islam T. Hossain M.S. Hasan M.K. Anti-aging related activities and health benefits of Licochalcone A: A review. Clin. Complement Med. Pharmacol. 2024 4 1 100125 10.1016/j.ccmp.2023.100125
    [Google Scholar]
  77. Mishra L.C. Bhattacharya A. Bhasin V.K. Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitroin vivo. Acta Trop. 2009 109 3 194 198 10.1016/j.actatropica.2008.11.006 19063856
    [Google Scholar]
  78. Klotz M. Opper S. Heeg K. Zimmermann S. Detection of Staphylococcus aureus enterotoxins A to D by real-time fluorescence PCR assay. J. Clin. Microbiol. 2003 41 10 4683 4687 10.1128/JCM.41.10.4683‑4687.2003 14532203
    [Google Scholar]
  79. Qiu J. Feng H. Xiang H. Wang D. Xia L. Jiang Y. Song K. Lu J. Yu L. Deng X. Influence of subinhibitory concentrations of licochalcone A on the secretion of enterotoxins A and B by Staphylococcus aureus. FEMS Microbiol. Lett. 2010 307 2 135 141 10.1111/j.1574‑6968.2010.01973.x 20412304
    [Google Scholar]
  80. Nadelmann L. Tjørnelund J. Hansen S.H. Cornett C. Sidelmann U.G. Braumann U. Christensen E. Christensen S.B. Synthesis, isolation and identification of glucuronides and mercapturic acids of a novel antiparasitic agent, licochalcone A. Xenobiotica 1997 27 7 667 680 10.1080/004982597240262 9253144
    [Google Scholar]
  81. Soars M.G. Burchell B. Riley R.J. In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance. J. Pharmacol. Exp. Ther. 2002 301 1 382 390 10.1124/jpet.301.1.382 11907196
    [Google Scholar]
  82. Zhang D. Zhu M. Humphreys W. Drug Metabolism in Drug Design and Development: Basic Concepts and Practice 2007 10.1002/9780470191699
    [Google Scholar]
  83. Naritomi Y. Nakamori F. Furukawa T. Tabata K. Prediction of hepatic and intestinal glucuronidation using in vitro–in vivo extrapolation. Drug Metab. Pharmacokinet. 2015 30 1 21 29 10.1016/j.dmpk.2014.10.001 25760528
    [Google Scholar]
  84. Henderson M.C. Miranda C.L. Stevens J.F. Deinzer M.L. Buhler D.R. In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 2000 30 3 235 251 10.1080/004982500237631 10752639
    [Google Scholar]
  85. Obach R.S. Walsky R.L. Venkatakrishnan K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions. Drug Metab. Dispos. 2007 35 2 246 255 10.1124/dmd.106.012633 17093004
    [Google Scholar]
  86. Nebert D.W. Wikvall K. Miller W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013 368 1612 20120431 10.1098/rstb.2012.0431 23297354
    [Google Scholar]
  87. Huang L. Nikolic D. van Breemen R.B. Hepatic metabolism of licochalcone A, a potential chemopreventive chalcone from licorice (Glycyrrhiza inflata), determined using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2017 409 30 6937 6948 10.1007/s00216‑017‑0642‑x 29127460
    [Google Scholar]
  88. Li T. Ye W. Huang B. Lu X. Chen X. Lin Y. Wen C. Wang X. Determination and pharmacokinetic study of echinatin by UPLC-MS/MS in rat plasma. J. Pharm. Biomed. Anal. 2019 168 133 137 10.1016/j.jpba.2019.02.023 30807917
    [Google Scholar]
  89. Xia Y.L. Dou T.Y. Lv X. Ge G.B. In vitro characterization of the glucuronidation pathways of licochalcone A mediated by human UDP-glucuronosyltransferases. Xenobiotica 2019 49 6 671 677 10.1080/00498254.2018.1495345 30044687
    [Google Scholar]
  90. Xin H. Qi X.Y. Wu J.J. Wang X.X. Li Y. Hong J.Y. He W. Xu W. Ge G.B. Yang L. Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyltransferases. Food Chem. Toxicol. 2016 90 112 122 10.1016/j.fct.2016.02.007 26875642
    [Google Scholar]
  91. Miners J.O. Bowalgaha K. Elliot D.J. Baranczewski P. Knights K.M. Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: Application to the reaction phenotyping of acetaminophen glucuronidation. Drug Metab. Dispos. 2011 39 4 644 652 10.1124/dmd.110.037036 21245288
    [Google Scholar]
  92. Bernard O. Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab. Dispos. 2004 32 8 775 778 10.1124/dmd.32.8.775 15258099
    [Google Scholar]
  93. Higashi E. Ando A. Iwano S. Murayama N. Yamazaki H. Miyamoto Y. Hepatic microsomal UDP‐glucuronosyltransferase (UGT) activities in the microminipig. Biopharm. Drug Dispos. 2014 35 6 313 320 10.1002/bdd.1898 24752421
    [Google Scholar]
  94. Rauchensteiner F. Matsumura Y. Yamamoto Y. Yamaji S. Tani T. Analysis and comparison of Radix Glycyrrhizae (licorice) from Europe and China by capillary-zone electrophoresis (CZE). J. Pharm. Biomed. Anal. 2005 38 4 594 600 10.1016/j.jpba.2005.01.038 15967286
    [Google Scholar]
  95. Nadelmann L. Tjørnelund J. Christensen E. Hansen S.H. High-performance liquid chromatographic determination of licochalcone A and its metabolites in biological fluids. J. Chromatogr., Biomed. Appl. 1997 695 2 389 400 10.1016/S0378‑4347(97)00189‑8 9300876
    [Google Scholar]
  96. Choi J.S. Choi J.S. Choi D.H. Effects of licochalcone A on the bioavailability and pharmacokinetics of nifedipine in rats: possible role of intestinal CYP3A4 and P‐gp inhibition by licochalcone A. Biopharm. Drug Dispos. 2014 35 7 382 390 10.1002/bdd.1905 24903704
    [Google Scholar]
  97. Weng Q. Chen L. Ye L. Lu X. Yu Z. Wen C. Chen Y. Huang G. Determination of licochalcone A in rat plasma by UPLC–MS/MS and its pharmacokinetics. Acta Chromatogr. 2019 31 4 262 265 10.1556/1326.2018.00491
    [Google Scholar]
  98. Lin H. Su M. Wen C. Tang Y. Li H. Wu Y. Ge R. Li X. Lin H. Chalcones from plants cause toxicity by inhibiting human and rat 11β-hydroxysteroid dehydrogenase 2: 3D-quantitative structure-activity relationship (3D-QSAR) and in silico docking analysis. Food Chem. Toxicol. 2024 184 114415 10.1016/j.fct.2023.114415 38141941
    [Google Scholar]
  99. Yuan C. Lu Z. Jin Z. Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-β-cyclodextrin. Food Chem. 2014 152 140 145 10.1016/j.foodchem.2013.11.139 24444918
    [Google Scholar]
  100. Ramirez H.L. Valdivia A. Cao R. Fragoso A. Torres Labandeira J.J. Baños M. Villalonga R. Preparation of β-cyclodextrin-dextran polymers and their use as supramolecular carrier systems for naproxen. Polym. Bull. 2007 59 5 597 605 10.1007/s00289‑007‑0803‑8
    [Google Scholar]
  101. Wu J. Wang K. Wang X. Pang Y. Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 2021 12 5 360 373 10.1007/s13238‑020‑00814‑7 33346905
    [Google Scholar]
  102. Mittal A. Kakkar R. Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. Results Chem. 2021 3 100216 10.1016/j.rechem.2021.100216
    [Google Scholar]
  103. Mehrnia M.A. Jafari S.M. Makhmal-Zadeh B.S. Maghsoudlou Y. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification. Int. J. Biol. Macromol. 2016 84 261 267 10.1016/j.ijbiomac.2015.12.029 26708427
    [Google Scholar]
  104. Jalali Jivan M. Abbasi S. Nano based lutein extraction from marigold petals: Optimization using different surfactants and co-surfactants. Heliyon 2019 5 4 01572 10.1016/j.heliyon.2019.e01572 31183433
    [Google Scholar]
  105. Li Y. Ning J. Wang Y. Wang C. Sun C. Huo X. Yu Z. Feng L. Zhang B. Tian X. Ma X. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicol. Lett. 2018 294 27 36 10.1016/j.toxlet.2018.05.008 29753067
    [Google Scholar]
  106. Zhu Z. Liu J. Yang Y. Adu-Frimpong M. Ji H. Toreniyazov E. Wang Q. Yu J. Xu X. SMEDDS for improved oral bioavailability and anti-hyperuricemic activity of licochalcone A. J. Microencapsul. 2021 38 7-8 459 471 10.1080/02652048.2021.1963341 34338606
    [Google Scholar]
  107. Alnasraui A.H.F. Joe I.H. Al-Musawi S. Design and synthesize of folate decorated Fe3O4@Au-DEX-CP nano formulation for targeted drug delivery in colorectal cancer therapy: In vitro and in vivo studies. J. Drug Deliv. Sci. Technol. 2023 87 104798 10.1016/j.jddst.2023.104798
    [Google Scholar]
  108. Kimura Y. Ito H. Ohnishi R. Hatano T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol. 2010 48 1 429 435 10.1016/j.fct.2009.10.041 19883715
    [Google Scholar]
  109. Spaggiari D. Geiser L. Daali Y. Rudaz S. Phenotyping of CYP450 in human liver microsomes using the cocktail approach. Anal. Bioanal. Chem. 2014 406 20 4875 4887 10.1007/s00216‑014‑7915‑4 24894520
    [Google Scholar]
  110. Guengerich F.P. Roles of individual human cytochrome P450 enzymes in drug metabolism. Pharmacol. Rev. 2024 76 6 1104 1132 10.1124/pharmrev.124.001173 39054072
    [Google Scholar]
  111. He W. Wu J.J. Ning J. Hou J. Xin H. He Y.Q. Ge G.B. Xu W. Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice. Toxicol. In Vitro 2015 29 7 1569 1576 10.1016/j.tiv.2015.06.014 26100226
    [Google Scholar]
  112. Li G. Simmler C. Chen L. Nikolic D. Chen S.N. Pauli G.F. van Breemen R.B. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur. J. Pharm. Sci. 2017 109 182 190 10.1016/j.ejps.2017.07.034 28774812
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002380407250730080035
Loading
/content/journals/cdm/10.2174/0113892002380407250730080035
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test